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Abstract. In [14]; Matsuda and Yorozu proved that there is no

special Bertrand curves in En (n > 3) and they defined a new

kind of Bertrand curves called (N, B2) -type Bertrand curves in

4-dimensional Euclidean space. In this paper , by using the
similar methods of Matsuda and Yorozu , we define a
quaternionic Bertrand curve in semi-Euclidean space E4

2

and investigate its properties. Then we prove that the
torsion and bitorsion of the quaternionic curve are not
equal to zero in semi-Euclidean space E4

2 and then we
obtain (N, B2) -type quaternionic Bertrand curves by
means of the {κ, τ, (σ − εtεT εNκ)} functions of curve.
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1. Introduction

The geometry of curves has long captivated the interests of mathemati-
cians, from the ancient Greeks to the era of Isaac Newton (1643-1727)
and the invention of the calculus. It is a branch of geometry that deals
with smooth curves in the plane and in the space by methods of differen-
tial and integral calculus. The theory of curves is simpler and narrower
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in scope because a regular curve in Euclidean space has no intrinsic ge-
ometry. One of the most important tools used to analyze a curve is
the Frenet frame, a moving frame that provides a coordinate system at
each point of curve that is “best adopted” to the curve near the point.
Bertrand curves discovered by J. Bertrand in 1850 are one of the impor-
tant and interesting topics of classical special curve theory. A Bertrand
curve is defined as a special curve whose principal normal is the principal
normal of another curve. It is characterized as curve whose curvature
and torsion are in linear relation. There are many works related with
Bertrand curves in the Euclidean space and Lorentzian space [1]-[7]. In
1845, Saint Venant [8] proposed the question upon the surface genera-
ted by the principal normal of a curve, a second curve can exist which
has for its principal normal of a curve. This question was answered by
Bertrand in 1850 in a paper [9] in which he solved that a linear relation-
ship with constant coefficients shall exist between the first and second
curvatures of the given original curve. In other words, if we denote first
and second curvatures of a given curve by κ and τ respectively, then
for λ, µ ∈ R we have λκ+µτ = 1. Since the time of Bertrand’s pa-
per, pairs of curves of this kind have been called Conjugate Bertrand
Curves , or more commonly Bertrand Curves [10]. In 1888, C. Bioche
give a new theorem in [11] to obtaining Bertrand curves by using the
given two curves C1 and C2 in Euclidean 3-space. Later, in 1960, J. F.
Burke in [12] give a theorem related with Bioche’s thorem on Bertrand
curves. In 1987, The Serret-Frenet formulae for a quaternionic curves
in R3 are introduced by K. Bharathi and M. Nagaraj. Moreover, they
obtained the Serret-Frenet formulae for the quaternionic curves in R4,
[13]. Then, lots of studies have been published by using this studies.
One of them is A. C. Çöken and A. Tuna’s study [14]-[15] which they
gave Serret-Frenet formulas, inclined curves, harmonic curvatures and
some characterizations for a quaternionic curve in the semi- Euclidean
spaces E3

1 and E4
2 . In this paper , applying a similar method as the

one given by Matsuda and Yorozu [16], we found that bitorsion of the
quaternionic curve is not equal to zero in the semi-Euclidean space E4

2 ,
in order to obtain (N,B2)-type quaternionic Bertrand curves based on
κ, τ, σ − εtεT εNκ functions of the curve in E4

2 .

2. preliminaries

Let Qv be the four-dimensional vector space over a field v whose
characteristic greater than 2. Let ei (1 ≤ i ≤ 4) be a basis for the
vector space. Let the rule of multiplication on Qv be defined on ei and
extended to the whole of the vector space distributivity as follows [17]:

A semi-real quaternion is defined with q =
→
ae1 +

→
be2 +

→
ce3 + d or
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(Sq = d and Vq =
→
ae1 +

→
be2 +

→
ce3). Then a quaternion q can now write

as q = Sq + Vq, where Sq and Vq are the scalar part and vectorial part
of q, respectively.) Such that
I. ei × ei = −ε(ei), 1 ≤ i ≤ 3
II. ei × ej = −ε(ei)ε(ej)ek
where (ijk) is an even permutation of (123) in the semi-Euclidean space
E4

2 . Notice here that we define the set of all semi-real quaternions by

Qv, where v is an index v = 1, 2.

