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1. Introduction

Consider w,χ and Λ denote the classes of all, gai and analytic scalar val-
ued single sequences, respectively.We write w2 for the set of all complex
sequences (xmn), where m,n ∈ N, the set of positive integers. Then,
w2 is a linear space under the coordinate wise addition and scalar mul-
tiplication. Throughout this article the space of regularly gai multiple
sequence defined over a semi-normed space (X, q) , semi-normed by q will
be denoted by χ2R

mn (q) and Λ2R
mn (q) ForX = C, the field of complex num-

bers, these spaces represent the corresponding scalar sequence spaces.
Some initial works on double sequence spaces is found in Bromwich [1].
Later on, they were investigated by Hardy [2], Moricz [3], Moricz and
Rhoades [4], Basarir and Solankan [5], Tripathy [6], Turkmenoglu [7],
and many others. We procure the following sets of double sequences:

Mu (t) :=
{
(xmn) ∈ w2 : supm,n∈N |xmn|tmn < ∞

}
,

Cp (t) :={
(xmn) ∈ w2 : p− limm,n→∞ |xmn − l|tmn = 1for somel ∈ C

}
,

C0p (t) :=
{
(xmn) ∈ w2 : p− limm,n→∞ |xmn|tmn = 1

}
,

Lu (t) :=
{
(xmn) ∈ w2 :

∑∞
m=1

∑∞
n=1 |xmn|tmn < ∞

}
,

Cbp (t) := Cp (t)
∩

Mu (t) and C0bp (t) = C0p (t)
∩

Mu (t);

where t = (tmn) is the sequence of strictly positive reals tmn for all
m,n ∈ N and p− limm,n→∞ denotes the limit in the Pringsheim’s sense.
In the case tmn = 1 for all m,n ∈ N;Mu (t) , Cp (t) , C0p (t) ,Lu (t) , Cbp (t)
and C0bp (t) reduce to the sets Mu, Cp, C0p,Lu, Cbp and C0bp, respectively.
Now, we may summarize the knowledge given in some document related
to the double sequence spaces. Gökhan and Colak [8,9] have proved
that Mu (t) and Cp (t) , Cbp (t) are complete paranormed spaces of dou-
ble sequences and gave the α−, β−, γ− duals of the spaces Mu (t) and
Cbp (t) . Quite recently, in her PhD thesis, Zelter [10] has essentially
studied both the theory of topological double sequence spaces and the
theory of summability of double sequences. Mursaleen and Edely [11]
and Tripathy have independently introduced the statistical convergence
and Cauchy for double sequences and given the relation between statis-
tical convergent and strongly Cesàro summable double sequences. Altay
and Basar [12] have defined the spaces BS,BS (t) , CSp, CSbp, CSr and
BV of double sequences consisting of all double series whose sequence
of partial sums are in the spaces Mu,Mu (t) , Cp, Cbp, Cr and Lu, respec-
tively, and also examined some properties of those sequence spaces and
determined the α− duals of the spaces BS,BV, CSbp and the β (ϑ)−
duals of the spaces CSbp and CSr of double series. Basar and Sever [13]
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have introduced the Banach space Lq of double sequences correspond-
ing to the well-known space ℓq of single sequences and examined some
properties of the space Lq. Quite recently Subramanian and Misra [14]
have studied the space χ2

M (p, q, u) of double sequences and gave some
inclusion relations.
The class of sequences which are strongly Cesàro summable with re-
spect to a modulus was introduced by Maddox [15] as an extension of
the definition of strongly Cesàro summable sequences. Cannor [16] fur-
ther extended this definition to a definition of strong A− summability
with respect to a modulus where A = (an,k) is a nonnegative regular ma-
trix and established some connections between strong A− summability,
strong A− summability with respect to a modulus, and A− statisti-
cal convergence. In [17] the notion of convergence of double sequences
was presented by A. Pringsheim. Also, in [18]-[19], and [20] the four
dimensional matrix transformation (Ax)k,ℓ =

∑∞
m=1

∑∞
n=1 a

mn
kℓ xmn was

studied extensively by Robison and Hamilton.
We need the following inequality in the sequel of the paper. For a, b,≥ 0
and 0 < p < 1, we have

(a+ b)p ≤ ap + bp (1.1)

The double series
∑∞

m,n=1 xmn is called convergent if and only if the

double sequence (smn) is convergent, where smn =
∑m,n

i,j=1 xij(m,n ∈ N).

