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ABSTRACT. In this paper, using a generalized Jacobi-Dunkl trans-
lation operator, we obtain a generalization of Titchmarsh’s theorem
for the Dunkl transform for functions satisfying the (¢, p)-Lipschitz
Jacobi-Dunkl condition in the space L” (R, Aq,5(z)dz), a0 > 8 > £,
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1. INTRODUCTION AND PRELIMINARIES

Titchmarsh’s ([8], Theorem 85) characterized the set of functions in
L?(R) satisfying the Cauchy-Lipschitz Condition by means of an asymp-
totic estimate growth of the norm of their Fourier transform, namely we
have:

Theorem 1.1. [8] Let a € (0,1) and assume that f € L*(R). Then the
following are equivalents:
(a) Nf(z+h)=f@)]=00*), as h—0,
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(b) IFO)2dA = O(r~2%), as 1 — oo,
B

where f stands for the Fourier transform of f.

A similar result of Theorem 1.1 has been established for the Jacobi
transform in the space L*(R, A, g(x)dx) (see [11]). In this paper, we
prove a generalization of Theorem 1.1 for the Jacobi-Dunkl transform
for functions satisfying the (¢, p)-Lipschitz Jacobi-Dunkl condition in
the space LP(R, A g(x)dx),1 < p < 2. For this purpose, we use the
generalized Jacobi-Dunkl translation operator.

In this section, we recapitulate from ([1]-[6]) some results related to
the harmonic analysis associated with Jacobi-Dunkl operator A, s.
The Jacobi-Dunkl function with parameters (o, 8), a > 8 > 2, o # 2,
is defined by the formula:

oP () — L L0 (), if X e C\{0},

it A\ =0,

vz € R, 93P (z) =
1

Y

with M2 = 2 +p?, p=a+ B+ 1 and (pff’ﬁ is the Jacobi function given
by:

2 72
F is the Gauss hypergeometric function (see [1],[7]).

1/1‘))\"5 is the unique C'*°-solution on R of the differential-difference equa-
tion

o0 (x) = F ("*“ P i, —<smh<x>>2) ,

Aagd =iXd, AeC,

Uuo) =1,
(see [5]), where A, g is the Jacobi-Dunkl operator given by:

_ dU(x) A, 5(2) " U(x) —U(—x)
agth(a) = G4 G ()
with
Aq p(x) = 2°(sinh |z]) 22+ (cosh |z] )P+,
Ao gl (z) = dZ/(;:(Em’) +[(2a+1) cothz+ (26 +1) tanh z] x W

Using the relation

d pw+p*
%gaz”g(x) =~ iaiD SIHh(zx)<p3+1ﬁ+1(m),
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the function w/o\"ﬁ can be written in the form above (see [2])

wi’ﬁ( )= cpu’ﬂ( )+ sinh(?:r)tpﬁ“’ﬁﬂ(x), z €R,

4(a+1)
where \2 = 12 +p?, p=a+3+1.

Denote L, 4(R) = L}, 5(R, Aqp(v)dx),1 < p < 2 the space of measur-
able functions f on R such that

1/p
1l = ( / |f<x>|PAa,ﬁ<sc>dx) < o

Using the eigenfunctions wg’f’ﬁ of the operator A, g called the Jacobi-
Dunkl kernels, we define the Jacobi-Dunkl transform by

Fasfr /f ()03 (2) Aa p(@)dz, A ER,

and the inversion formula by

) = /R FasFOWE (0)do(N),

where
do()) = A Ty p (A,
81/ A2 = p?Cap(\/ X2 = p?)|
Here,
Copli) = oy MO LDV e o),
(3(p+ip)T(g(a = B+1+ip)
and Ig\_, , is the characteristic function of R\| — p, p[.

The Jacobi-Dunkl transform is a unitary isomorphism from L?X, ﬁ(R) onto
L*(R,do(N)), i.e.,

a8 = [ Fas(H)llL2® dor))- (1.1)

Plancherel’s theorem (1.1) and the Marcinkiewics interpolation theorem
(see [8]) we get for f € LZB(R) with 1 < p < 2 and ¢ such that %—F% =1,

1Fa8(N)Ls@aor)) < Kllfllp,as, (1.2)

where K is a positive constant (see [6]).
The operator of Jacobi-Dunkl translation is defined by :

/f Vvl (2), Va,y R,
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where u?f(z), x,y € R are the signed measures given by
Koz, y,2)Aqp(2)dz, if x,y € R*,
a75 —_—
dyﬂ?yy (Z) - 650’ lf y — 07
5y7 if x =0.

Here, 4, is the Dirac measure at x. And,
Kop(t,y,2) = Mag(sinh(jz])sinh(|y|) sinh(]2])) 71z, , % /0 po(,y, 2)

X (go(z,y, z))i_ﬁ_1 sin?? 64,
where
Loy = [=lz[ = lyl, =llz] = [yll] U [|lz] = [yl], |z] + [y]]
po(z,y,2) = 1—ob, +0l,  +00, .,

cosh(z)+cosh(y)—cosh(z) cos(6 .
= sinh((xy))sinh(y)( Lot )> if Ty 7£ 0,

VzeR,0 ¢ [07 W]agg,y,z =

0, if xy =0,
go(z, 7, 2) = 1—cosh?(x)—cosh? (y) —cosh?(2)+2 cosh(z) cosh(y) cosh(z) cos 6,
t, ift>0,
ty =
0, ift<o0,
and,
272PT (a41) ifa>
M, =] VTEPIETD o> b,
0, ifa=p.
In [2], we have
Fap(Tuh)N) = 037 () Fas(HOV), (1.3)
Fas(Bapf)A) = iAFaps(f)A). (1.4)

For o > _71, we introduce the normalized Bessel function of first kind
and order « [10] defined by:

OO —1\"(z 2n
jol#) = Ta+ 1)y CD/2)

z € R.

