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Abstract. In this paper, we discuss the synchronization and anti-
synchronization of two identical chaotic T-systems. The adaptive
and nonlinear control schemes are used for the synchronization and
anti-synchronization. The stability of these schemes is derived by
Lyapunov Stability Theorem. Firstly, the synchronization and anti-
synchronization are applied to systems with known parameters,
then to systems in which the drive and response systems have one
unknown parameter. Numerical simulations show the effectiveness
and feasibility of the proposed methods.
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1. Introduction

Chaos as an interesting phenomenon in nonlinear dynamical systems,
has been studied extensively over the last four decades [16, 18, 19, 11,
23, 2]. Chaotic and hyperchaotic systems as nonlinear deterministic
systems display complex and unpredictable behaviors. Moreover, these
systems are sensitive to initial conditions. The chaotic and hyperchaotic
systems have many important applications in nonlinear sciences, such as
laser physics, secure communications, nonlinear circuits, control, neural
networks, and active wave propagation [11, 20, 13, 4, 3, 7, 12, 17].
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The synchronization of chaotic systems has been investigated since
their introduction in a paper by Pecora and Carrol in 1990 [19] and
has been widely studied in many fields, such as physics, chemistry,
ecological sciences, and secure communications [10, 6, 23]. Accord-
ingly, various techniques have been proposed to achieve chaos synchro-
nization and anti-synchronization such as adaptive control, active con-
trol, sliding mode, and nonlinear control [1, 14, 22, 8, 9, 15]. Fortu-
nately, some existing synchronization methods can be generalized to
the anti-synchronization of chaotic systems. The objective of the anti-
synchronization is to make the output of the slave system follows the
symmetry of output of the slave system.

In this paper, we use the adaptive and nonlinear control schemes for
the synchronization and anti-synchronization of two identical chaotic T-
systems. The synchronization and anti-synchronization are applied for
system with known and unknown parameters. In unknown parameter
case, each of the drive and response systems has one unknown parameter.

The rest of this paper is organized as follows: Section 2 briefly in-
troduces the chaotic T-system. In Section 3, the chaos synchronization
and anti-synchronization of chaotic T-system with known parameter via
nonlinear controller are discussed. In Section 4, the adaptive control
is used for synchronization and anti-synchronization of T-systems such
that each of the drive and response systems have one unknown param-
eter. Numerical simulations are given section 5. Finally, the concluding
remarks are presented in Section 6.

2. T-system

In 2005, Tigen [21] introduced a new real chaotic nonlinear system
called T-system, presented as follows: ẋ1 = a(x2 − x1)

ẋ2 = (c− a)x1 − ax1x3
ẋ3 = x1x2 − bx3,

(2.1)

where x1, x2, and x3 are the state variables and a, b, and c are real
positive parameters.

By choosing a = 2.1, b = 0.6, and some value of 0 < c < 40, the Lya-
punov exponents in FIGURE 1 show that the system (2.1) is a chaotic
system because a Lyapunov exponent of system is positive[14, 5]. Also
this system can be regarded as a dissipative system, since the sum of
its Lyapunov exponents is negative. The attractors of chaotic systems
are bounded but not to a fixed point or limit cycle, characterizing a
property of chaotic systems [5]. FIGURE 2 displays the attractor of the
T-system. In addition, the chaotic systems are sensitive to their initial
conditions. FIGURE 3 show the sensitivity of T-system for a = 2.1,
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Figure 1. Lyapunov exponents of system (2.1), for
a = 2.1, b = 0.6 and 0 < c < 40.
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Figure 2. An attractor of T-system for a = 2.1, b = 0.6
and c = 28 with initial conditions (x1(0), x2(0), x3(0)) =
(1, 3, 0).

b = 0.6, and c = 30 with close initial conditions (2, 1, 2) and (2.01, 1, 2).
Synchronization and anti-synchronization of this system can be used for
cryptography and decryption of data in secure communication:
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Figure 3. Sensitivity of T-system for close initial con-
ditions: Dash line for initial condition (2, 1, 2), and solid
line for initial condition (2.01, 1, 2) .