A sequence x = (xmn)is said to be double analytic if,

supmn |xmn|1/m+n < ∞. The vector space of all double analytic se-
quences will be denoted by Λ2. A sequence x = (xmn) is called double

gai sequence if ((m+ n)! |xmn|)1/m+n → 0 as m,n → ∞. The double gai
sequences will be denoted by χ2. Let ϕ = {finite sequences} . Consider
a double sequence x = (xij). The (m,n)th section x[m,n] of the sequence

is defined by x[m,n] =
∑m,n

i,j=0xijℑij for all m,n ∈ N ; where ℑij denotes

the double sequence whose only non zero term is a 1
(i+j)! in the (i, j)th

place for each i, j ∈ N.
An FK-space(or a metric space)X is said to have AK property if (ℑmn)

is a Schauder basis for X. Or equivalently x[m,n] → x.
t An FDK-space is a double sequence space endowed with a complete
metrizable; locally convex topology under which the coordinate map-
pings x = (xk) → (xmn)(m,n ∈ N) are also continuous.
Let M and Φ are mutually complementary modulus functions. Then,
we have:
(i) For all u, y ≥ 0,

uy ≤ M (u) + Φ (y) , (Y oung′s inequality)[See[21]] (1.2)
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(ii) For all u ≥ 0,

uη (u) = M (u) + Φ (η (u)) . (1.3)

(iii) For all u ≥ 0, and 0 < λ < 1,

M (λu) ≤ λM (u) (1.4)

Lindenstrauss and Tzafriri [22] used the idea of Orlicz function to con-
struct Orlicz sequence space

ℓM =
{
x ∈ w :

∑∞
k=1M

(
|xk|
ρ

)
< ∞, for someρ > 0

}
,

The space ℓM with the norm

∥x∥ = inf
{
ρ > 0 :

∑∞
k=1M

(
|xk|
ρ

)
≤ 1

}
,

becomes a Banach space which is called an Orlicz sequence space. For
M (t) = tp (1 ≤ p < ∞) , the spaces ℓM coincide with the classical se-
quence space ℓp.
A sequence f = (fmn) of modulus function is called a Musielak-modulus
function. A sequence g = (gmn) defined by

gmn (v) = sup {|v|u− (fmn) (u) : u ≥ 0} ,m, n = 1, 2, · · ·
is called the complementary function of a Musielak-modulus function
f . For a given Musielak modulus function f, the Musielak-modulus
sequence space tf is defined as follows

tf =
{
x ∈ w2 : Mf (|xmn|)1/m+n → 0asm, n → ∞

}
,

where Mf is a convex modular defined by

Mf (x) =
∑∞

m=1

∑∞
n=1 fmn (|xmn|)1/m+n , x = (xmn) ∈ tf .

We consider tf equipped with the Luxemburg metric

d (x, y) = supmn

{
inf

(∑∞
m=1

∑∞
n=1 fmn

(
|xmn|1/m+n

mn

))
≤ 1

}
If X is a sequence space, we give the following definitions:

(i)X
′
= the continuous dual of X;

(ii)Xα =
{
a = (amn) :

∑∞
m,n=1 |amnxmn| < ∞, for eachx ∈ X

}
;

(iii)Xβ =
{
a = (amn) :

∑∞
m,n=1amnxmn is convegent, foreachx ∈ X

}
;

(iv)Xγ =
{
a = (amn) : supmn≥1

∣∣∣∑M,N
m,n=1 amnxmn

∣∣∣ < ∞, foreachx ∈ X
}
;

(v)letX be an FK − space ⊃ ϕ; thenXf =
{
f(ℑmn) : f ∈ X

′
}
;
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(vi)Xδ =
{
a = (amn) : supmn |amnxmn|1/m+n < ∞, foreachx ∈ X

