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Abstract. An involution or anti-involution is a self-inverse linear
mapping. In this paper, we will present two real quaternion ma-
trices, one corresponding to a real quaternion involution and one
corresponding to a real quaternion anti-involution. Moreover, prop-
erties and geometrical meanings of these matrices will be given as
reflections in R3.
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1. Introduction

Quaternions are an extension of the complex numbers C and were first
described by Irish mathematician Sir William Rowan Hamilton in 1843.
Hamilton was looking for a way to formalize 3 points in 3-space in the
same way that 2 points can be defined in the complex field C. If he
had been able to find a way to formalize 3 points in 3-space, he would
have effectively built a degree three field extension of real numbers R
whose vector space forms the basis {1, i, j} over R such that i2 = j2 =
−1. For many years, he knew how to add and subtract 3 points in 3-
space. However, he had been stuck on the problem of multiplication and
division for over 10 years. Finally, the great breakthrough in quaternions
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came on 16 October 1843 in Dublin, while Hamilton was on a walk with
his wife. They had been walking along the towpath of the Royal Canal
when it occurred to Hamilton that the algebra of quaternions would
require three rather than two imaginary parts satisfying the conditions

i2 = j2 = k2 = ijk = −1.

Hamilton carved these results into the stone of Brougham Bridge.
Quaternions are widely used in computer graphic technology, physics,

mechanics, electronics, kinematics, etc., since they are useful to perceive
rotations, reflections and rigid body (screw) motions. The Book of In-
volutions by Knus, Merkurjev, Rost and Tignol is one of the most im-
portant sources about involutions. In this book first and second kind
involutions are widely studied as algebraically for central simple alge-
bras. Ell and Sangwine have studied involutions and anti-involutions
of real quaternions with their geometrical meanings in R3 beside their
algebraic meanings, see[1].

In this paper we will begin by reviewing basics of real quaternions
and their matrix representations. After, definitions of the concepts in-
volution and anti-involution will be given. Finally, we will give a matrix
corresponding to a real quaternion involution, and a matrix correspond-
ing to a real quaternion anti-involution, with their properties and geo-
metrical meanings as reflections in R3.

2. PRELIMINARIES

In this section we will present basics of real quaternions and their
matrix representations.

2.1. Basics of Real Quaternions. The real quaternion algebra

H = {q = w + xi+ yj + zk : w, x, y, z ∈ R}

is a four dimensional vector space over the field of real numbers R, with a
basis {1, i, j, k}. Multiplication is defined by the hypercomplex operator
rules

i2 = j2 = k2 = ijk = −1.

It can be easily checked that those rules imply

ij = −ji = k, jk = −kj = i, ki = −ik = j.

Also, H is an associative and non-commutative division ring.
For any real quaternion q = w + xi + yj + zk, we define the scalar

part and vector part as S(q) = w and V (q) = xi+ yj + zk, respectively.
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The (quaternionic) conjugate of q = S(q) + V (q) is q = S(q)− V (q). If
S(q) = 0 then q is called pure. Pure real quaternions set

Ĥ = {q = xi+ yj + zk : w, x, y, z ∈ R}

is a linear subspace of H spanned by {i, j, k}.
For real quaternions q = w1 + x1i + y1j + z1k and p = w2 + x2i +

y2j + z2k, we define the sum of q and p ;multiplication of q with a real
scalar λ; and the product of q and p as

q + p = (w1 + w2) + (x1 + x2) i+ (y1 + y2) j + (z1 + z2) k

λq = λw1 + λx1i+ λy1j + λz1k

qp = S (q)S (p)− 〈V (q), V (p)〉+ S(q)V (p) + S(p)V (q) + V (q) ∧ V (p)

where 〈V (q), V (p)〉 = x1x2 + y1y2 + z1z2, V (q)∧V (p) = (y1z2− z1y2)i−
(x1z2−z1x2)j+(x1y2−y1x2)k. It can be easily shown that pq = qp and
p+ q = p+ q = q + p for general real quaternions q and p, see [2, 3, 4].