Qv = {q|q = ae1 + be2 + ce3 + d; a, b, c, d ∈ R and e1, e2, e3 ∈ R3}.

Using these basic products we can now expand the product of two
quaternions to give

p× q = SpSq + ⟨ Vp, Vq ⟩+ SpVq + SqVp + Vp ∧ Vq for every p, q ∈ Qv

where we have used the quaternionic product contains all the products
of semi-Euclidean space E4

2 [13]. There is a unique involutory antiau-
tomorphism of the quaternion algebra, denoted by the symbol γ and
defined as follows

γq =
→

−ae1 −
→
be2 −

→
ce3for every q =

→
ae1 +

→
be2 +

→
ce3 + d ∈ Qv

which is called the Hamiltonian conjugation. This defines the symmetric
non-degenerate valued bilinear form h as follows

h(p, q) =
1

2
[−ε(p)ε(γq)(p× γq)− ε(q)ε(γp)(q × γp)] for E4

2 .

the norm of semi-real quaternion q is denoted by

∥q∥2 = |hv(q, q)| = |ε(q)(q × γq)| =
∣∣−a2 − b2 + c2 + d2

∣∣
for p, q ∈ Qv where if hv(p, q) = 0 then p and q are called h -orthogonal.
The concept of a spatial quaternion will be used throughout our work.
q is called a spatial quaternion whenever q + γq = 0 [14]-[15]. The
Serret-Frenet formulae for quaternionic curves in semi- Euclidean space
are given below:

Definition 2.1. Let

α : I ⊂ R → Qv

s → α(s) =
4∑

i=1

αi(s)
−→ei , 1 ≤ i ≤ 4, −→e4 = 1

be a smooth curve in semi-Euclidean space E4
2 . Let the parameter

s be chosen such that the tangent T (s) = α
′
(s) has unit magnitude.
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Let {T,N,B1, B2} be Frenet apparatus of the differentiable in semi-
Euclidean space E4

2 . Then Frenet formulas are given by

d

ds
T (s) = εN κ(s)N(s) (2.1)

d

ds
N(s) = εnτ(s)B1(s)− εtεNκ(s)T (s)

d

ds
B1(s) = −εtτ(s)N(s) + εn (σ − εtεT εNκ) (s)B2(s)

d

ds
B2(s) = −εb1τ(s) (σ − εtεT εNκ) (s)B1(s).

Where κ = εN∥T (s)∥ and ∥N(s)∥2 = |εN |.

3. (N,B2)-Bertrand curves in semi-Euclidean space E4
2

Definition 3.1. Let E4
2 be the 4-dimensional semi-Euclidean space

with the inner product h(α, α∗). If there exists a corresponding rela-
tionship between the quaternionic space curves α and α∗ such that at
the corresponding points of the quaternionic curves, the principal normal
lines of α and α∗ are linearly dependent, then α is called a quaternionic
Bertrand curve, and α∗ a quaternionic Bertrand curve of α. The pair
{α, α∗} is said to be a quaternionic Bertrand pair.

Let α(s) be a quaternionic Bertrand curve in E4
2 parameterized by its

arc-length s and α∗(s) the quaternionic Bertrand partner curve with an
arc-length parameter s∗, respectively, then by

{T (s), N(s), B1(s), B2(s)}
and

{T ∗(s∗), N∗(s∗), B∗
1(s

∗), B∗
2(s

∗)}
the Frenet frames field along of α and α∗.

Definition 3.2. Let α(s) and α∗(s∗) be quaternionic curves in E4
2 .

{T (s), N(s), B1(s), B2(s)} and {T ∗(s∗), N∗(s∗), B∗
1(s

∗), B∗
2(s

∗)} are
Frenet frames of α and α∗ respectively, on this curves. And there exist
a bijection. α(s) and α∗(s∗) are Bertrand curves if there exist a bijection

φ : I → I∗

s → φ(s) = s∗ , ds∗
ds ̸= 0

and N(s) , N∗(s∗) are linearly dependent.

