تعداد نشریات | 30 |
تعداد شمارهها | 467 |
تعداد مقالات | 4,522 |
تعداد مشاهده مقاله | 7,145,248 |
تعداد دریافت فایل اصل مقاله | 5,334,954 |
Carter–Penrose diagrams and differential spaces | ||
Caspian Journal of Mathematical Sciences | ||
مقاله 1، دوره 5، شماره 2، دی 2016، صفحه 47-53 اصل مقاله (104.05 K) | ||
نوع مقاله: Research Articles | ||
شناسه دیجیتال (DOI): 10.22080/cjms.2017.1630 | ||
نویسنده | ||
Krzysztof Drachal* | ||
Faculty of Mathematics and Information Science Warsaw University of Technology, Poland | ||
تاریخ دریافت: 10 آذر 1394، تاریخ بازنگری: 08 بهمن 1394، تاریخ پذیرش: 15 بهمن 1394 | ||
چکیده | ||
In this paper it is argued that a Carter–Penrose diagram can be viewed as a differential space. | ||
کلیدواژهها | ||
Carter–Penrose diagram؛ Conformal diagram؛ Differential spaces | ||
عنوان مقاله [English] | ||
نمودارهای کارتر-پنروز و فضاهای دیفرانسیلی | ||
چکیده [English] | ||
در این مقاله، نشان داده شده که نمودارهای کارتان-پنروز می توانند به عنوان فضایی دیفرانسیلی در نظر گرفته شوند. | ||
کلیدواژهها [English] | ||
نمودار کارتان-پنروز, نمودار همدیس, فضاهای دیفرانسیلی | ||
مراجع | ||
[1] G. D. Birkhoff and R.E. Langer, Relativity and Modern Physics, Harvard University Press, Cambridge MA, 1923. [2] G. B¨orner, The Early Universe, Facts and Fiction, Springer, Berlin, 2003. [3] S. Carroll, Spacetime and Geometry, Addison Wesley, Boston MA, 2004. [4] Deepmala and L.N. Mishra, Differential operators over modules and rings as a path to the generalized differential geometry, Facta Universitatis (Niˇs) Ser. Math. Inform. 30 (2015), 753-764. [5] R. D’Inverno, Introducing Einstein’s Relativity, Oxford University Press, Oxford, 1992. [6] K. Drachal, Advantages of generalizing manifold model in mechanics and cosmology, In M. Lieskovsk´y and M. Mokryˇs, (eds.), Proceedings in Advanced Research in Scientific Areas, The 1st Virtual International Conference, 1451-1453, EDIS – Publishing Institution of the University of ˇZilina, ˇZilina, 2012. [7] K. Drachal, Introduction to d–spaces, Math. Aeterna 3(2013), 753-770. [8] K. Drachal, Differential spaces and cosmological models, In S. Badura, M. Mokryˇs, and A. Lieskovsk´y, (eds.), Proceedings in Scientific Conference, SCIECONF 2014, 376-380, EDIS – Publishing Institution of the University of ˇZilina, ˇZilina, 2014. [9] K. Drachal, Differential spaces and spacetime singularities: a current perspective, In press. [10] G. F. R. Ellis and B. G. Schmidt, Classification of singular space–times, Gen. Rel. Grav. 10(1979), 989-997. [11] S. W. Hawking and G. F. R. Ellis, The Large Scale Structure of Space–Time, Cambridge University Press, Cambridge, 1973. [12] P. G. Fre, Gravity, a Geometrical Course, Springer, Berlin, 2013. [13] M. Heller and W. Sasin, Structured spaces and their application to relativistic physics, J. Math. Phys. 36(1995), 3644-3662. [14] J. T. Jebsen, ¨ Uber die allgemeinen kugelsymmetrischen L¨osungen der Einsteinschen Gravitationsgleichungen im Vakuum, Ark. Mat. Ast. Fys. 15(1921), 1-9. [15] S. Krasnikov, Quasiregular singularities taken seriously, Preprint, arXiv:0909.4963. [16] E. Minguzzi and M. Sanchez, The causal hierarchy of spacetimes, In H. Baum and D. Alekseevsky, (eds.), Recent Developments in Pseudo–Riemannian Geometry, 299-358, Eur. Math. Soc. Publ. House, Z¨urich, 2008. [17] V. N. Mishra, Some Problems on Approximations of Functions in Banach Spaces, Indian Institute of Technology, Roorkee, 2007. [18] C. W. Misner, K. S. Thorne, and J. A. Wheeler, Gravitation, W. H. Freeman and Company, New York, 1973. [19] Z. Odrzyg´o´zd´z, Geometrical Properties of Quasi–regular Singularities, Warsaw University of Technology, Warsaw, 1996. [20] A. R. Parry, A survey of spherically symmetric spacetimes, Anal. Math. Phys. 4(2014), 333-375. [21] L. I. Piscoran and V. N. Mishra, Projectively flatness of a new class of (a,b)-metrics, Georgian Math. Journal, In press. [22] R. Sikorski, Abstract covariant derivative, Colloq. Math. 18(1967), 251-272. [23] R. Sikorski, Differential modules, Colloq. Math. 24(1972), 45-79. [24] J. ´ Sniatycki, Orbits of families of vector fields on subcartesian spaces, Ann. Inst. Fourier 53(2003), 2257-2296. [25] J. ´ Sniatycki, Differential Geometry of Singular Spaces and Reduction of Symmetry, Cambridge University Press, Cambridge, 2013. [26] R. M. Wald, General Relativity, The University of Chicago Press, Chicago IL, 1984. [27] J. Watts, Differential spaces, vector fields, and orbit–type stratifications, Preprint, arXiv:1104.4084 | ||
آمار تعداد مشاهده مقاله: 462 تعداد دریافت فایل اصل مقاله: 543 |