}
;

Xα, Xβ, Xγ are called α− (orKöthe−Toeplitz)dual ofX,β−(or generalized−
Köthe−Toeplitz)dual ofX, γ−dual of X, δ−dual ofX respectively.Xα

is defined by Gupta and Kampthan . It is clear that Xα ⊂ Xβ and
Xα ⊂ Xγ , but Xβ ⊂ Xγ does not hold, since the sequence of partial
sums of a double convergent series need not to be bounded.
The notion of difference sequence spaces (for single sequences) was in-
troduced by Kizmaz as follows

Z (∆) = {x = (xk) ∈ w : (∆xk) ∈ Z}
for Z = c, c0 and ℓ∞, where ∆xk = xk − xk+1 for all k ∈ N.
Here c, c0 and ℓ∞ denote the classes of convergent,null and bounded
scalar valued single sequences respectively. The difference sequence
space bvp of the classical space ℓp is introduced and studied in the case
1 ≤ p ≤ ∞ by Başar and Altay and in the case 0 < p < 1 by Altay
and Başar. The spaces c (∆) , c0 (∆) , ℓ∞ (∆) and bvp are Banach spaces
normed by

∥x∥ = |x1|+ supk≥1 |∆xk| and ∥x∥bvp = (
∑∞

k=1 |xk|
p)1/p , (1 ≤ p < ∞) .

Later on the notion was further investigated by many others. We now
introduce the following difference double sequence spaces defined by

Z (∆) =
{
x = (xmn) ∈ w2 : (∆xmn) ∈ Z

}
where Z = Λ2, χ2 and ∆xmn = (xmn − xmn+1)− (xm+1n − xm+1n+1) =
xmn − xmn+1 − xm+1n + xm+1n+1 for all m,n ∈ N.

2. Definition and Preliminaries

Throughout this article a multiple sequence is denoted by;
A = ⟨am1m2···mrn1n2···ns⟩ , a multiple infinite array of elements
am1m2···mrn1n2···ns ∈ X for all m1m2 · · ·mrn1n2 · · ·ns ∈ N.
Let n ∈ N and X be a real vector space of dimension m, where n ≤ m.
A real valued function dp(x1, . . . , xn) = ∥(d1(x1), . . . , dn(xn))∥p on X
satisfying the following four conditions:
(i) ∥(d1(x1), . . . , dn(xn))∥p = 0 if and and only if d1(x1), . . . , dn(xn) are
linearly dependent,
(ii) ∥(d1(x1), . . . , dn(xn))∥p is invariant under permutation,
(iii) ∥(αm1m2···mrn1n2···nsd1(x1), . . . , αm1m2···mrn1n2···nsdn(xn))∥p =
|αm1m2···mrn1n2···ns | ∥(d1(x1), . . . , dn(xn))∥p,
αm1m2···mrn1n2···ns ∈ R
(iv) dp ((x1, y1), (x2, y2) · · · (xn, yn)) = (dX(x1, x2, · · ·xn)p
+ dY (y1, y2, · · · yn)p)1/pfor1 ≤ p < ∞; (or)
(v) d ((x1, y1), (x2, y2), · · · (xn, yn)) := sup {dX(x1, x2, · · ·xn), dY (y1, y2, · · · yn)} ,
for x1, x2, · · ·xn ∈ X, y1, y2, · · · yn ∈ Y is called the p product metric of
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the Cartesian product of n metric spaces is the p norm of the n-vector
of the norms of the n subspaces.
A trivial example of p product metric of n metric space is the p norm
space is X = R equipped with the following Euclidean metric in the
product space is the p norm:

∥(d1(x1), . . . , dn(xn))∥E = sup (|det(dmn (xmn))|) =

sup



∣∣∣∣∣∣∣∣∣∣∣∣

d11 (x11) d12 (x12) ... d1n (x1n)
d21 (x21) d22 (x22) ... d2n (x1n)

.

.

