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Abstract. The paper is devoted to an application of Lie group
theory to differential equations. The basic infinitesimal method
for calculating symmetry group is presented, and used to deter-
mine general symmetry group of some differential equations. We
include a number of important applications including integration of
ordinary differential equations and finding some solutions of partial
differential equations together with some examples. A Bianchi the-
orem for the solvable symmetry groups is given to reduce a system
of ordinary differential equations.
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Introduction

The symmetry groups that arises most often in the applications to ge-
ometry and differential equations are Lie groups of transformations act-
ing on a finite-dimensional locally Euclidean space containing indepen-
dent and dependent variables which has a manifold structure. Since Lie
groups will be one of the essential tool in geometric theory of differential
equatiopns, it is important that we gain a basic familiarity with these
fundamental mathematoical objects. The first section of the paper is
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devoted to survey of an algorithmic method for finding an special kind
of Lie groups called symmetry groups of a given system of differential
equations which transform solutions to solutions. Such general transfor-
mation groups figure prominently in Lie’s theory of symmetry groups of
differential equations.

Since we are dealing with differential equations we must be able to
handle the derivatives of the dependent variables on the some footing as
the independent and dependent variables themselves. The proper geo-
metric contex for these purposes the so-called ”jet spaces”, well known
to nineteenth century practitioners, but first formally defined by Ehres-
mann [2]. But we skip out to discuss this concept in the paper and we
can only say that it is a locally Euclidean space for Taylor expansion
of all functions with associated independent and dependent variables.
Lie group actions on jet spaces leads us to the concept of ”prolonging” a
group action in the space of independent and dependenta variables of the
system. The key prolongation formula for an infinitesimal generator of
a group of transformations, given in theorem 1.4, then provides the ba-
sis for the systematic determination of symmetry groups of differential
equations. Application to some physical partial differential equations
are presented in the sequel.

In the case of ordinary differential equations [7], Lie showed how
knowledge of a one-parameter symmetry group allows us to reduce the
order of equation by one. In particular, a first order equation with a
known one-dimensional symmetry group can be integrated by a single
quadrature. But, in the case of higher dimensional symmetry groups; it
is not in general possible to reduce the order of an equation invariant un-
der an r−dimensional symmetry group by r using only quadratures. A
Bianchi theorem discuss how the theory proceeds for multi-dimensional
symmetry groups for higher order equation and system of ordinary dif-
ferential equations.

1. Mathematical Formulations

Consider a general n−th order system of differential equations

∆ν(x,u
(n)) = 0, ν = 1, ...,m, (1.1)

with p−independent variables x = (x1, ..., xp), and q−dependent vari-

ables u = (u1, ..., uq), with u(n) denoting the derivatives of the u′s with
respect to independent variables up to order n. The system of differen-
tial equations (1.1) which we often abbreviate as ∆ = 0, is thus defined
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by the vanishing of a collection of differential functions ∆ν : Jn → R
defined on the n−th jet space Jn.

Definition 1.1. A symmetry of system of differential equations (1.1)
means a transformation from its independent and dependent variables
called total space E of (1.1) to itself which maps solutions to solutions.

The most basic type of symmetry is a group G of point transforma-
tions on the associated total space. It means for any g ∈ G a point
transformation g : E → E acting on E is called a symmetry of (1.1), if
whenever u = f(x) is a solution to (1.1), and the transformed function

f̃ = g · f is well-defined, then f̃ is also a solution to (1.1).

Definition 1.2. An n−th prolonagation of the transformation g : E →
E is a transformation g(n) : Jn → Jn on the n−th jet space of E which
acts on the derivatives of g up to order n additionally.

Suppose G is a Lie group acting on the total space E. This action is
generated by a differential operator

X =

p∑
i=1

ξi(x,u)
∂

∂xi
+

q∑
α=1

φα(x,u)
∂

∂uα
, (1.2)

called the infinitesimal generator of the action. Each infinitesimal gener-
ator’s flow coincides with the action of the corresponding one-parameter
subgroup of G. Specifically, if X̃ is a generator of the corresponding
Lie algebra G of the Lie group G generates the one-parameter sub-
group {exp(ϵX̃)|ϵ ∈ R} ≤ G, then we identify X̃ with the infinitesi-
mal generator X of the one-parameter group of transformations or flow
x 7→ exp(ϵX̃)(x). According to differential geometry the infinitesimal
generators of the group action are found by differentiation

X|x =
d

dϵ

∣∣∣
ϵ=0

exp(ϵX̃)(x), x ∈ E, X̃ ∈ G. (1.3)

Thus, if θ(x) : G → E is the corresponding orbit map of the action G on
E, then, the directional differentiation

X|x = dθ(x)(X̃|e) =
d

dϵ

∣∣∣
ϵ=0

θ(x)(e+ ϵX̃),

gives the infinitesimal generators. The following theorem shows that the
set of infinitesimal generators of a given action is a Lie algebra.

Theorem 1.3. Let G be a finite-dimensional Lie algebra of differential
operators (1.2) on E. Let G denote a Lie group having Lie algebra G.
Then there is a local action of G whose infinitesimal generators coincide
with the given Lie algebra.



12

Given a differential operator X generating a one-parameter group of
transformations exp(ϵX) on E, the associated n−th order prolonged

differential operator X(n) is a differential operator on the jet space
Jn which is the infinitesimal generator of the prolonged one-parameter
group exp(ϵX)(n). Thus at any point (x,u(n)) ∈ Jn,

X(n)|(x,u(n)) =
d

dϵ

∣∣∣
ϵ=0

exp(ϵX)(n) · (x,u(n)). (1.4)

The explicit formula for the prolonged differential operator is provided
by the following prolongation formula. Although, the formula can be
proved by direct computation based on the definition (1.4), [8].