Theorem 3.3. Let α be a quaternionic curve in the 4- dimensonal semi-
Euclidean space . If [σ − εT εtεNκ] ̸= 0 and k(s) ̸= 0, then no quater-
nionic curve in E4

2 is a Bertrand curve.
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Proof. Let α be a quaternionic Bertrand curve in E4
2 and α∗ be quater-

nionic Bertrand partner mate of α with an arc-length parameter s and
s∗, respectively. Let the pair of α(s) and α∗(s∗) = α∗(φ(s)) be corre-
sponding points of α and α∗. Then, the curve α∗ is given by

α∗(s) = α∗(φ(s)) = α(s) + λ(s)N(s) (3.1)

where λ is a C∞ function on I. Differentiating in equation (3.1) with
respect to s and using the Frenet formulas given in (2.1), we get

φ′(s)T ∗(φ(s)) = [1− εtεNλ(s)κ(s)]T (s)+λ′(s)N(s)+ εnλ(s)τ(s)B1(s).

φ′(s)h(T ∗(φ(s)), N∗(φ(s)) = [1− εtεNλ(s)κ(s)]h(T (s), N∗(φ(s)))

+λ′(s)h(N(s), N∗(φ(s)))

+εnλ(s)τ(s)h(B1(s), N∗(φ(s))).

Since

h(T ∗(φ(s)), N∗(φ(s))) = 0, h(T (s), N∗(φ(s))) = 0

and
h(B1(s), N∗(φ(s))) = 0,

N∗(φ(s)) = ±N(s) and ∥N(s)∥ = |εN | = 1,

we obtain that λ′(s) = 0, that is, λ is a non -zero constant. Thus,
equation (3.1) can be written as

α∗(s) = α∗(φ(s)) = α(s) + λN(s)

and we obtain

φ′(s)T ∗(φ(s)) = [1− εtεNλκ(s)]T (s) + εnλτ(s)B1(s) (3.2)

for all s ∈ I. By using equation (3.2), we get

T ∗(φ(s)) =
[1− εtεNλκ(s)]

φ′(s)
T (s) +

εnλτ(s)

φ′(s)
B1(s).

If we denote

a(s) =
[1− εtεNλκ(s)]

φ′(s)
, b(s) =

εnλτ(s)

φ′(s)
(3.3)

we can set
T ∗(φ(s)) = a(s)T (s) + b(s)B1(s). (3.4)

Differentiating in equation (3.4) with respect to s and using the Frenet
formulas given in equation (2.1), we obtain

φ′(s)εN κ∗(s)N∗(s) = a′(s)T (s) + [a(s)εN κ(s)− b(s)εtτ(s)]N(s)

+b′(s)B1(s) + b(s)εn [σ − εtεT εNκ] (s)B2(s)



(N, B2)-Bertrand curves in E4
2 59

Since N∗(φ(s)) = ±N(s), we obtain

b(s)εn (σ − εtεT εNκ) (s) = 0.

By σ − εtεT εNκ ̸= 0, we have b(s) = 0. From equation (3.3), we get
εnλ(s)τ(s)

φ′(s) = 0. Since τ(s) ̸= 0, we obtain that λ = 0. This completes the

proof of theorem. �

Theorem 3.4. Let α be a quaternionic curves in E4
2 with curvature

functions κ, τ, (σ−εtεT εNκ) and (σ−εtεT εNκ) ̸= 0. Then α is a quater-
nionic (N, B2) -Bertrand curve if and only if there exist real numbers
λ, µ, γ, δ such that,

(i) λεnτ(s)− µεb1 (σ − εtεT εNκ) (s) ̸= 0
(ii) γ [λεnτ(s)− µεb1 (σ − εtεT εNκ) (s)] + λεtεNκ(s) = 1
(iii) γεN κ(s)− εtτ(s) = δεn (σ − εtεT εNκ) (s)