3. Synchronization and anti-synchronization with known
parameter via nonlinear controller

Let the drive and response systems are defined as:

ẋ = f(x), (3.1)

ẏ = f(y) + u, (3.2)

where x = (x1, x2, · · · , xn)T , y = (y1, y2, · · · , yn)T ∈ Rnare the state
vectors of the systems (3.1) and (3.2) respectively; f : Rn −→ Rn defines
a vector field in n-dimensional space and u = (u1, u2, · · · , un)T is an n-
dimensional control signal.

Let e = x − y and ē = x + y are the synchronization and anti-
synchronization error vectors, respectively. The goal is to design an
appropriate controller u such that for any initial conditions y0 and x0,
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we have:
lim

t−→∞
∥e∥ = lim

t−→∞
∥x(t, x0)− y(t, y0)∥ = 0,

lim
t−→∞

∥ē∥ = lim
t−→∞

∥x(t, x0) + y(t, y0)∥ = 0,

where ∥.∥ is the Euclidean norm.
For synchronization and anti-synchronization with known parameter,

we define the drive and response T-systems as follows: ẋ1 = a(y1 − x1)
ẏ1 = (c− a)x1 − ax1z1
ż1 = x1y1 − bz1,

(3.3)

and  ẋ2 = a(y2 − x2) + u1
ẏ2 = (c− a)x2 − ax2z2 + u2
ż2 = x2y2 − bz2 + u3,

(3.4)

where x1, x2, y1 y2, z1 and z2 are the state variables, u1, u2 and u3 are
three control functions to be designed and a, b and c are real parameters
and positive, ensuring that the system is chaotic.

3.1. Synchronization of (3.3) and (3.4). For synchronization, we
subtract (3.4) from (3.3), in a way that the error dynamical system is
represented as follow: ė1 = a(e2 − e1) + u1

ė2 = (c− a)e1 − a(x2z2 − x1z1) + u2
ė3 = x2y2 − x1y1 − be3 + u3.

(3.5)

In the following theorem, the appropriate nonlinear controller is dis-
cussed for synchronization of chaotic systems (3.4) and (3.3).

Theorem 3.1. Systems (3.3) and (3.4) will be globally asymptotically
synchronized for any initial condition with the following control law for
all k > 0: u1 = −ae2

u2 = −(c− a)e1 + a(x2z2 − x1z1)− ke2
u3 = −x2y2 + x1y1.

(3.6)

Proof. We define the lyapunov function as follows:

V (t) = 1
2(e

2
1 + e22 + e23). (3.7)

Then with the above mentioned conditions we have:

˙V (t) = ė1e1 + ė2e2 + ė3e3 = −(ae21 + ke22 + be23) < 0.

It is clear that V is positive definite and V̇ is negative definite. According
to the Lyapunov stability Theorem, the error system (3.5) can converge
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in to the origin asymptotically. Therefore, the drive system (3.3) and the
response system (3.4) can be asymptotically and globally synchronized.
This completes the proof. �

3.2. Anti-synchronization of (3.3) and (3.4). For anti-synchronization,
we add (3.3) to (3.4), so the error dynamical system as follow:

˙̄e1 = a(ē2 − ē1) + u1
˙̄e2 = (c− a)ē1 − a(x2z2 + x1z1) + u2
˙̄e3 = x2y2 + x1y1 − bē3 + u3.

(3.8)

For the two identical chaotic systems without control (ui = 0), the
trajectories of the two identical systems will quickly separate and be-
come irrelevant on the condition that initial values (x1(0), y1(0), z1(0)) ̸=
(x2(0), y2(0), z2(0)). However, with appropriate control schemes, the two
systems will approach anti-synchronization for any initial values.