Theorem 1.4. Suppose X be a differential operator given by (1.2), and
let Q = (Q1, ..., Qq) be a q−tuple of differential functions given by

Qα(x,u(1)) = φα(x,u)−
p∑

i=1

ξi(x,u)
∂uα

∂xi
. (1.5)

The n−th prolongation of X is given explicitly by

X(n) =

p∑
i=1

ξi(x,u)
∂

∂xi
+

q∑
α=1

n∑
♯J=j=0

φJ
α(x,u

(j))
∂

∂uαJ
, (1.6)

with coefficients

φJ
α = DJQ

α +

p∑
i=1

ξiu
α
J,i, (1.7)

where DJ is the total derivative operator.

Definition 1.5. A system of differential equations is called locally solv-

able at each point (x0,u
(n)
0 ), where ∆(x0,u

(n)
0 ) = 0, if there exist a

smooth solution u = f(x), defined in a neighborhood of x0, which achives

the values of the indicated derivatives there: u
(n)
0 = f (n)(x0). System

(1.1) is a regular system if its Jacobian is of maximal rank m at each

point (x0,u
(n)
0 ). If the conditions solvability and regularity are both

satisfy, then, the system is called fully regular.

According to the definition 1.1 a transformation g is a symmetry of
a locally solvable system of differential equations (1.1) if and only if the

set of solutions is invariant under the prolongen transformation g(n).
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1.1. Infinitesimal Method. We will henceforth assume that we are
dealing with a connected Lie group of point transformation G. In this
case the infinitesimal generators form a Lie algebra G consisting of dif-
ferential operators (1.2) on the total space E. A fundamental theorem
is a criterion for when an infinitesimal generator in the form (1.2) being
a symmetry for the system (1.1):

Theorem 1.6. A connected Lie group of transformations G is a sym-
metry group of the fully regular system of differential equations (1.1) if
and only if the classical infinitesimal symmetry conditions

X(n)(∆ν) = 0, ν = 1, ...,m whenever ∆ = 0, (1.8)

hold for every infinitesimal generator X ∈ G of G.

The condintions (1.8) are known as the determining equations of the
symmetry group for the system. We now illustrate the practical use
of the infinitesimal symmetry criterion (1.8) for determining the full
(connected) symmetry group of several concrete differential equations of
interests in some examples [5, 6].

1.1.1. Born-Infeld Equation. In physics, the Born-Infeld theory is a non-
linear generalization of electromagnetism. The model is named after
physicists Max Born (1882-1970) and Leopold Infeld (1898-1968) who
first proposed it. In physics, it is a particular example of what is usually
known as a nonlinear electrodynamics. It was historically introduced in
the 30’s to remove the divergence of the electron’s self-energy in classi-
cal electrodynamics by introducing an upper bound of the electric field
at the origin. The Born-Infeld electrodynamics possesses a whole series
of physically interesting properties: First of all the total energy of the
electromagnetic field is finite and the electric field is regular everywhere.
Second it displays good physical properties concerning wave propaga-
tion, such as the absence of shock waves and birefringence. A field the-
ory showing this property is usually called completely exceptional and
Born-Infeld theory is the only completely exceptional regular nonlinear
electrodynamics. Finally (and more technically) Born-Infeld theory can
be seen as a covariant generalization of Mie’s theory, and very close to
Einstein’s idea of introducing a non-symmetric metric tensor with the
symmetric part corresponding to the usual metric tensor and the anti-
symmetric to the electromagnetic field tensor. During the 1990 there was
a revival of interest on Born-Infeld theory and its nonabelian extensions
as they were found in some limits of string theory.
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The equation is a second order non-linear partial differential equation
of the form

∆BI := (1− u2t )uxx + 2uxutuxt − (1 + u2x)utt = 0, (1.9)

where u is a smooth function of (x, t). An infinitesimal point symme-
try of equation (1.9) will be a differential operator X = ξ1(x, t, u)∂x +
ξ2(x, t, u)∂t +φ(x, t, u)∂u, where ∂x = ∂/∂x, etc. The infinitesimal sym-
metry criterion (1.8) is

(1− u2t )φ
xx + 2(utuxt − uxutt)φ

x + 2(uxuxt − utuxx)φ
t (1.10)

+2uxutφ
xt − (1 + u2x)φ

tt = 0, whenever ∆BI = 0.

The coefficients φx, φt, ... in (1.10) are obtained by (1.7). Thus

φx = DxQ+ ξ1uxx + ξ2uxt, φt = DtQ+ ξ1uxt + ξ2utt,
φxx = D2

xQ+ ξ1uxxx + ξ2uxxt, φtt = D2
tQ+ ξ1uxtt + ξ2uttt,

φxt = DxDtQ+ ξ1uxxt + ξ2uxtt,

where

Dx = ∂x + ux∂u + uxx∂ux + uxt∂ut + uxxx∂uxx + uxxt∂uxt + uxtt∂utt ,

Dt = ∂t + ut∂u + uxt∂ux + utt∂ut + uxxt∂uxx + uxtt∂uxt + uttt∂utt ,

are total derivative operators. Theorem 1.6 yields the over determining
system of partial differential equations

ξ2xx = 0, ξ2xu = 0, ξ2tt = 0, ξ2uu = 0, ξ1x = ξ2t,
ξ1t = ξ2x, ξ1u = −φx, ξ2t = φu, ξ2u = φt, ξ2tu = −φxx.

