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1. Introduction and Preliminaries

Various investigators such as Mittal and Mishra [6], Mishra et al. [7]-[11]
and Mishra and Mishra [12] have determined the degree of approxima-
tion of 2π-periodic signals (functions) belonging to various classes Lipα,
Lip(α, r), Lip(ξ(t), r) and W (Lr, ξ(t)), (r ≥ 1), of functions through
trigonometric Fourier approximation using different summability matri-
ces with monotone rows. In this direction, Theorem 5.2 of Younis [3]
characterized the set of functions in L2(R) satisfying the Cauchy Lips-
chitz condition by means of an asymptotic estimate growth of the norm
of their Fourier transforms, namely we have
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Theorem 1.1. [3] Let f ∈ L2(R). Then the following are equivalents

(i) ∥f(x+ h)− f(x)∥ = O
(

hδ

(log 1
h
)γ

)
, as h→ 0, 0 < δ < 1, γ ≥ 0,

(ii)

∫
|λ|≥r

|f̂(λ)|2dλ = O

(
r−2δ

(log r)2γ

)
, as r → ∞,

where f̂ stands for the Fourier transform of f .

In this paper, we prove the generalization of Theorem 1.1 for the
Cherednik-Opdam transform for functions satisfying the Cherednik-Opdam
Lipschitz condition in the space Lp

α,β(R). For this purpose, we use the

generalized translation operator.

In this section, we develop some results from harmonic analysis related to
the differential-difference operator T (α,β). Further details can be found
in [1] and [2]. In the following we fix parameters α, β subject to the
constraints α ≥ β ≥ −1

2 and α > −1
2 .

Let ρ = α + β + 1 and λ ∈ C. The Opdam hypergeometric func-

tions G
(α,β)
λ on R are eigenfunctions T (α,β)G

(α,β)
λ (x) = iλG

(α,β)
λ (x) of

the differential-difference operator

T (α,β)f(x) = f ′(x)+[(2α+1) cothx+(2β+1) tanhx]
f(x)− f(−x)

2
−ρf(−x),

that are normalized such that G
(α,β)
λ (0) = 1. In the notation of Chered-

nik one would write T (α,β) as

T (k1+k2)f(x) = f ′(x)+

{
2k1

1 + e−2x
+

4k2
1− e−4x

}
(f(x)−f(−x))−(k1+2k2)f(x),

with α = k1 + k2 − 1
2 and β = k2 − 1

2 . Here k1 is the multiplicity of
a simply positive root and k2 the (possibly vanishing) multiplicity of a

multiple of this root. By [1] or [2], the eigenfunction G
(α,β)
λ is given by

G
(α,β)
λ (x) = φα,β

λ (x)− 1

ρ− iλ

∂

∂x
φα,β
λ (x) = φα,β

λ (x) +
ρ

4(α+ 1)
sinh(2x)φα+1,β+1

λ (x),

where φα,β
λ (x) =2 F1(

ρ+iλ
2 ; ρ−iλ

2 ;α + 1;− sinh2 x) is the classical Jacobi
function.

Lemma 1.2. The following inequalities are valids for Jacobi functions

φα,β
λ (x)

(i) |φα,β
λ (x)| ≤ 1.

(ii) |1− φα,β
λ (x)| ≤ x2(λ2 + ρ2).

(iii) there is a constant c > 0 such that

1− φα,β
λ (x) ≥ c,

for |λx| ≥ 1.
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Proof. (See [4], Lemma 3.1, Lemma 3.2). �

Denote Lp
α,β(R), the space of measurable functions f on R such that

∥f∥p,α,β =

(∫
R
|f(x)|pAα,β(x)dx

)1/p

< +∞, if 1 ≤ p < +∞,

∥f∥∞,α,β = ess sup
x∈R

|f(x)| < +∞,

and Lp
σ(R), p ≥ 1, the space of measurable functions f on R such that

∥f∥p,σ =

(∫
R
|f(λ)|pdσ(λ)

)1/p

< +∞,

where Aα,β(x) = (sinh |x|)2α+1(cosh |x|)2β+1 and dσ is the measure given
by

dσ(λ) =
(
1− ρ

iλ

) dλ

8π|cα,β(λ)|2
.

here

cα,β(λ) =
2ρ−iλΓ(α+ 1)Γ(iλ)

Γ(12(ρ+ iλ))Γ(12(α− β + 1 + iλ))
.

The Cherednik-Opdam transform of f ∈ Cc(R) is defined by

Hf(λ) =
∫
R
f(x)G

(α,β)
λ (−x)Aα,β(x)dx for all λ ∈ C.

The inverse transform is given as

H−1g(x) =

∫
R
g(λ)G

(α,β)
λ (x)dσ(λ).

The corresponding Plancherel formula was established in [1], to the effect
that∫

R
|f(x)|2Aα,β(x)dx =

∫ +∞

0
(|Hf(λ)|2 + |Hf̌(λ)|2) dλ

16π|cα,β(λ)|2

=

∫
R
Hf(λ)Hf̌(−λ)dσ(λ),

where f̌(x) := f(−x).

Lemma 1.3. Let α ≥ β ≥ −1
2 with α ̸= −1

2 and let p ∈ [1, 2), q = p
p−1 .

There exists a constant cp <∞ such that

∥Hf∥q,σ ≤ cp∥f∥p,α,β,

for every f ∈ Lp
α,β(R).