(iv)
[
γ2 − 1

]
εtεNκ(s)τ(s) + γ

{
ε2N (κ(s))2 − ε2t (τ(s))

2

−ε2n [(σ − εtεT εNκ) (s)]2

}
̸= 0

Proof. Let α be a quaternionic (N, B2) Bertrand curve with arc-length
parameter s. The (N, B2) Bertrand mate α∗ is given by

α∗(s∗) = α∗(φ(s)) = α(s) + λ(s)N(s) + µ(s)B2(s) for all s ∈ I. (3.5)

where λ(s) and µ(s) are C∞-functions on I. Differentiating in equation
(3.5) with respect to s and by using Frenet equations, we obtain

φ′(s)T ∗(φ(s)) =

 [1− λ(s)εtεNκ(s)]T (s) + λ′(s)N(s)
+ [λ(s)εnτ(s)− µ(s)εb1 [σ − εtεT εNκ] (s)]B1(s)

+µ′(s)B2(s)


(3.6)

for all s ∈ I. Since span{N∗(φ(s), B∗
2(φ(s)} , span{N(s), B2(s)} , we

can put

N∗(φ(s)) = m(s)N(s) + n(s)B2(s), (3.7)

B∗
2(φ(s)) = p(s)N(s) + q(s)B2(s), (3.8)

and by using equations (3.7) and (3.8) we get

h(N∗(φ(s)), φ′(s)T ∗(φ(s))) = λ′(s)m(s) + µ′(s)n(s) = 0

h(B∗
2(φ(s)), φ′(s)T ∗(φ(s))) = λ′(s)p(s) + µ′(s)q(s) = 0

where

∣∣∣∣ m(s) n(s)
p(s) q(s)

∣∣∣∣ is non-zero because {N∗(φ(s), B∗
2(φ(s)} vector

fieds must be linear independent. We obtain λ′(s) = 0, µ′(s) = 0 that
is , λ and µ are constant function on I . So, we can rewrite equation
(3.5) , respectively as

α∗(s∗) = α∗(φ(s)) = α(s) + λN(s) + µB2(s)
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φ′(s)T ∗(φ(s)) =

{
[1− λεtεNκ(s)]T (s)

+ [λεnτ(s)− µεb1 (σ − εtεT εNκ) (s)]B1(s)

}
(3.9)

where(
φ′(s)

)2
= [1− λεtεNκ(s)]2 + [λεnτ(s)− µεb1 (σ − εtεT εNκ) (s)]2 ̸= 0

(3.10)
If we denote

a(s) =
[1− λεtεNκ(s)]

φ′(s)
, b(s) =

[λεnτ(s)− µεb1 (σ − εtεT εNκ) (s)]

φ′(s)
.

(3.11)
It easy to obtain

T ∗(φ(s)) = a(s)T (s) + b(s)B1(s) (3.12)

where a(s) and b(s) are C∞- functions on I. Differentiating in equation
(3.12) with respect to s and using the Frenet equations, we obtain φ′(s)εN κ∗(s)N∗(s) =

a′(s)T (s) + b′(s)B1(s)
+ [b(s)εn (σ − εtεT εNκ) (s)]B2(s)

 (3.13)

Since N∗(φ(s) is expressed by linear combination of N(s) and B2(s),
we have a′(s) = 0, b′(s) = 0, that is, a and b are constant function on
I. Thus we can rewrite equation (3.6) as

φ′(s)εN κ∗(s)N∗(s) = [aεN κ(s)− bεtτ(s)]N(s) (3.14)

+ bεn (σ − εtεT εNκ) (s)B2(s)

for all s ∈ I. By using equation (3.11) we can easily show that

a [λεnτ(s)− µεb1 (σ − εtεT εNκ) (s)] = b [1− λεtεNκ(s)] (3.15)

where b must be a non-zero constant. If we take b(s) = 0, from equation
(3.12) we get

φ′(s)εN κ∗(φ(s))N∗(φ(s)) = εN κ(s)N(s)

So we obtain N∗(φ(s)) = ±N(s) for all s ∈ I, and this is a contradiction.
According to theorem 1, we obtain