The general solution to the determining system is readily found:

ξ1 = c1 + c4t− c5u+ c7x, ξ2 = c2 + c4x+ c6u+ c7t,

φ = c3 + c5x+ c6t+ c7t,

where c1, ..., c7 are arbitrary constants. Thus the Lie algebra G of the
Born-Infeld equation is spanned by the seven differential operators

X1 = ∂x, X2 = ∂t, X3 = ∂u,
X4 = t∂x + x∂t, X5 = −u∂x + x∂u, X6 = u∂t + t∂u,
X7 = x∂x + t∂t + u∂u.

(1.11)

Table shows that these seven differential operators are closed under com-
mutator bracket [Xi, Xj ] = XiXj − XjXi, thus, they make a seven-
dimansional real Lie algebra
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Table 1. Commutation relations of G

[ , ] X1 X2 X3 X4 X5 X6 X7

X1 0 0 0 X3 X2 0 X1

X2 0 0 0 X1 0 X3 X2

X3 0 0 0 0 −X1 X2 X3

X4 −X2 −X1 0 0 −X6 X5 0
X5 −X3 0 X1 X6 0 X4 0
X6 0 −X3 −X2 −X5 −X4 0 0
X7 −X1 −X2 −X3 0 0 0 0

1.1.2. Telegraph Equation. The telegrapher’s equations (or just tele-
graph equations) are a pair of linear differential equations which describe
the voltage and current on an electrical transmission line with distance
and time. The equations come from Oliver Heaviside who developed the
transmission line model. The model demonstrates that the electromag-
netic waves can be reflected on the wire, and that wave patterns can
appear along the line. The cylindrical telegrapher’s equations [10],

utt + kut = a2
[1
r
(rur)r +

1

r2
uθθ + uzz

]
, (1.12)

can be understood as a simplified case of Maxwell’s equations. In a more
practical approach, one assumes that the conductors are composed of an
infinite series of two-port elementary components, each representing an
infinitesimally short segment of the transmission line.

The Lie algebra of infinitesimal symmetries is the set of differential
operators in the form of X = ξ1∂r + ξ2∂θ + ξ3∂z + ξ4∂t + η∂u. This
differential operator has the second prolongation

X(2) = X + φr∂r + φθ∂θ + φz∂z + φt∂t + · · ·+ φzz∂uzz + φzt∂uzt + φtt∂tt
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with the coefficients

φr = DrQ+ ξ1urr + ξ2urθ + ξ3urz + ξ4urt,

φθ = DθQ+ ξ1urθ + ξ2uθθ + ξ3uθz + ξ4uθt,

φz = DzQ+ ξ1urz + ξ2uθz + ξ3uzz + ξ4uzt,

φt = DtQ+ ξ1urt + ξ2uθt + ξ3uθt + ξ4utt,

φrr = D2
rQ+ ξ1urrr + ξ2urrθ + ξ3urrz + ξ4urrt,

φrx = DrDθQ+ ξ1urθr + ξ2urθθ + ξ3urθz + ξ4urθt,

φrz = DrDzQ+ ξ1urzr + ξ2urθz + ξ3urzz + ξ4urzt,

φrt = DrDtQ+ ξ1urtr + ξ2urθt + ξ3urzt + ξ4urtt,

φθθ = D2
θQ+ ξ1uθθr + ξ2uθθθ + ξ3uθθz + ξ4uθθt,

φθz = DθDzQ+ ξ1uθzr + ξ2uθθz + ξ3uθzz + ξ4uθzt,

φθt = DθDtQ+ ξ1uθrt + ξ2uθθt + ξ3uθzt + ξ4uθtt,

φzz = D2
zQ+ ξ1urzz + ξ2uθzz + ξ3uzzz + ξ4uzzt,

φzt = DzDtQ+ ξ1urzt + ξ2uθzt + ξ3uzzt + ξ4uztt,

φtt = D2
tQ+ ξ1urtt + ξ2uθtt + 3uztt + ξ4uttt,

where the operators Dr, Dθ, Dz and Dt denote the total derivative with
respect to r, θ, z and t:

Dr = ∂r + ur∂u + urr∂ur + urθ∂uθ
+ · · · ,

Dθ = ∂θ + uθ∂u + uθθ∂uθ
+ urθ∂ur + · · · ,

Dz = ∂z + uz∂u + uzz∂uz + urz∂ur + · · · ,
Dt = ∂t + ut∂u + utt∂ut + urt∂ur + · · · ,

Using the invariance condition (1.8), vanishes the second prolongation

X(2) applied to equation (1.12), the following system of 27 determining
equations are obtained:

ξ2u = 0, ξ2zz = 0, ξ3z = 0,
ξ3u = 0, ξ4t = 0, ξ4u = 0,
ξ4rr = 0, ξ4θz = 0, ξ4zz = 0,
ξ4rz = 0, ηtu = 0, ηuu = 0
kξ4z + 2ηru = 0, ξ1 + rξ2θ = 0, ξ2θ + rξ2rθ = 0,
ξ2z + rξ2rz = 0, ξ2θθ − rξ2r = 0, kξ4z + 2ηzu = 0,
2ξ2r + rξ2rr = 0, ξ3r − rξ2θz = 0, ξ3θ + r2ξ2z = 0,
ξ3t − a2ξ4z = 0, ξ4θ − rξ4rθ = 0, ξ4θθ + rξ4r = 0,
r2ξ2t − a2ξ4θ = 0, ξ4θ + 2ηuθ = 0,
a2r2ηrr − kr2ηt + a2rηr + a2r2ηzz
−r2ηtt + a2ηθθ = 0.