.
dn1 (xn1) dn2 (xn2) ... dnn (xnn)

∣∣∣∣∣∣∣∣∣∣∣∣


where xi = (xi1, · · ·xin) ∈ Rn for each i = 1, 2, · · ·n.
If every Cauchy sequence in X converges to some L ∈ X, then X is said
to be complete with respect to the p− metric. Any complete p− metric
space is said to be p− Banach metric space.

2.1. Definition. Let X be a linear metric space. A function ρ : X → R
is called paranorm, if
(1) ρ (x) ≥ 0, for all x ∈ X;
(2) ρ (−x) = ρ (x) , for all x ∈ X;
(3) ρ (x+ y) ≤ ρ (x) + ρ (y) , for all x, y ∈ X;
(4) If (σmn) is a sequence of scalars with σmn → σ as m,n → ∞ and
(xmn) is a sequence of vectors with ρ (xmn − x) → 0 as m,n → ∞, then
ρ (σmnxmn − σx) → 0 as m,n → ∞.
A paranorm w for which ρ (x) = 0 implies x = 0 is called total para-
norm and the pair (X,w) is called a total paranormed space. It is well
known that the metric of any linear metric space is given by some total
paranorm (see [23], Theorem 10.4.2, p.183).

2.2. Definition. A multiple sequence space E is said to be solid if
⟨αm1m2···mrn1n2···nsam1m2···mrn1n2···ns⟩ ∈ E whenever ⟨am1m2···mrn1n2···ns⟩
∈ E for all multiple sequences ⟨αm1m2···mrn1n2···ns⟩ of scalars with
|αm1m2···mrn1n2···ns | ≤ 1 for all m1m2 · · ·mrn1n2 · · ·ns ∈ N.

2.3. Definition. A multiple sequence space E is said to be symmetric if
⟨am1m2···mrn1n2···nsam1m2···mrn1n2···ns⟩ ∈ E, implies

⟨
aπ(m1m2···mrn1n2···ns)

⟩
∈

E,
where π (m1m2 · · ·mrn1n2 · · ·ns) ∈ E are permutations of (M ×N) · · ·
(M ×N) .

2.4. Definition. A multiple sequence space E is said to be monotone if
it contains the canonical pre-images of all its step spaces.
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2.5. Defintion. A multiple sequence space E is said to be convergence
free if ⟨bm1m2···mrn1n2···ns⟩ ∈ E, whenever ⟨am1m2···mrn1n2···ns⟩ ∈ E and
bm1m2···mrn1n2···ns = 0 whenver am1m2···mrn1n2···ns = 0.

2.6. Remark. A sequence space E is solid implies E is monotone.
Let f be an Musielak modulus function. Now we introduce the fol-

lowing multiple sequence spaces:[
Λ2fq
mn , ∥(d (x1) , d (x2) , · · · , d (xn−1))∥p

]
= ⟨am1m2···mrn1n2···ns⟩ ∈ w2q

mn :
sup

m1m2 · · ·mrn1n2 · · ·ns[
f
(
q
(
ηuv (x) , ∥(d (x1) , d (x2) , · · · , d (xn−1))∥p

))]
< ∞,

where ηuv (x) = |am1m2···mrn1n2···ns |
(1/m1m2···mr)+n1n2···ns[

χ2fq
mn , ∥(d (x1) , d (x2) , · · · , d (xn−1))∥p

]
= ⟨am1m2···mrn1n2···ns⟩ ∈ w2q

mn :[
f
(
q
(
µuv (x) , ∥(d (x1) , d (x2) , · · · , d (xn−1))∥p

))]
→ 0;

asm1m2 · · ·mrn1n2 · · ·ns → ∞.
where µuv (x) ((m1m2 · · ·mr + n1n2 · · ·ns)! |am1m2···mrn1n2···ns |)

(1/m1m2···mr)+n1n2···ns

A = ⟨am1m2···mrn1n2···ns⟩ ∈ χ2Rf
mn (q) , (i.e)., regularly gai if ⟨am1m2···mrn1n2···ns⟩ ∈