=nll(n+a+1) ’
Moreover, we see that
j -1
Lim % £0,
z—0 X

by consequence, there exists C; > 0 and n > 0 satisfying
o] <1 = lja(z) = 1] = Cafaf”. (1.5)



102 Salah El ouadih , Radouan Daher

Lemma 1.2. Leta > 3 > %,a + %1 Then for |v| < p, there exists a
positive constant Cy such that

1= gl (@) 2 Call = Ga(pa)].
Proof. (See [4], Lemma 9). O
Denote by L;'(Aap),1 < p < 2,m = 0,1,2..., the class of functions
[ € L}, 4(R) that have on R generalized derivatives f'(z), f"(z), ..., FEM) ()

%n the sense of Levi (see [9]) and belong to L}, 5(R) with A7 5 f € L}, 5(R).
ie.,

L7 (Aap) = {f € I ,(R)/AT 5f € LZﬁ(R)} ,
where AD ,f = f, AT f = Aag(ALG f),m =0,1,2....

2. MAIN RESULT

In this section we give the main result of this paper. We need first to
define (¢, p)-Lipschitz Jacobi-Dunkl class.
Denote Ny, by
Np=Th+T_p —21I,

where I is the unit operator in the space Lg 5(R).

Definition 2.1. A function f € L}'(A4,g) is said to be in (¢, p)-Lipschitz
Jacobi-Dunkl class, denoted by Lip(¢, p, o, ), if

INkAG 5 f Ip.as = O((h)), as h—0,

where m =0, 1,2, ... and ¢ is a continuous increasing function on [0, c0),
satisfying ¢(0) = 0 and ¢(ts) = ¢(t)¢(s) for all ¢, s € [0, 00).

Lemma 2.2. For f € L;'(Aqp), then

( JEEEROR uqaﬁf@)wcza(x)) "< KNS
R

where %—l—ézl and m=0,1,2, ...

p»a7ﬁ7

Proof. From (1.4), we have
Fas(AG 5 f)N) =" A" Fo5(f)(A), m=0,1,2,.... (2.1)
We use formulas (1.3) and (2.1), we conclude that
Fos(NuAZs £ = " W57 (1) + 94" (=h) = 2" Fo s (£)(N),
Since

@0 () = B (h) +i sinh(2h) @A (R),

A
4(a+1)
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wg\a,,@)(_h) — sz’ﬁ(_h) —1 smh(2h)<,0fj+1’ﬁ+1(_h)a

A
4(a+1)
and (pff’ﬁ is even, then

Fas(NuAZ 5 f)A) = 20" (037 (R) = DA™ Fo(f)(N)-
By formula 1.2, we have the result. (]
Theorem 2.3. Let f belong to Lip(¢,p,«, 3). Then

/|A|> AT Fap(F)(N)]Pdo(A) = O(o(r™)), as 1 — o0,

where %—i— % =1and m=0,1,2,...
Proof. Assume that f € Lip(¢, p, o, B), then we have
INWAG 5 llpas = O(p(R)), as h—0.

From Lemma 2.2, we have

K1
my, o8 _ m q
/R)\q [oh " (h) = 1| Fas f(N[*do () < SN0 AT 1 o

By (1.5) and Lemma 1.2, we get:

[ AT WO 2 O [ b ()] (),
By E<IN<E
From g5 < |A| < i we have
7\? 2 2 )2 2
_ _ < < (1) _—
<2h) == (h) P
2
= /,L2h2 Z Z — p2h2.
Take h < 3L, then we have u2h? > Cy = Cs(n).
So,
/ A 1= (1) || Fa g (£) (M) 9o (A) > C§C§C§/ AT Fa,g(F)(A)]do(A).
ap SIN< arSIASE

There exists then a positives constants C' and K7 such that
/ A Fag(f)AN)|fdo(A) < C / AT 1 — %P (h)|9] Fa,a(£)(N)|%do ()
<A< E R

< Kaf(h) = Kag(h).
Forall 0 < h < 3%. Then we have,

/<|AI<2 A Fop(F)M)|do(N) < Ka¢(r™9), r — o0.
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where Ko = K19(n92719).
Furthermore, we obtain

/|>\27’ )\qm‘faﬂ(f)()\Nng()\) - </T§>\|S2r * /2T§>\|S4r * /4T§>\|S87‘ " > )\qm’faﬂ(f)()\”ng()‘)

Kap(r™?) + Kap((2r) ™) + Kaop((4r)") + - -
Fap(r™?) + K29(27 )b (r™7) + K29((27)*)p(r ™) + - - -
Fap(r™)(1+6(27%) + o((279)%) + - ).

VAN VARVAN

We have ¢(279) < 1, then
/A|> AT Fo (N N)|Pdo (M) < Ksé(r™),

where K3 = Ko(1 — ¢(279))7L.
Finally, we get

/W X Fo s(FN)9do(A) = O(G(r ), as - oo,

Thus, the proof is finished. U
Corollary 2.4. Let f € L' (Aap), and let

INWAG 5 fllpag = O((h)), as h—0.
Then

/A|> Fas (Do) = O~ (r 1)), as r — oo,

where %—l—%: 1landm=0,1,2,....
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