φ′(s)εN κ∗(φ(s))N∗(φ(s)) = εN κ(s)N(s)

that is N∗(φ(s)) = ±N(s) for all s ∈ I. By theorem 1, this fact is a
contradiction according to the theorem 1. Thus we must consider only
the case of b(s) ̸= 0. Then it can be easily seen that

λεnτ(s)− µεb1 (σ − εtεT εNκ) (s) ̸= 0.

that is, we obtain the relation (i). If we denote the constant γ by γ = a
b

and by using equation (3.15) we have

γ [λεnτ(s)− µεb1 (σ − εtεT εNκ) (s)] + λεNεtκ(s) = 1 for all s ∈ I.
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Thus we obtain the relation (ii). From equation (3.14), we have

h(φ′(s)εN κ∗(s)N∗(s), φ′(s)εN κ∗(s)N∗(s)) =

[a(s)εN κ(s)− b(s)εtτ(s)]
2 + [b(s)εn (σ − εtεT εNκ) (s)]2

and then,[
φ′(s)εN κ∗(s)

]2
=

{
[γεN κ(s)− εtτ(s)]

2 + [εn (σ − εtεT εNκ) (s)]2
}

{λεnτ(s)− µεb1 (σ − εtεT εNκ) (s)}2

for all s ∈ I. From (ii), in equations (3.10) and (3.11)[
φ′(s)εNκ∗(s)

]2
=

1

γ2 + 1

{
[γεN κ(s)− εtτ(s)]

2 + [εn (σ − εtεT εNκ) (s)]2
}
.

Since φ′(s)εN κ∗(s) ̸= 0 by using equation (3.14), we have

N∗(φ(s)) = m(s)N(s) + n(s)B2(s) (3.16)

where

m(s) =
[a(s)εN κ(s)− b(s)εtτ(s)]

φ′(s)εN κ∗(s)
,

n(s) =
[b(s)εn (σ − εtεT εNκ) (s)]

φ′(s)εN κ∗(s)

m(s) =
[γεN κ(s)− εtτ(s)] [λεnτ(s)− µεb1 (σ − εtεT εNκ) (s)]

φ′(s)εN κ∗(s)
(3.17)

n(s) =
[λεnτ(s)− µεb1 (σ − εtεT εNκ) (s)εn (σ − εtεT εNκ) (s)]

φ′(s)εN κ∗(s)
(3.18)

we can rewrite by using equations (3.11), (3.13) and (ii) as

m(s)

n(s)
=

γεN κ(s)− εtτ(s)

εn (σ − εtεT εNκ) (s)

for all s ∈ I. if we differentiate in equation (3.16) and using the Frenet
equations, we have

εnφ
′(s)τ∗(φ(s))B∗

1(φ(s)) =
εtεNφ′(s)κ∗(φ(s))T ∗(φ(s))−mεtεNκ(s)T (s)
+ (mεnτ(s)− nεb1 (σ − εtεT εNκ) (s))B1(s)

(3.19)

for all s ∈ I. From equation (3.19), it holds

m′(s) = 0, n′(s) = 0.

If we denote m
n = δ, it is obvious that

γεN κ(s)− εtτ(s) = δεn (σ − εtεT εNκ) (s)

Thus we prove (iii). Now, by using equations (3.9),(3.17),(3.18) and
(3.19)

εtεNφ′(s)τ∗(φ(s))B∗
1(φ(s)) ̸= 0
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for all s ∈ I. We have{ [
γ2 − 1

]
εtεNκ(s)τ(s)+

γ
[
(εNκ(s))2 − (εtτ(s))

2 − (εn [(σ − εtεT εNκ) (s)])2
] }

̸= 0.