χ2f
mn (q) and the following limit hold:[
f
(
q
(
µuv (x) , ∥(d (x1) , d (x2) , · · · , d (xn−1))∥p

))]
→ 0; asm1n1 → ∞

and m2 · · ·mr, n2 · · ·ns ∈ N[
f
(
q
(
µuv (x) , ∥(d (x1) , d (x2) , · · · , d (xn−1))∥p

))]
→ 0;

asm2n2 → ∞ and m3 · · ·mr, n3 · · ·ns ∈ N
...
...
...
[
f
(
q
(
µuv (x) , ∥(d (x1) , d (x2) , · · · , d (xn−1))∥p

))]
→ 0asmrns → ∞

and m1 · · ·mr−1, n1 · · ·ns−1 ∈ N

2.7. Remark. The space χ2Rf
mn (q) has the following definition too[

χ2fq
mn , ∥(d (x1) , d (x2) , · · · , d (xn−1))∥p

]
= ⟨am1m2···mrn1n2···ns⟩ ∈ w2q

mn :[
f
(
q
(
µuv (x) , ∥(d (x1) , d (x2) , · · · , d (xn−1))∥p

))]
→ 0;

asmax {m1m2 · · ·mrn1n2 · · ·ns} → ∞. χ2Bf
mn (q) = χ2f

mn (q)
∩

Λ2f
mn (q) .

3. Main result

Theorem 3.1. χ2Rf
mn (q) , χ2Bf

mn (q) and Λ2f
mn (q) of multiple sequences are

linear spaces.
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Proof: We have to use linearity condition and then prove to the state-
ment. Hence it is trivial. Therefore omit the proof.

Theorem 3.2. Let f = (fmn) be a multiple sequence of Musielak-
modulus functions. Then then space[
χ2Rf
mn (q) , ∥(d (x1) , d (x2) , · · · , d (xn−1))∥p

]
is a paranormed space with

respect to the paranorm defined by
g (x) = inf{([

f
(
q
(
∥µuv (x) , (d (x1) , d (x2) , · · · , d (xn−1))∥p

)]))}
≤ 1.

Proof: Clearly g (x) ≥ 0 for x = (am1m2···mr,n1n2···ns) ∈[
χ2Rf
mn (q) , ∥(d (x1) , d (x2) , · · · , d (xn−1))∥p

]
. Since f (0) = 0, we get g (0) =

0.
Conversely, suppose that g (x) = 0, then

inf
{([

f
(
q
(
∥µuv (x) , (d (x1) , d (x2) , · · · , d (xn−1))∥p

)]))}
≤ 1 = 0.

Suppose that µuv (x) ̸= 0 for each u, v ∈ N. Then
∥µuv (x) , (d (x1) , d (x2) , · · · , d (xn−1))∥p → ∞. It follows that([

f
(
q
(
∥µuv (x) , (d (x1) , d (x2) , · · · , d (xn−1))∥p

))])
→ ∞ which is a

contradiction. Therefore µuv (x) = 0. Let([
f
(
q
(
∥µuv (x) , (d (x1) , d (x2) , · · · , d (xn−1))∥p

))])
≤ 1 and([

f
(
q
(
∥µuv (y) , (d (x1) , d (x2) , · · · , d (xn−1))∥p

))])
≤ 1.

Then by using Minkowski’s inequality, we have([
f
(
q
(
∥µuv (x+ y) , (d (x1) , d (x2) , · · · , d (xn−1))∥p

))])
≤([

f
(
q
(
∥µuv (x) , (d (x1) , d (x2) , · · · , d (xn−1))∥p

))])
+([

f
(
q
(
∥µuv (y) , (d (x1) , d (x2) , · · · , d (xn−1))∥p

))])
.

So we have g (x+ y) = inf{([
f
(
q
(
∥µuv (x+ y) , (d (x1) , d (x2) , · · · , d (xn−1))∥p

))])
≤ 1

}
≤

inf
{([

f
(
q
(
∥µuv (x) , (d (x1) , d (x2) , · · · , d (xn−1))∥p

))])
≤ 1

}
+

inf
{([

f
(
q
(
∥µuv (y) , (d (x1) , d (x2) , · · · , d (xn−1))∥p

))])
≤ 1

}
Therefore,

g (x+ y) ≤ g (x) + g (y) .