17

The solution of the above system gives the following coefficients of the
differential operator X:

ξ1 = c6 sin θ − c7 cos θ − c8z cos θ − c9z sin θ + 2c10a
2t sin θ − 2c11a

2t cos θ,

ξ2 = c1 + c6r
−1 cos θ + c7r

−1 sin θ + c8zr
−1 sin θ − c9zr

−1 sin θ

+2c10a
2tr−1 cos θ − 2c11a

2tr−1 sin θ,

ξ3 = c2 + 2c5a
2t+ c8r cos θ + c9r sin θ,

ξ4 = c3 + 2c5at+ 2c10r sin θ − 2c11r cos θ,

η = c4u− c5kzu− c10kru sin θ + c11kru cos θ,

where c1, ..., c11 are arbitrary constants, thus the Lie algebra G of the
telegraph equation is spanned by the eleven differential operators

X1 = ∂θ, X2 = ∂z, X3 = ∂t, X4 = u∂u,
X5 = 2a2t∂z + 2z∂t − kzu∂u, X6 = sin θ∂r + r−1 cos θ∂θ,
X7 = − cos θ∂r + r−1 sin θ∂θ,
X8 = −z cos θ∂r + r−1z sin θ∂θ + r cos θ∂z,
X9 = −z sin θ∂r − r−1z cos θ∂θ + r sin θ∂z,
X10 = 2a2t sin θ∂r + 2a2tr−1 cos θ∂θ + 2r sin θ∂t − kru sin θ∂u,
X11 = −2a2t cos θ∂r + 2a2tr−1 sin θ∂θ − 2r cos θ∂t + kru cos θ∂u,

An straightforward calculation shows that these eleven differential op-
erators are closed under commutator bracket and thus form an eleven-
dimansional real Lie algebra [4].

2. Invariant Functions

Given a group of point transformations G acting on total space E,
the charachteristic of all G−invariant functions u = f(x) is of great im-
portance.

Definition 2.1. A function u = f(x) is said to be invariant under the
group transformation G if its graph {(x, f(x))} is a (locally) G−invariant
subset.

For example, the graph of any invariant function for the rotation group
SO(2) must be an arc of a circle centered at the origin, so u = ±

√
c2 − x2.

The fundamental feature of Lie groups is the ability to work infinites-
imally, thereby effectively linearizing complicated invariance criteria.

Theorem 2.2. Let G be a connected Lie group of transformations acting
on total space E. A function I : E → R is invariant under G if and
only if for all (x,u) ∈ E and every infinitesimal generator X ∈ G of G,

X[I(x,u)] = 0. (2.1)
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Thus, according to theorem 2.2, the invariant v = I(x,u) of a one-
dimensional group with infinitesimal generator (1.2), obtained from (2.1),
satisfy the first order, linear, homogeneous partial differential equation

p∑
i=1

ξi(x,u)
∂v

∂xi
+

q∑
α=1

φα(x,u)
∂v

∂uα
= 0. (2.2)

The solutions of (2.2) are effectively found by the method of charachter-
istics. We replace the partial differential equation by the charachteristic
system of ordinary differential equations

dx1

ξ1(x,u)
= · · · = dxp

ξp(x,u)
=

du1

dφ1(x,u)
= · · · = duq

φq(x,u)
. (2.3)

The general soluition to (2.3) can be written in the form I1(x,u) =
c1, ..., Ip+q−1(x,u)) = cp+q−1, where ci are constants of integrations.

Lemma 2.3. The resulting functions I1, ..., Ip+q−1 form a complete set
of functionally independent invariants of the one-dimensional Lie alge-
bra spanned by differential operator X.

For example a one-dimensional Lie algebra spanned by the differential
operator X = −y∂x + x∂y + (1 + z2)∂z are obtained by solving the
charachteristic system

dx

−y
=

dy

x
=

dz

1 + z2
,

thus, there are two functionally independent invariant functions r =√
x2 + y2 and w = (xz− y)/(yz+ x). A fundamental theorem obtained

from differential geometry charachterizes the number of functionally in-
dependent invariants of a group action.

Theorem 2.4. Let G be a transformation group acting semi-regularly
(all the orbits have same dimension) on total space E with s-dimensional
orbits. Let I1(x,u), ..., Ip−s(x,u), J1(x,u), ..., Jq(x,u), be a complete
set of functionally independent invariants for G. Then any G-invariant
function u = f(x), can locally be written in the implicit form

w = h(y), where y = I(x,u), w = J(x,u). (2.4)

Remark 2.5. A ”similarity solution” or ”invariant solution” which is a
main subject of next section, of a system of partial differential equations
is just an invariant function for a group of scalling transformations. For
example, consider the one-dimensional group R+ acting on R3 with the
transformation (x, y, u) 7→ (λx, λαy, λβu). The independents invariants
are provided by the rotios y = y/xα, w = u/xβ, so any scale-invariant
function can be written as w = h(y), or explicitely u = xβh(y/xα).



19

As usual, the most convenient charachterization of the invariant func-
tions is based on an infinitesimal conditions. Since the graph of a func-
tion is defined by the vanishing of its components uα−fα(x), the general
invariance theorem 1.6 imposes the infinitesimal invariance conditions

0 = X(uα − fα(x)) = φα(x,u)−
p∑

i=1

ξi(x,u)
∂fα

∂xi
,

which must hold whenever u = f(x), for every infinitesimal generator
X ∈ G, as in (1.2). These first order partial differential equations are
known in the literature as the invariant surface conditions associated
with the given transformation group.