The norm and modulus of a real quaternion q = w1 + x1i+ y1j + z1k
can be given, respectively, by ‖q‖ = qq = qq = w2

1 +x21 +y21 +z21 ≥ 0 and

|q| =
√
‖ q ‖. If ‖q‖ = 1 then q is said to be unit. The multiplicative

inverse of any nonzero real quaternion is q−1 =
q

‖q‖
.

Hamilton showed that any unit pure real quaternion is a square root
of −1. In other words, if µ is a unit pure real quaternion then µ2 = −1,
see [5].

A real quaternion q = w+ xi+ yj + zk can be given in complex form

as q = a+ µb where a = w,b =
√
x2 + y2 + z2 and µ =

xi+ yj + zk

b
.

2.2. Matrix Representation of Real Quaternions. Real quater-
nions can be represented in the form of 4 × 4 real matrices so that the
matrix multiplication corresponds to real quaternion multiplication, see
[6]. By using the hypercomplex operator rules, the coefficients of the real
quaternion multiplication r = qp = w0 +x0i+y0j+ z0k of two arbitrary
real quaternions q = w1 + x1i+ y1j + z1k and p = w2 + x2i+ y2j + z2k
can be given by

w0 = w1w2 − x1x2 − y1y2 − z1z2

x0 = x1w2 + w1x2 − z1y2 + y1z2

y0 = y1w2 + w1y2 + z1x2 − x1z2
z0 = z1w2 + w1z2 − y1x2 + x1y2.

Thus, the following two matrix-vector multiplication can be given:
(i) The standard form preserving the order of the multiplication as
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
w0

x0
y0
z0

 =


w1 −x1 −y1 −z1
x1 w1 −z1 y1
y1 z1 w1 −x1
z1 −y1 x1 w1



w2

x2
y2
z2

 .
In this form q is taken as a left-handed operator of variable p, where the
operator q and variable p correspond, respectively, to the matrices

w1 −x1 −y1 −z1
x1 w1 −z1 y1
y1 z1 w1 −x1
z1 −y1 x1 w1

 and


w2

x2
y2
z2


(ii) The transposed form reversing the order of the multiplication as

w0

x0
y0
z0

 =


w2 −x2 −y2 −z2
x2 w2 z2 −y2
y2 −z2 w2 x2
z2 y2 −x2 w2



w1

x1
y1
z1

 .
In this form p is taken as a right-handed operator of variable q, where

the operator q and variable p correspond, respectively, to the matrices
w2 −x2 −y2 −z2
x2 w2 z2 −y2
y2 −z2 w2 x2
z2 y2 −x2 w2

 and


w1

x1
y1
z1

 .
3. INVOLUTION MATRICES OF REAL QUATERNIONS

In this section, fristly we will give the definitions of the concepts
involution mapping and anti-involution mapping. After, we will present
two matrices, one corresponding to a real quaternion involution and one
corresponding to a real quaternion anti-involution, with their properties
and geometrical meanings as reflections in R3.

Definition 3.1. A transformation f is an involution (also known as an
involutory anti-automorphism) if it satisfy the following axioms:

Axiom 1. An involution is its own inverse (self-inverse) : f(f(x)) = x

Axiom 2. An involution is linear : f(x1 + x2) = f(x1) + f(x2) and
λf(x) = f(λx), where λ is real constant.

Axiom 3. An involution is anti-automorphism : f(x1x2) = f(x2)f(x1).
To be an anti-involution (also known as an involutory automorphism) a
transformation f must satisfy self-inverse linearity similiar to involution,
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except that it does not obey Axiom 3 as stated. Instead, it must satisfy
the following axiom:

Axiom 4. An anti-involution is homomorphic : f(x1x2) = f(x1)f(x2),
see [7].