Thus we prove (iv). Conversely, Let α be a quaternionic curve with
curvature κ, τ, (σ − εtεT εNκ) satisfaying the relation (i) , (ii) , (iii)
and (iv) for constant numbers λ, µ, δ, γ and α∗(s) be a quaternionic
mate of α curve such as

α∗(s∗) = α(s) + λ(s)N(s) + µ(s)B2(s) (3.20)

for all s ∈ I. Differentiating in equation (3.20) with respect to s and
using the Frenet equations, we obtain

dα∗(s∗)

ds∗
= [1− λεtεNκ(s)]T (s)+[λεnτ(s)− µεb1 (σ − εtεT εNκ) (s)]B1(s)

for all s ∈ I. Thus, by the relation (ii), we have

dα∗(s∗)

ds∗
= [λεnτ(s)− µεb1 (σ − εtεT εNκ) (s)] [γT (s) +B1(s)] ,

for all s ∈ I. Also we get∥∥∥∥dα∗(s∗)

ds∗

∥∥∥∥ = η [λεnτ(s)− µεb1 (σ − εtεT εNκ) (s)]
√

γ2 + 1

where η = ∓1. Then we can write

s∗ = φ(s) =

s∫
0

∥∥∥∥dα∗(t)

dt

∥∥∥∥ dt , (∀s ∈ I)

where φ : I −→ I∗ is a regular C∞-function, and we obtain

φ′(s) = η [λεnτ(s)− µεb1 (σ − εtεT εNκ) (s)]
√

γ2 + 1

for all s ∈ I. Thus α∗ can be writen as

α∗(s∗) = α∗(φ(s)) = α(s) + λ(s)N(s) + µ(s)B2(s) (3.21)

for all s ∈ I. Differentiating in equation (3.21) with respect to s and
using the Frenet equations, we obtain

φ′(s)
dα∗(s∗)

ds∗
= [λεnτ(s)− µεb1 (σ − εtεT εNκ) (s)] [γT (s) +B1(s)] .

(3.22)
or

T ∗(φ(s)) = η(γ2 + 1)−
1
2 (γT (s) +B1(s)) (3.23)
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for all s ∈ I. Differentiating in equation (3.23) with repect to s and
using the Frenet frame equations, we obtain

φ′(s)T
∗(φ(s))
ds∗

= η(γ2 + 1)−
1
2 [(γεNκ(s)− εtτ(s))N(s) + εn (σ − εtεT εNκ) (s)B2(s)]

(3.24)
and

εNκ∗(φ(s)) =
∥∥∥T ∗(φ(s))

ds∗

∥∥∥
=

√
(γεNκ(s)−εtτ(s))2+(εn(σ−εtεT εNκ)(s))2

φ′(s)
√

γ2+1

(3.25)

By the fact that (σ − εtεT εNκ) (s) ̸= 0 for all s ∈ I, we obtain

εNκ∗(φ(s)) =

∥∥∥∥T ∗(φ(s))

ds∗

∥∥∥∥ > 0.

From Frenet equations for the curve α∗(s∗), we have

T ∗(φ(s))

ds∗
= εNκ∗(φ(s))N∗(φ(s))

Then we can write

N∗(φ(s))

= 1
εNκ∗(φ(s))

T ∗(φ(s))
ds∗

= η(γ2+1)−
1
2 (γεnκ(s)−εtτ(s))N(s)+εn(σ−εtεT εNκ)(s)B2(s)√
(γεnκ(s)−εtτ(s))2+(εn(σ−εtεT εNκ)(s))2

for all s ∈ I. If we denote

m(s) =
γεNκ(s)− εtτ(s)√

(γεnκ(s)− εtτ(s))2 + (εn (σ − εtεT εNκ) (s))2

n(s) =
εn (σ − εtεT εNκ) (s)√

(γεnκ(s)− εtτ(s))2 + (εn (σ − εtεT εNκ) (s))2

we obtain

N∗(φ(s)) = m(s)N(s) + n(s)B2(s). (3.26)

and we can easily show that m(s) and n(s) are constant functions. So
differentiating in equation (3.26) with respect to s and by using the
Frenet equations, we have

φ′(s)
N∗(φ(s))

ds∗
= mN ′(s) + nB′

2(s)

or
N∗(φ(s))

ds∗ =

− (γεNκ(s)−εtτ(s))εtεNκ(s)