Theorem 3.2. Systems (3.3) and (3.4) will be globally asymptotically
anti-synchronized for any initial condition with the following control law
for all k > 0:  u1 = −aē2

u2 = −(c− a)ē1 + a(x2z2 + x1z1)− kē2
u3 = −x2y2 − x1y1.

(3.9)

Proof. We define the Lyapunov function as follows:

V (t) = 1
2(ē1

2 + ē2
2 + ē3

2). (3.10)

Then with the above mentioned conditions, we have:

˙V (t) = ˙̄e1ē1 + ˙̄e2ē2 + ˙̄e3ē3 = −(aē1
2 + kē2

2 + bē3
2) < 0,

It is clear that V is positive definite and V̇ is negative definite. Ac-
cording to the Lyapunov Stability Theorem, the error system (3.8) can
converge in to the origin asymptotically. Therefore, the drive system
(3.3) and the response system (3.4) can be asymptotically and globally
anti-synchronized. This completes the proof. �

4. Anti-synchronization and synchronization with unknown
parameter via adaptive control

Let each of the drive and response systems has one unknown param-
eter. Also let the drive and response T-system, are defined as follow: ẋ1 = a(y1 − x1)

ẏ1 = (ĉ− a)x1 − ax1z1
ż1 = x1y1 − bz1,

(4.1)
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and 
ẋ2 = a(y2 − x2) + u1
ẏ2 = (c− a)x2 − ax2z2 + u2
ż2 = x2y2 − b̂z2 + u3,

(4.2)

where ĉ and b̂ are unknown parameters and estimates of c and b, respec-
tively.

4.1. Synchronization of (4.1) and (4.2) via adaptive control.
For synchronization, we subtract (4.2) from (4.1), the error dynamical
system as follow:

ė1 = a(e2 − e1) + u1
ė2 = cx2 − ĉx1 − a(x2z2 + x1z1 + x2 − x1) + u2
ė3 = x2y2 − x1y1 + bz1 − b̂z2 + u3.

(4.3)

The following theorem shows that system (4.1) and system (4.2) can
be effectively synchronized, and estimate the unknown parameters.

Theorem 4.1. By the following controller:
u1 = −ae2 + (a− 1)e1
u2 = −(ĉ− a)e1 + a(x2z2 − x1z1)− e2
u3 = −x2y2 + x1y1 − e3 − b̂e3,

(4.4)

and the parameter update law{
˙̃
b =

˙̂
b = e3z1 − b̃

˙̃c = ˙̂c = e2x2 − c̃,
(4.5)

the drive system (4.1) and the response system (4.2) will be asymptot-

ically synchronized. Here, b̂ and ĉ are the estimates values of b and c
respectively; and b̃ = b̂− b and c̃ = ĉ− c.

Proof. We define the lyapunov function as follows:

V (t) = 1
2(e

2
1 + e22 + e23 + b̃2 + c̃2). (4.6)

Then with the above mentioned conditions we have:

˙V (t) = ė1e1 + ė2e2 + ė3e3 + b̃
˙̃
b+ c̃ ˙̃c = −(e21 + e22 + e23 + b̃2 + c̃2) < 0.

It is clear that V is positive definite and V̇ is negative definite. Accord-
ing to the Lyapunov stability Theorem, the error system (4.7) can be
converged in to the origin asymptotically. Therefore, the drive system
(4.1) and the response system (4.2) can be asymptotically and globally
synchronized. This completes the proof. �
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(a) (b)

(c) (d)

Figure 4. Time series trajectory for synchronization via
nonlinear control; a: x1, x2, b: y1, y2, c: z1, z2, d:
e1, e2, e3.

4.2. Anti-synchronization of (4.1) and (4.2) via adaptive con-
trol. For anti-synchronization, we add (4.1) to (4.2), the error dynam-
ical system is represented as follows:

˙̄e1 = a(ē2 − ē1) + u1
˙̄e2 = cx2 + ĉx1 − a(x2z2 + x1z1 + x2 + x1) + u2
˙̄e3 = x2y2 + x1y1 − bz1 + b̂z2 + u3.