3. Group-Invariant Solutions

When we confronted with a complicated system of partial differential
equations in some physically important problem, the discovery of any
explicit solutions whatsoever is of great interest. Explicit solutions can
be used as models for physical experiments, as benchmarks for testing
numerical methods, etc., and often reflect the asymptotic or dominant
bahaviour of more general types of solutions. The method used to find
group-invariant solutions, generalizing the well-known techniques for
finding similarity solutions, provide a systematic computational method
for determining large classes of special solutions. These group-invariant
solutions are characterized by their invariance under some symmetry
group of the system of partial differential equations; the more symmet-
rical the solution, the easier it is to construct. The fandamental theorem
on group-invariant solutions roughly states that the solutions which are
invariant under a given r−dimensional symmetry group of the system
can all the find by solving r fewer independent variables than the orig-
inal system. In particular, if the number of parameters is one less that
the number of independent variables in the physical system: r = p− 1,
then all the corresponding group-invariamt solutions can be found by
solving a system of ordinary differential equations. In this way, one
reduces an intractable set of partial differential equations to a simpler
set of ordinary differential equations which one might stand a chance of
solving explicitly. In practical applications, these group-invariant solu-
tions can, in most instances, be effectively found and, often, are the only
explicit solutions which are known.

3.1. Construction of Group-Invariant Solutions. Consider a sys-
tem of partial differential equations (1.1) with p−independent and q−
dependent variables. Let G be a group of transformations acting on
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E. A solution u = f(x) of the system is said to be G-invariant if it is
left unchanged by all the group transformations in G, meaning that for
each g ∈ G, the function f and g · f agree on their common domains of
definition.

If G is a symmetry group of a system of partial differential equations
(1.1), then, we can find all the G−invariant solutions to ∆ by solv-
ing a reduced system of differential equations, denoted by ∆/G, which
will involve fewer independent variables than the original system ∆. To
see how this reduction effected, we begin by making the simplifying
assumption that G acts projectably on M . This means that the trans-
formations in G all takes the form (x̃, ũ) = g · (x,u) = (Ξg(x),Φg(x,u))
for g ∈ G, i.e., the changes in the independent variable x do not depend
on the dependent variables u. There is then a projected group action
x̃ = g · x = Ξg(x) on an open sebset Ω ⊂ X. We make the regularity
assumption that both the action of G on E and the projected action of
G on Ω is regular, i.e., all the orbit dimension of the action are same
as s, where s is strictly less than p. (The case s = p is fairly trivial,
while if s > p, no G−invariant functions exist, Usually s will be the
same as the dimension of G itself, but this need not be the case.) Under
these assumption there exist p − s functionally independent invariants
y1 = η1(x), ..., yp−s = ηp−s(x) of the projected group action on Ω ⊂ X.
Each of this functions is also an invariant of the full group action on E
, and furthermore, we can find q additional invariants of the action of
G on E, of the form v1 = ζ1(x,u), ...,vq = ζq(x,u), which, together
with the η′s provide a complete set of p+ q− s functionally independent
invariants for G on E. We write this complete collection on invariants
as

y = η(x), v = ζ(x,u). (3.1)

In the construction of the reduced system of differential equations for
the G−invariant solutions to ∆, then y′s will play the role of the new in-
dependent variables, and the v′s the role of the new dependent variables.
Note in particular that there are s few independent variables y1, ..., yp−s

which will appear in this reduced system, where s is the dimension of
the orbits of G.

There is a one-to-one correspondence between G−invariant function
u = f(x) on E and arbitrary functions v = h(y) involving the new vari-
ables. To explain this correspondence, we begin by invoking the implicit
function theorem to solve the system y = η(x) for p− s of the indepen-
dent variables, say x̃ = (xi1 , ..., xip−s), in the terms of the new variables
y1, ..., yp−s and the remaining s old independent variables, denoted as
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x̂ = (xj1 , ..., xjs). Thus we have the solutions

x̃ = ρ(x̂,y), (3.2)

for some well-defined function ρ. The first p − s of the old indepen-
dent variables x̃ are known as principle variables, and the remaining
s of these variables x̂ are the parametric variables, as they will, enter
parametrically into all the subsequent fromulae. The precise manner in
which one splits the variables x into principle and parametric variables
is restricted only by the requirement that the (p− s)× (p− s) submatris
(∂ηj/∂x̃i) of the full Jacobian matrix ∂η/∂x is invertible, so that the
implicit function theorem is applicable; otherwise, the choice is entirely
arbitrary. We need to make a further transversality assumption on the
action of G on E, that allows us to solve the other system of invariants
v = ζ(x,u) for all the dependent variables u1, ..., uq in terms of x1, ..., xp,
and v1, ..., vq, and hence in terms of new variables y,v and parametric
variables x̂:

u = µ̃(x,v) = µ̃(x̂, ρ(x̂,y),v) = µ(x̂,y,v), (3.3)

near any point (x0,u0) ∈ E.
If v = h(y) is any smooth function, then (3.3) coupled with (3.1)

produces a corresponding G−invariant function on E, of the form

u = f(x) = µ(x̂, η(x),h(η(x))). (3.4)

Conversely, if u = f(x) is any G−invariant function on E, then it is
not too difficult to see that there necessarily exist a function v = h(y)
such that f and the corresponding function (3.4) locally agree. Thus, we
have seen how G−invariance of functions serves to decrease the number
of variables upon which they depend.