ηφ′(s)
√

(γεnκ(s)−εtτ(s))2+(εn(σ−εtεT εNκ)(s))2
T (s)

+
εnτ(s)(γεNκ(s)−εtτ(s))−εnεb1 [(σ−εtεT εNκ)(s)]2

ηφ′(s)
√

(γεnκ(s)−εtτ(s))2+(εn(σ−εtεT εNκ)(s))2
B1.
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for all s ∈ I. Also by using equations (3.23) and (3.25) we can write

εNκ∗(φ(s))T ∗(φ(s)) =
(γεnκ(s)−εtτ(s))2+(εn(σ−εtεT εNκ)(s))2

ηφ′(s)
√

(γεnκ(s)−εtτ(s))2+εn(σ−εtεT εNκ)(s)2
(γT (s) +B1(s)).

(3.27)

and, then from the Frenet Equations for the curve α∗and in equation
(3.27), respectively we have

N∗(φ(s))

ds∗
+ εNκ∗(φ(s))T ∗(φ(s)) = εnτ

∗(φ(s))B1(φ(s))

N∗(φ(s))

ds∗
+ εtεNκ∗(φ(s))T ∗(φ(s)) =

P (s)

R(s)
T (s) +

Q(s)

R(s)
B1(s))

where we can easily show

P (s) = −
[[
γ2 − 1

]
εtεNκ(s)τ(s) + γ

[
(εNκ(s))2 − (εtτ(s))

2

− (εn [(σ − εtεT εNκ) (s)])2

]]
Q(s) = γ

[[
γ2 − 1

]
εtεNκ(s)τ(s) + γ

[
(εNκ(s))2 − (εtτ(s))

2

− (εn [(σ − εtεT εNκ) (s)])2

]]
R(s) = ηφ′(s)

(
γ2 + 1

)√
(γεnκ(s)− εtk(s))2 + εn (σ − εtεT εNκ) (s)2 ̸= 0.

Thus we obtain∥∥∥∥N∗(φ(s))

ds∗
+ εNκ∗(φ(s))T ∗(φ(s))

∥∥∥∥ = ∥εnτ∗(φ(s))B1(φ(s))∥

=
1

R(s)

√
P 2(s) +Q2(s).

Then

τ∗(φ(s))

= 1
εnR(s)

√
P 2(s) +Q2(s)

=
[γ2−1]εtεNκ(s)τ(s)+γ[ε2Nκ(s)2−ε2t τ

2−(εn[(σ−εtεT εNκ)(s)])2]
ηεnφ′(s)(γ2+1)

√
(γεnκ(s)−εtτ(s))2+εn(σ−εtεT εNκ)(s)2

for all s ∈ I. Thus we can define a unit vector fieds B∗
1(s

∗) along α∗ by

B∗
1(s

∗) = B∗
1(φ(s)) =

1
εnτ∗(φ(s))

1

η
√

γ2+1

N∗(φ(s))
ds∗ (−T (s) + γB1(s))

+ 1
εnτ∗(φ(s))

1

η
√

γ2+1
εtεNκ∗(φ(s))T ∗(φ(s))(−T (s) + γB1(s))

for all s ∈ I. Also we can define a unit vector fieds B∗
2(s

∗) along α∗ by

B∗
2(s

∗) = B∗
2(φ(s)) =

− {(εn(σ−εtεT εNκ)(s))}N(s)

η
√

(γεNκ(s)−εtτ(s))2+εn(σ−εtεT εNκ)(s)2

− (γεNκ(s)−εtτ(s))B2(s)

η
√

(γεNκ(s)−εtτ(s))2+εn(σ−εtεT εNκ)(s)2
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that is

B∗
2(φ(s)) = −n(s)N(s) +m(s)B1(s)

for all s ∈ I. Now we obtain by (24), (27), (29) and (30),

det(T ∗(φ(s)), N∗(φ(s)), B∗
1(φ(s)), B

∗
2(φ(s))) = 1,

and {T ∗(φ(s)), N∗(φ(s)), B∗
1(φ(s)), B

∗
2(φ(s))} is orthonormal for all

s ∈ I. Thus {T ∗(φ(s)), N∗(φ(s)), B∗
1(φ(s)), B

∗
2(φ(s))} the Frenet frame

along α∗ in E4
2 is of orthonormal . And And we have

Span {N, B2} = Span {N∗, B∗
2}

where (N, B2) normal plane of α and {N∗, B∗
2} normal plane of α∗.