Finally, to prove that the scalar multiplication is continuous. Let λm1m2···mrn1n2···ns

be any complex number. By definition,
g (λm1m2···mrn1n2···nsx) = inf
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f
(
q
(
∥µuv (λm1m2···mrn1n2···nsx) , (d (x1) , d (x2) , · · · , d (xn−1))∥p

))])
≤ 1

}
Then
g (λm1m2···mrn1n2···ns x) = inf{
((|λm1m2···mrn1n2···ns | t) :

([
f
(
q
(
∥µuv (x) , (d (x1) , d (x2) , · · · , d (xn−1))∥p

))])
≤ 1

}
where t = 1

|λ| . Since |λ| ≤ max (1, |λ|suppuv) , we have

g (λm1m2···mrn1n2···ns x) ≤ max (1, |λ|suppuv)
inf

{
t :

([
f
(
q
(
∥µuv (λm1m2···mrn1n2···nsx) , (d (x1) , d (x2) , · · · , d (xn−1))∥p

))])
≤ 1

}
.

This completes the proof.

Theorem 3.3. The space
[
χ2Rf
mn (q) , ∥(d (x1) , d (x2) , · · · , d (xn−1))∥p

]
is not symmetric.

Proof: Let ⟨am1m2···mr,n1n2···ns⟩ ∈
[
χ2Rf
mn (q) , ∥(d (x1) , d (x2) , · · · , d (xn−1))∥p

]
.

Then for a given ϵ > 0 there exists a positive integers g1, g2, · · · gg+1h1, h2 · · ·hh+1

such that[
f
(
q
(
µuv (x) , ∥(d (x1) , d (x2) , · · · , d (xn−1))∥p

))]
< ϵ for all

m1n1 > g1h1 for all m2 · · ·mr, n2 · · ·ns ∈ N[
f
(
q
(
µuv (x) , ∥(d (x1) , d (x2) , · · · , d (xn−1))∥p

))]
< ϵ for all

m2n2 > g2h2 for all m3 · · ·mr, n3 · · ·ns ∈ N
...
...[
f
(
q
(
µuv (x) , ∥(d (x1) , d (x2) , · · · , d (xn−1))∥p

))]
< ϵ

for all mrns > grhs for all m1 · · ·mr−1, n1 · · ·ns−1 ∈ N[
f
(
q
(
µuv (x) , ∥(d (x1) , d (x2) , · · · , d (xn−1))∥p

))]
< ϵ for all

m1 > gr+1,m2 > gr+1, · · · ,mr > gr+1, n1 > hs+1, n2 > hs+1, · · ·ns >
hs+1 ∈ N.
Let g0h0 = max {g1, g2, · · · gr, gr+1, h1, h2 · · ·hr, hr+1} .
Let ⟨bm1m2···mr,n1n2···ns⟩ be a rearrangement of ⟨am1m2···mr,n1n2···ns⟩ . Then
we have ai1i2···ir,j1j2···js = bmi1

mi2
···mir ,nj1

nj2
···njs

for all i1i2 · · · ir, j1j2 · · · js ∈
N. Let
gr+2hr+2 = max
m11m21 · · ·mr1 ,mr+11 ,m(r0)1

n11n21 · · ·ns1 , ns+11 · · · · · · · · ·m1rm2r · · ·mrr ,mr+1r ,m(r0)r
n1sn2s · · ·nss , ns+1s .
Then we have
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f
(
q
(
µuv (x) , ∥(d (x1) , d (x2) , · · · , d (xn−1))∥p

))]
< ϵ for all m1n1 >

gr+2hs+2 · · ·mrns > gr+2hs+2.

Thus
⟨
bmi1

mi2
···mir ,nj1

nj2
···njs

⟩
∈
[
χ2Rf
mn (q) , ∥(d (x1) , d (x2) , · · · , d (xn−1))∥p

]
.