We are now interested in finding all the G−invariant solutions to
some system of partial differential equations (1.1). In other words, we
want to know when a function of the form (3.4) corresponding to a
function v = h(y) is a solution to ∆. This will impose certain constrains
on the function h; these are found by computing the formulae for the
derivatives of v = h(y) with respect to y, and then substituting these
into the system of differential equations ∆.Thus we need to know how
the derivatives of the functions v = h(y) are related to the derivatives
of the corresponding G−invariant function u = f(x). However, this is
an easy application of the chain rule. Differentiating (3.4) with respect
to x leads to a system equation of the form

∂u

∂x
=

∂

∂x
[µ(x̂,y, )] =

∂µ

∂x̂
+

∂µ

∂y

∂η

∂x
+

∂µ

∂v

∂v

∂y

∂η

∂x
,

since y = η(x). Here, ∂u/∂x, etc., denoted Jacobian matrices of first
order derivatives of indicated variables. Moreover, using (3.2), we can
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rewrite ∂η/∂x in terms of y and parametric variables x̂, Thus we obtain
an equation of the form

∂u

∂x
= µ1

(
x̂,y,v,

∂v

∂y

)
,

expressing the first order derivatives of any G−invariant function u with
respect to x in terms of y,v, the first order derivatives of v with respect
to y together with parametric variables x̂. Continuing to differentiate
using the chain rule, and substituting to (3.2) whenever necessary, we
are led to general formulae

u(n) = µ(n)(x̂,y,v(n)),

for all the derivatives of such a u up to order n with respect to x in
terms of y,v, the derivatives of v with respect to y up to order n, and
the ubiquitous parametric variable x̂.

Once the relevant formulae relating derivatives of u with respect to x
to those of v with respect to y have been determined, the reduced system
of differential equations for the G−invariant solutions to the system ∆ is
determined by substituting these expressions into the system whenever
they occur. In general, this leads to system of differential equations of
the form

∆̃ν

(
x̂,y,v(n)

)
, , ν = 1, .., ℓ,

still involving parametric variables x̂. If G is a symmetry group for ∆,
this resulting system will in fact always be equivalent to a system of
equations denoted by

(∆/G)ν(y,v
(n)) = 0, ν = 1, ..., ℓ,

which are independent of the parametric variables, and thus constitute
a genuine system of differential equations for v as a function of y. This
is the reduced system ∆/G for the G−invariant solutions to the system
∆. Every solution v = h(y) of ∆/G will corresponds, via (3.4), to a
G−invariant solution to ∆, and moreover every G−invariant solution
can be constructed in this manner.

3.2. Examples of Group-Invarinat Solutions. Before attempting
to prove that the basic procedure for constructing group-invariant so-
lutions outlined above works, we will illustrate the method with some
systematic examples, constructing group invariant solutions for some
physical partial differential equations.
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The Heat Equation. The symmetry Lie algebra of the heat equation
ut = uxx are six differential operators

X1 = ∂x, X2 = ∂t,
X3 = u∂u, X4 = x∂x + 2t∂t,
X5 = 2t∂x − xu∂u, X6 = 4tx∂x + 4t2∂t − (x2 + 2t)u∂u,

plus an infinite-dimensional subalgebra

Xα = α(x, t)∂u,

where α is an arbitrary solution of the heat equation. For each one-
parameter subgroup of the full symmetry group there will be a cor-
responding class of group-invariant solutions which will be determined
from a reduced ordinary differential equation, whose form will in general
depend on the particular subgroup under investigation.

The global invariant of the linear symmetry ∂t + c∂x, in which c is a
fixed constant, are

y = x− ct, v = u, (3.5)

which correspond to translation group (x, t, u) 7→ (x + cε, t + ε, u) for
ε ∈ R, so that the group-invariant solution v = h(y) takes the familiar
form u = h(x − ct), determine a wave of unchanging profile moving at
the constant velocity c. Solving for the derivatives of u with respect to
x and t in terms of those of v with respect to y we find

ut = −cvy, ux = vy, uxx = vyy,

and so on. Substituting these expressions into the heat equation, we
find the reduced ordinary differential equation for the travelling wave
solutions to be

−cvy = vyy.

The general solution of this linear equation, is v(y) = k1e
−cy + k2, for

k1, k2 arbitrary constants. Substituting back according to (3.5), we find
a group-invariant solution called travelling wave solution to the heat
equation: u(x, t) = k1e

−c(x−ct) + k2.
Similarly for any a ∈ R, consider a linear symmetry x∂x + 2t∂t +

2au∂u, of the infinitesimal generators, which corresponds to the scaling
group (x, t, u) 7→ (λx, λ2t, λ2au), for λ ∈ R+. The global invariant of
this subgroup is provided by y = x/

√
t and v − t−au. Solving for the

derivatives of u in terms of v, we find ut = ta−1(12yvy + av) and uxx =

ta−1vyy. Substituting these expressions into the heat equation, we find

vyy +
1

2
yvy − av = 0,
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which form the reduced equation for the scale-invarinat solutions. The
solution of this linear ordinary differential equation can be written in
terms of parabolic cylinder functions. Indeed, if we set w = v exp(18y

2),
then w satisfies a scaled form of Weber’s differential equation,

wyy =

[(
a+

1

4

)
+

1

16
y2
]
w.

The general solution of the heat equation called scale-invariant solution
is

u(x, t) = tae−
x2

8t

[
k1U

(
2a+

1

2
,

x√
2t

)
+ k2V

(
2a+

1

2
,

x√
2t

)]
,

where U(b, z) and V(b, z) are parabolic cylinder functions.

Vector Maxwell Equations in Non-Linear Optics. The equation of the
model consist of Maxwell’s equations coupled to a single Lorentz oscilla-
tor governing the polarization field P, in which the oscillator is driven by
the electric field E. The equation of the model in dimensionless physical
variables have the form [11]:

Bt +Ez = 0, (3.6)

Dt +Bz = 0, (3.7)

D = E +
E2σ+1

2σ + 1
+ P, (3.8)

Ptt + P − αE = 0, (3.9)

P is polarization along x−axis and D is displacement cuurent in (3.8)-
(3.9).