3.1. Involution Matrices of Real Quaternions.

Proposition 3.2. The transformation

fv : H→ H
defined by

q → fv(q) = −vqv; v2 = −1; v ∈ Ĥ
where q is an arbitrary real quaternion and v is any unit pure real
quaternion, is an involution, see [1].

The geometric interpretation in R3 of the involution fv(q) = −vqv
can be given by the following theorem.

Theorem 3.3. For an arbitrary real quaternion q = a + µb, where
a, b ∈ R and µ is a unit pure real quaternion, the involution fv(q) =
−vqv, where v is any unit pure real quaternion, leaves the scalar part of
q (that is, a) invariant, and reflects the vector part of q (that is, µb) in
the plane normal to the axis of involution v, see [1]

In R3,vµv represent a reflection of µ in the plane normal to v, see[8].
The geometry of vµv in R3 can be given by Figure 1:

Figure 1.

In Figure 1, M is the plane which is perpendicular to v, ~A is the
orthogonal projection vector of µ on M and |v| = |µ| = |vµv| = 1.

Now, we will obtain the matrix corresponding to the involution fv(q) =
−vqv.

Let q = a+µb be an arbitrary real quaternion and v = xi+yj+zk any
unit pure real quaternion. Using the involution transformation fv(q) =



12 Murat Bekar , Yusuf Yayli

−vqv and the basis {1, i, j, k} of the vector space H, we can write the
equations
fv(1) = −v1v = −v2 = 1,
fv(i) = −viv = (1− 2x2)i− 2xyj − 2xzk,
fv(j) = −vjv = −2xyi+ (1− 2y2)j − 2yzk,
fv(k) = −vkv = −2xzi− 2yzj + (1− 2z2)k Hence, the matrix repre-

sentation corresponding to involution fv(q) = −vqv can be given as

Mq =


1 0 0 0
0 1− 2x2 −2xy −2xz
0 −2xy 1− 2y2 −2yz
0 −2xz −2yz 1− 2z2




a
µ1
µ2
µ3



where q = a + µb corresponds to the 4 × 1 matrix, M corresponds to
the 4× 4 matrix and µb is equal to (µ1, µ2, µ3). It can be easily checked
that M is orthogonal (i.e. MMT = I) and symmetric (i.e. M = MT )
with determinant −1, so that the involution fv(q) = −vqv represents a
reflection in R4.

The product Mq, leaves the scalar part of q (that is, a) invariant and
in R3 reflects the vector part of q (that is, µb) in the plane normal to
the axis of involution v.

Example 3.4. For real quaternion q = 3 + 2(
3

5
, 0,

4

5
) and unit pure

real quaternion v = (0, 0, 1) the matrix representation corresponding to
involution fv(q) = −vqv can be given with

Mq =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1




3
6

5
0
8

5

 = (3,
6

5
, 0,−8

5
).

The effect of the matrixM on the real quaternion q is: It leaves the scalar
part of q (that is, 3) invariant and reflects the vector part of q (that is,

2(
3

5
, 0,

4

5
) ) in the plane normal to the axis of involution v = (0, 0, 1) in

R3, see Figure 2.
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Figure 2.

Corollary 3.5. For pure real quaternion q = µ1i+µ2j+µ3k = (µ1, µ2, µ3)
and unit pure real quaternion v = xi + yj + zk = (x, y, z) the matrix
product  1− 2x2 −2xy −2xz

−2xy 1− 2y2 −2yz
−2xz −2yz 1− 2z2

 µ1
µ2
µ3


reflects q in the plane normal to v in R3.

3.2. Anti-Involution Matrices of Real Quaternions.

Proposition 3.6. The transformation

fv : H→ H

defined by

q → fv(q) = −vqv; v2 = −1; v ∈ Ĥ
where q is an arbitrary real quaternion and v is any unit pure real
quaternion, is an anti-involution, see [1].

The geometric interpretation in R3 of the anti-involution fv(q) =
−vqv can be given by the following theorem.