(4.7)

The following theorem shows that system (4.1) and system (4.2) can
be effectively anti-synchronized, and estimate the unknown parameters.

Theorem 4.2. By the following controller:
u1 = −aē2 + (a− 1)ē1
u2 = −(ĉ− a)ē1 + a(x2z2 + x1z1)− e2
u3 = −x2y2 − x1y1 − e3 − b̂ē3,

(4.8)
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(a) (b)

(c) (d)

Figure 5. Time series trajectory for anti-
synchronization via nonlinear control; a: x1, x2, b:
y1, y2, c: z1, z2, d: ē1, ē2, ē3.

and the parameter update law{
˙̃
b =

˙̂
b = −ē3z1 − b̃

˙̃c = ˙̂c = −ē2x2 − c̃.
(4.9)

The drive system (4.1) and the response system (4.2) will be globally

asymptotically anti-synchronized. Here, b̂ and ĉ are the estimates values
of b and c respectively; and b̃ = b̂− b and c̃ = ĉ− c.

Proof. We define the Lyapunov function as follows:

V (t) = 1
2(ē1

2 + ē2
2 + ē3

2 + b̃2 + c̃2). (4.10)

Then with the above mentioned conditions we have:

˙V (t) = ˙̄e1ē1 + ˙̄e2ē2 + ˙̄e3ē3 + b̃
˙̃
b+ c̃ ˙̃c = −(ē1

2 + ē2
2 + ē3

2 + b̃2 + c̃2) < 0.

It is clear that V is positive definite and V̇ is negative definite. Accord-
ing to the Lyapunov Stability Theorem, the error system (4.7) can be
converged in to the origin asymptotically. Therefore, the drive system



94 B. Naderi, H. Kheiri, A. Heydari

(a) (b)

(c) (d)

Figure 6. Time series trajectory for anti-
synchronization via adaptive control; a: x1, x2, b:
y1, y2, c: z1, z2, d: ē1, ē2, ē3.

(4.1) and the response system (4.2) can be asymptotically and globally
anti-synchronized. This completes the proof. �

5. Numerical simulations

To demonstrate the validity of the proposed scheme, we present and
discuss the numerical results for synchronization and anti-synchronization
of chaotic T-system. Fourth-order Runge-Kutta method is used to solve
the systems. Numerical simulation are discussed for a = 2.1, b = 0.6, and
c = 30 and the initial values conditions (x1(0), y1(0), z1(0)) = (4, 0,−2),

(x2(0), y2(0), z2(0)) = (1.5, 1, 0), and (b̂(0), ĉ(0)) = (−1, 20). Figures
5 and 4 show simulations for synchronization and anti-synchronization
via nonlinear control, respectively. Numerical results for synchronization
and anti-synchronization via adaptive control are given in FIGURES 6
and 7. FIGURES 8 shows the numerical results of parameter estimations
via adaptive control.
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(a) (b)

(c) (d)

Figure 7. Time series trajectory for synchronization via
adaptive control a: x1, x2, b: y1, y2, c: z1, z2, d:
e1, e2, e3.

(a) (b)

Figure 8. Estimation of parameters via adaptive con-
trol; a: anti-synchronization b: synchronization
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6. Conclusions

In this paper, we used the nonlinear and adaptive control methods
for chaos synchronization and anti-synchronization of chaotic T-system.
We also discussed the anti-synchronization and synchronization in two
cases, first they were applied for systems with known parameters, then
we applied them for systems in which the drive and response systems
with one unknown parameter. Sufficient conditions for the synchroniza-
tion and anti-synchronization were obtained analytically, by Lyapunov
stability Theorem. Finally, numerical simulations were given to demon-
strate the effectiveness of the proposed scheme.
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