Consequently, α is a quaternionic {N, B2} Bertrand curve in E4
2 .

Theorem 3.5. Let α be a quaternionic {N, B2} Bertrand curve , α∗

be a quaternionic {N, B2} Bertrand mate of α in E4
2 . And

φ : I −→ I∗, s∗ = φ(s) is a regular C∞-function such that each points
α(s) of α correspond to the points α∗(s∗) = α∗(φ(s)) of α∗ for all s ∈ I.
Then the distance between the points α(s) and α∗(s∗) is constant for all
s ∈ I.

�

Proof. Let α be a quaternionic {N, B2} Bertrand curve in E4
2 .and α∗

be a quaternionic {N, B2} Bertrand mate of α. We assume that α∗ is
distinct from α. Let the pair of α(s),and α∗(s∗) = α∗(φ(s)),Then we
can write,

α∗(s∗) = α∗(φ(s)) = α(s) + λ(s)N(s) + µ(s)B2(s)

where λ and µ are non-zero constants. Thus, we can rewrite

α∗(s∗)− α(s) = λ(s)N(s) + µ(s)B2(s)

and

∥α∗(s∗)− α(s)∥ =
√
λ2 + µ2.

Since, d(α∗(s∗)− α(s)) = constant. �

Corollary 3.6. Let α be a quaternionic {N, B2} -Bertrand curve in
E4

2 with curvature functions κ(s), τ(s), (σ − εtεT εNκ) (s) and α∗ be
a quaternionic {N, B2} Bertrand mate of α with curvature functions
κ∗(s), τ∗(s), (σ − εtεT εNκ)∗ (s). Then the relations between these cur-
vature functions are

κ∗(φ(s)) =

√
(γεNκ(s)− εtτ(s))2 + (εn (σ − εtεT εNκ) (s))2

εNφ′(s)
√

γ2 + 1
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τ∗(φ(s)) =
[γ2−1]εtεNκ(s)τ(s)

εnφ′(s)(γ2+1)
√

(γεNκ(s)−εtτ(s))2+εn(σ−εtεT εNκ)(s)2

+
γ[(εNκ(s))2−(εtk(s))2−(εn[(σ−εtεT εNκ)(s)])2]

εnφ′(s)(γ2+1)
√

(γεNκ(s)−εtτ(s))2+εn(σ−εtεT εNκ)(s)2

(σ − εtεT εNκ)∗ (φ(s)) =
εn [(σ − εtεT εNκ) (s)] εN

√
γ2 + 1√

(γεNκ(s)− εtτ(s))2 + εn (σ − εtεT εNκ) (s)2
.

Proof. It is obvious the proof of theorem 2. �

Example 3.7. Consider a quaternionic curve in E4
2 defined by

α(s) : I ⊂ R −→ E4
2 ,

α(s) = 1√
3
(sinh2s, coshs, cos h2s, sinhs)

for all s ∈ I. α is regular curve and s is the arc-length parameter of α
and its curvature functions are given as

κ(s) = εN
∥∥α′′(s)

∥∥ =
√
5, τ = εtεN

2√
5
and σ − εtεT εNκ = εN

2√
5
.

where

λ =

√
5

εNεt
, µ = −

√
5

εn
, γ = − 1

εn
and δ = − 7

εnεN

constants are for all s ∈ I. The curvature of quaternionic curve α satis-
fies the relations (i), (ii), (iii), (iv). So α is a quaternionic {N, B2}-
Bertrand curve and we obtain its quaternionic {N,B2} Bertrand mate
curve of α∗ as follows

α∗(s∗) =
1√
3
(4sinh2s, 2coshs, 4 cos h2s, 2sinhs).
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