Theorem 3.7. For an arbitrary real quaternion q = a+µb, where a, b ∈
R and µ is a unit pure real quaternion, the anti-involution fv(q) = −vqv,
where v is any unit pure real quaternion, leaves the scalar part of q (that
is, a) invariant, and reflects the vector part of q (that is, µb) in the line
defined by the axis of involution (equivalently to rotate the vector part
by π about the axis of involution). fv(q) = −vqv is the conjugate of
fv(q) = −vqv, see [1].

The geometry of −vµv in R3 can be given by Figure 3:
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Figure 3.

In Figure 3, M is the plane which is perpendicular to v, ~A is the
orthogonal projection vector of µ onM and |v| = |µ| = |vµv| = |−vµv| =
1.

Now, we will obtain the matrix corresponding to the anti-involution
fv(q) = −vqv. Let q = a + µb be an arbitrary real quaternion and
v = xi+yj+zk any unit pure real quaternion. Using the anti-involution
transformation fv(q) = −vqv and the basis {1, i, j, k} of the vector space
H, we can write the equations
fv(1) = −v1v = −v2 = 1,
fv(i) = −viv = −(1− 2x2)i+ 2xyj + 2xzk,
fv(j) = −vjv = 2xyi− (1− 2y2)j + 2yzk,
fv(k) = −vkv = 2xzi+ 2yzj − (1− 2z2)k.

Hence, the matrix representation corresponding to anti-involution fv(q) =
−vqv can be given as

Mq =


1 0 0 0
0 2x2 − 1 2xy 2xz
0 2xy 2y2 − 1 2yz
0 2xz 2yz 2z2 − 1




a
µ1
µ2
µ3


where q = a+µb corresponds to the 4×1 matrix, M corresponds to the
4×4 matrix and µb is equal to (µ1, µ2, µ3). It can be easily checked that
M is orthogonal (i.e. MMT = I) and symmetric (i.e. M = MT ) with
determinant +1, so that the anti-involution fv(q) = −vqv represents a
rotation in R4.

The product Mq, leaves the scalar part of q (that is, a) invariant and
in R3 reflects the vector part of q (that is, µb) in the line defined by the
axis of involution v (equivalently to rotate the vector part by π about
the axis of involution).
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Example 3.8. For real quaternion q = −1 + 7(
1√
3
,−1

2
,

√
5

2
√

3
) and unit

pure real quaternion v = (0, 0, 1) the matrix representation correspond-
ing to anti-involution fv(q) = −vqv can be given as

Mq =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1




−1
7√
3

−7

2
7
√

5

2
√

3


= (−1,− 7√

3
,
7

2
,
7
√

5

2
√

3
).

The effect of the matrix M on the real quaternionq is: It leaves the scalar
part of q (that is, −1) invariant and in R3 reflects the vector part of q

(that is, 7(
1√
3
,−1

2
,

√
5

2
√

3
) ) in the line defined by the axis of involution v

(equivalently to rotate the vector part by π about the axis of involution)
in R3, see Figure 4.

Figure 4.

Corollary 3.9. For pure real quaternion q = µ1i+µ2j+µ3k = (µ1, µ2, µ3)
and unit pure real quaternion v = xi + yj + zk = (x, y, z) the matrix
product  2x2 − 1 2xy 2xz

2xy 2y2 − 1 2yz
2xz 2yz 2z2 − 1

 µ1
µ2
µ3


reflects q in the line v (equivalently to rotate q by π about the axis v) in
R3.
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4. CONCLUSION

The matrix representation corresponding to involutionfv(q) = −vqv
represents a reflection in R4, and in R3 it reflects the vector part of
q in the plane normal to the axis of involution v. Also, the matrix
representation corresponding to ant-involution fv(q) = −vqv represents
a rotation in R4, and in R3 it reflects the vector part of q in the line
defined by the axis of involution (equivalently to rotate the vector part
by π about the axis of involution).
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