Hence[
χ2Rf
mn (q) , ∥(d (x1) , d (x2) , · · · , d (xn−1))∥p

]
is a symmetric space.

Theorem 3.4. The spaces
[
χ2Rf
mn (q) , ∥(d (x1) , d (x2) , · · · , d (xn−1))∥p

]
and[
χ2Bf
mn (q) , ∥(d (x1) , d (x2) , · · · , d (xn−1))∥p

]
are solid

Proof: The spaces
[
χ2Rf
mn (q) , ∥(d (x1) , d (x2) , · · · , d (xn−1))∥p

]
and[

χ2Bf
mn (q) , ∥(d (x1) , d (x2) , · · · , d (xn−1))∥p

]
are solid follows the follow-

ing inequality.[
f
(
q
(
αm1m2···mr,n1n2···nsµuv (x) , ∥(d (x1) , d (x2) , · · · , d (xn−1))∥p

))]
≤[

f
(
q
(
µuv (x) , ∥(d (x1) , d (x2) , · · · , d (xn−1))∥p

))]
for allm1m2 · · ·mr, n1n2 · · ·ns ∈

N and scalars ⟨αm1m2···mr,n1n2···ns⟩ with |αm1m2···mr,n1n2···ns | ≤ 1 for all
m1m2 · · ·mr, n1n2 · · ·ns ∈ N.

Theorem 3.5. The spaces
[
χ2Rf
mn (q) , ∥(d (x1) , d (x2) , · · · , d (xn−1))∥p

]
and[
χ2Bf
mn (q) , ∥(d (x1) , d (x2) , · · · , d (xn−1))∥p

]
are monotone.

Proof:The proof follows from the Remark 2.6 and Theorem 3.4.

Theorem 3.6. Let f1 and f2 be multiple sequence of Musielak modulus
functions. Then we have

(1)
[
χ2Rf1
mn , ∥(d (x1) , d (x2) , · · · , d (xn−1))∥p

]
⊆

[
χ2Rf2◦f1
mn , ∥(d (x1) , d (x2) , · · · , d (xn−1))∥p

]
(2)

[
χ2Rf1
mn , ∥(d (x1) , d (x2) , · · · , d (xn−1))∥p

]∩[
χ2Rf2
mn , ∥(d (x1) , d (x2) , · · · , d (xn−1))∥p

]
⊆[

χ2Rf1+f2
mn , ∥(d (x1) , d (x2) , · · · , d (xn−1))∥p

]
(3)

[
χ2Rf1
mn (q1) , ∥(d (x1) , d (x2) , · · · , d (xn−1))∥p

]∩[
χ2Rf1
mn (q2) , ∥(d (x1) , d (x2) , · · · , d (xn−1))∥p

]
⊆[

χ2Rf1
mn (q1 + q2) , ∥(d (x1) , d (x2) , · · · , d (xn−1))∥p

]
where q1 and q2 are two semi

norms.

(4) If q1 is stronger than q2, then[
χ2Rf1
mn (q1) , ∥(d (x1) , d (x2) , · · · , d (xn−1))∥p

]
⊆

[
χ2Rf1
mn (q2) , ∥(d (x1) , d (x2) , · · · , d (xn−1))∥p

]
.

Proof: We have to take one condition and then easily prove to other
condition. Hence it is trivial. Therefore omit the proof.
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[9] A. Gökhan and R. Çolak, Double sequence spaces ℓ∞2 , ibid., 160(1), (2005), 147-

153.
[10] M. Zeltser, Investigation of Double Sequence Spaces by Soft and Hard Analitical

Methods, Dissertationes Mathematicae Universitatis Tartuensis 25, Tartu Uni-
versity Press, Univ. of Tartu, Faculty of Mathematics and Computer Science,
Tartu, 2001.

[11] M. Mursaleen and O.H.H. Edely, Statistical convergence of double sequences, J.
Math. Anal. Appl., 288(1), (2003), 223-231.

[12] B. Altay and F. Baa̧ar, Some new spaces of double sequences, J. Math. Anal.
Appl., 309(1), (2005), 70-90.
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