Introducing potentials ϕ and A for the electric and magnetic fields E
and B:

E = ϕz, B = Az. (3.10)

Faraday’s law (3.7) can be written as (E +At)z = 0. Thus

B = Az, E = −At, (3.11)

are representations for B and E in terms of magnetic potential A. In this
representation of the field E and B, Faraday’s law (3.7) is automatically
satisfied, as a consequence of the integrability condition Azt = Atz.
Thus, (3.7)-(3.9) reduce to the system

∂

∂t

(
At −

A2σ+1
t

2σ + 1
+ P

)
+Azz = 0, (3.12)

Ptt + P + αAt = 0. (3.13)
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Theorem (2.4) together with a straightforward calculations shows that
the symmetries Lie algebra of the system (3.13)-(3.13) is spanned by the
differential operaors

X1 = ∂t, X2 = ∂z, X3 = z∂A, X4 = ∂A. (3.14)

The invariants of the linear symmetry X = ∂t + ∂z + (z + 1)∂A are
z − ct = y,A − (12z

2 + z) = v1 and P = v2. From (3.11), the solutions
for E and B have the form

E = cf ′(y), B = z + 1 + f ′(y). (3.15)

where f(y) is a functional constant in the ansatz solution A = 1
2z

2+z+
f(y). The solutions of for P (y) and f(y) depend on the traveling wave
variable y = z − ct, where c is the velocity of the traveling wave fram.
From (3.15), E − cB = −c(1 + z).

Substituting the ansatz solution into Ampere’s law (3.13), and inte-
grating with respect to y yields the integral:

y +
E

c
− c

(
E +

E2σ+1

2σ + 1
+ P

)
= k, (3.16)

where k is an integrating constant. The Lorentz oscillator equation
(3.13) becomes:

c2P ′′(y) + P = αE. (3.17)

Hence the system reduces to a second order ordinary differential equation
for P coupled with an algebraic equation (3.16).

3.2.1. Born-Infeld Equation. In (1.11) we find the seven-dimensional
symmery group pf the Born-Infeld equation. In this section we will
find all group-invariant solutions due to all seven symmetries.

a) Space translation invariance X1. The invariants of this symme-
try are v(y) = u(x, t) and y = t, thus the reduced equation re-
spect to this invariants is v′′ = 0, and the relative group-invariant
solution is u = c1t+ c2.

b) Time translation invariance X2. The invariants of this symmetry
are v(y) = u(x, t) and y = x, thus the reduced equation respect
to this invariants is v′′ = 0, and the relative group-invariant
solution is u = c1x+ c2.

c) Solution translation invariance X3. For this symmetry every
translated solution with any constant is a similarity solution.

d) Hyperbolic rotation invariance on time and space X4. The in-
variants of this symmetry are v(y) = u(x, t) and y = −x2 + t2,
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thus the reduced equation respect to this invariants is

2(2y2 + e4ε + 2e−4εy4)v′
2
v′′ + 4(e−2εy2 + e2ε)v′

3

−4yv′′ − 4v′ = 0,

and the relative group-invariant solution is

u = ±c1 arctan

(
x2 − t2 + 2c21√

(x2 − t2)(−x2 + t2 − 4c21)

)
+ c2.

e) Rotation invariance on solution and space X5. The invariants of
this symmetry are v(y) = x2 + u(x, t)2 and y = −x2 + t2, thus
the reduced equation respect to this invariants is

cos(2ε) cos2 εv′′ − 2 cos(2ε)v′
2
+ 2 cos2 εv = 0,

and the relative group-invariant solutions are

u = ±1

2

√
2c1e

t+c2
c1 + 8c31e

− t+c2
c1 − 4x2 − 8c21,

u = ±1

2

√
2c1e

− t+c2
c1 + 8c31e

t+c2
c1 − 4x2 − 8c21.

f) Hyperbolic rotation invariance on time and solution X6. The
invariants of this symmetry are v(y) = −t2 + u(x, t)2 and y = x,
thus the reduced equation respect to this invariants is

(e2εv + 2v2 + e−2εv3)v′′ + (2v − e−2εv2 − e2ε)v′
2 − 2e2εv

−2v3 − 4v2 = 0,

and the relative group-invariant solutions are

u = ±1

2

√
2c1e

x+c2
c1 + 8c31e

−x+c2
c1 + 4x2 + 8c21,

u = ±1

2

√
2c1e

−x+c2
c1 + 8c31e

−x+c2
c1 + 4x2 + 8c21.

g) Scale invariance on time, space and solution simultainously X7.

The invariants of this symmetry are v(y) = u(x,t)
x and y = t

x ,

thus the reduced equation respect to this invariants is v′′(2y2v′2−
4yvv′+v2+y2−1) = 0, and the relative group-invariant solutions

are u = c1x+ c2t, and u = ±
√
−x2 + t2
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3.2.2. Boussinesq Equation. The Bossinesq equation

utt + uuxx + u2x + uxxxx = 0, (3.18)

is a soliton partial differential equation, and arises as a model equation
for the unidirectional propagation of solitary wave in shallow water, [8].
A straightforward calculation eventually yields the complete symmetry
algebra of the equation (3.18) is spanned by three differential operaors
X1 = ∂x, X2 = ∂t and X3 = x∂x + 2t∂t − 2u∂u.

a) Space translation invariance X1. The invariants of this symme-
try are v(y) = u(x, t) and y = t, thus the reduced equation re-
spect to this invariants is v′′ = 0, and the relative group-invariant
solution is u = φ(f) where φ satisfies the second order ordinary
differential equation φff = −1

2φ(f)
2−c1f−c2 for a differentiable

function f respect to x.
b) Time translation invariance X2. The invariants of this symmetry

are v(y) = u(x, t) and y = x, thus the reduced equation respect
to this invariants is v′′′′ + vv′′ + v2 = 0, and the relative group-
invariant solution is u = c1t+ c2.

c) Scalling on space, time and solution itself simultainously X3.
The invariants of this symmetry are v(y) = e−2εu(x, t) and y =
e−2εt, thus the reduced equation respect to this invariants is

16y4v′′′′ + 208y3v′′′ + (1 + 732y2 + 4y2v)v′′ + 4y2v′2

+22yvv′ + 120v = 0,

and the invariant solution is of the series form!!!

4. Integration of Ordinary Differential Equations

In the previous section we find out that any system of partial differ-
ential equations could be reduced to a system of ordinary differential
equations by invariants obtained from its symmetry group. This sec-
tions shows that knowledge of a one-dimensional group of symmetries
of an ordinary differential equation allows us to reduce its order by one.
At the end a theorem of Bianchi, [1], states that if an ordinary differ-
ential equation admits a r−dimensional solvable symmetry group, then
its solutions can be determined, by quadrature, from those to a reduced
equation of order n− r.

Definition 4.1. Let X be a differential operaor on the total space of a
system of differential equations. A function u = f(x) is called nontan-
gential provided X is nowhere tangent to the graph of f .
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Theorem 4.2. Let ∆(x,u(n)) = 0 be an n−th order scalar ordinary dif-
ferential equation admitting a regular one-dimensional symmetry group
G. Then all nontangential solutions can be found by quadrature from
the solutions to an ordinary differential equation (∆/G)(x,u(n−1)) = 0
of order n− 1, called the symmetry reduced equation.

Example 4.3. Consider a general homogeneous second order linear
equation

(x2 + 1)uxx + sinxux + x3u = 0.

This equation clearly admits the one-dimensional (but it is not full sym-
metry) scaling symmetry generated by u∂u. According to the general
reduction procedure, as long as u ̸= 0, we can introduce the new variable
v = lnu, y = x, in terms of which the equation becomes

vxx + v2x +
sinx

x2 + 1
vx +

x3

x2 + 1
= 0,

if we set vx = w the reduced equation becomes to the first order Riccati
equation.

Theorem 4.4. Suppose ∆ = 0 is an n−th order ordinary differential
equation admitting a symmetry group G. Let H ≤ G be one-dimensional
subgroup. Then the H−reduced equation ∆/H = 0 admits the quotient
group GH/H, where GH = {g|gHg−1 ⊂ H} is the normalizer subgroup,
as a symmetry group.

Example 4.5. Consider a second ordinary differerntial equation of the
form

x2uxx = (xux − u)2, (4.1)

with infinitesimal symmetries X1 = x∂x, X2 = x∂u. Since [X1, X2] =
X2, if we reduce with respect to X2, then the resulting first order equa-
tion will retain a symmetry corresponding to X1, and hence Theorem
4.4 guarantees that it can be integrated. If we set v = u/x and w = vx =
x−2(xux − u), so that equation (4.1) reduces to x3wx = (x2w)2 + 2x2w.
This equation admits a scaling symmetry generated by the reduced dif-
ferential operaors X̃ = x∂x − 2w∂w, which means that it is of homoge-
neous form and can be integrated. If we set ỹ = w, ṽ = lnx, equation
(4.1) reduces to a first order equation wy = −w[1 + (w−1 − y)2].

4.1. Bianchi Theorem. An r−dimensional Lie group G is called solv-
able if there exist a sequence of subgroups

{e} = G0 ⊂ G1 ⊂ · · · ⊂ Gr−1 ⊂ Gr = G,

such that each Gi is normal subgroup of Gi+1.
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Definition 4.6. Suupose G is a finite-dimensional Lie algebra. A sub-
space H ⊂ G is called an ideal Lie subalgebra of G if it is a Lie algebra
respect to the Lie bracket on G and [H,G] ⊂ H.

Theorem 4.7. Let G be a connected Lie group, and suppose H ≤ G is
a connected Lie subgroup. Then H is normal subgroup of G if and only
if H is an ideal in G.

Theorem 4.7 shows that there is a corresponding between normal Lie
subgroups and ideal Lie subalgebras. This is equivalent to the require-
ment that there exist a sequence of subalgebras

{0} = G0 ⊂ G1 ⊂ · · · ⊂ Gr−1 ⊂ Gr = G,

such that each Gi is ideal subgalgebras of Gi+1. A Bianchi theorem states
that:

Theorem 4.8. If an ordinary differential equation admits a r−dimensional
solvable Lie symmetry group, then its solution can be determined, by
quadratures from those to a reduced equation of order n− r.

For example consider the third order equation

u5xuxxx = 3u4xu
2
xx + u3xx, (4.2)

with three-dimensional solvable Lie algebra of symmetries spanned by
the differential operator

X1 = ∂u, X2 = ∂x, X3 = u∂x.

Thus, (4.2) can be solved by quadratures.

5. Conclusion

In this paper we introduce the foundations and some applications of
Lie’s theory of symmetry groups of differential equations. The basic
infinitesimal method for calculating symmetry groups is presented and
used to fine the general symmetry group of some particular differential
equations. The method needs complicated calculation when the vari-
ables and order of the given system increases, thus, some mathematical
packages such as Maple and Mathematica are useful for finding sym-
metry algebras. An important application of symmetries for reduction
of the equations are given in the sequel.
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