Proof. (See [5], Lemma 3.1). �
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According to [2] there exists a family of signed measures µ
(α,β)
x,y such

that the product formula

G
(α,β)
λ (x)G

(α,β)
λ (y) =

∫
R
G

(α,β)
λ (z)dµ(α,β)x,y (z),

holds for all x, y ∈ R and λ ∈ C, where

dµ(α,β)x,y (z) =


Kα,β(x, y, z)Aα,β(z)dz if xy ̸= 0,

dδx(z) if y = 0,
dδy(z) if x = 0,

and

Kα,β(x, y, z) = Mα,β| sinhx. sinh y. sinh z|−2α

∫ π

0
g(x, y, z, χ)α−β−1

+

× [1− σχx,y,z + σχx,z,y + σχz,y,x +
ρ

β + 1
2

cothx. coth y. coth z(sinχ)2]× (sinχ)2βdχ

if x, y, z ∈ R\{0} satisfy the triangular inequality ||x| − y|| < |z| <
|x|+ |y|, and Kα,β(x, y, z) = 0 otherwise. Here

∀x, y, z ∈ R, χ ∈ [0, 1], σχx,y,z =


coshx+cosh y−cosh z cosχ

sinhx sinh y if xy ̸= 0,

0 if xy = 0,

and g(x, y, z, χ) = 1−cosh2 x−cosh2 y. cosh2 z+2 coshx. cosh y. cosh z. cosχ.
The product formula is used to obtain explicit estimates for the gener-
alized translation operators

τ (α,β)x f(y) =

∫
R
f(z)dµ(α,β)x,y (z).

It is known from [2] that

Hτ (α,β)x f(λ) = G
(α,β)
λ (x)Hf(λ), (1.1)

for f ∈ Cc(R).

2. Main result

In this section we give the main result of this paper. We need first to
define (δ, γ, p)-Cherednik-Opdam Lipschitz class.

Definition 2.1. Let δ, γ > 0. A function f ∈ Lp
α,β(R) is said to be in

the (δ, γ, p)-Cherednik-Opdam Lipschitz class, denoted by Lip(δ, γ, p), if

∥τ (α,β)h f(x) + τ
(α,β)
−h f(x)− 2f(x)∥p,α,β = O

(
hδ

(log 1
h)

γ

)
as h→ 0.
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Lemma 2.2. For f ∈ Lp
α,β(R), then∫

R
|φα,β

λ (h)−1|q|Hf(λ)|qdσ(λ) ≤
(cp
2

)q
∥τ (α,β)h f(x)+τ

(α,β)
−h f(x)−2f(x)∥qp,α,β,

where p ∈ [1, 2) and q such that 1
p + 1

q = 1.

Proof. From formula 1.1, we have

H(τ
(α,β)
h f + τ

(α,β)
−h f − 2f)(λ) = (G

(α,β)
λ (h) +G

(α,β)
λ (−h)− 2)H(f)(λ),

Since

G
(α,β)
λ (h) = φα,β

λ (h) +
ρ

4(α+ 1)
sinh(2h)φα+1,β+1

λ (h),

and φα,β
λ is even, then

H(τ
(α,β)
h f + τ

(α,β)
−h f − 2f)(λ) = 2(φα,β

λ (h)− 1)H(f)(λ).

By Lemma 1.3, we have the result. �
Theorem 2.3. Let f(x) belong to Lip(δ, γ, p) . Then∫

|λ|≥r
|Hf(λ)|qdσ(λ) = O

(
r−qδ

(log r)qγ

)
, as r → ∞,

where p ∈ [1, 2) and q such that 1
p + 1

q = 1.

Proof. Let f ∈ Lip(δ, γ, p). Then we have

∥τ (α,β)h f(x) + τ
(α,β)
−h f(x)− 2f(x)∥p,α,β = O

(
hδ

(log 1
h)

γ

)
as h→ 0.

From Lemma 2.2, we have∫
R
|φα,β

λ (h)−1|q|Hf(λ)|qdσ(λ) ≤
(cp
2

)q
∥τ (α,β)h f(x)+τ

(α,β)
−h f(x)−2f(x)∥qp,α,β.

If |λ| ∈ [ 1h ,
2
h ] , then |λh| ≥ 1 and (iii) of Lemma 1.2 implies that

1 ≤ 1

cq
|1− φα,β

λ (h)|q.

Then∫
1
h
≤|λ|≤ 2

h

|Hf(λ)|qdσ(λ) ≤ 1

cq

∫
1
h
≤|λ|≤ 2

h

|1− φα,β
λ (h)|q|Hf(λ)|qdσ(λ)

≤ 1

cq

∫
R
|1− φα,β

λ (h)|q|Hf(λ)|qdσ(λ)

≤
( cp
2c

)q
∥τ (α,β)h f(x) + τ

(α,β)
−h f(x)− 2f(x)∥qp,α,β

= O

(
hqδ

(log 1
h)

qγ

)
.
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We obtain ∫
r≤|λ|≤2r

|Hf(λ)|qdσ(λ) ≤ C
r−qδ

(log r)qγ
, r → ∞.

where C is a positive constant. Now,∫
|λ|≥r

|Hf(λ)|qdσ(λ) =

∞∑
i=0

∫
2ir≤|λ|≤2i+1r

|Hf(λ)|qdσ(λ)

≤ C

(
r−qδ

(log r)qγ
+

(2r)−qδ

(log 2r)qγ
+

(4r)−2δ

(log 4r)2γ
+ · · ·

)
≤ C

r−qδ

(log r)qγ

(
1 + 2−qδ + (2−qδ)2 + (2−qδ)3 + · · ·

)
≤ Kδ

r−qδ

(log r)qγ
,

where Kδ = C(1− 2−qδ)−1 since 2−qδ < 1.
Consequently∫

|λ|≥r
|Hf(λ)|qdσ(λ) = O

(
r−qδ

(log r)qγ

)
, as r → ∞.

�
Definition 2.4. Let γ > 0. A function f ∈ Lp

α,β(R) is said to be in the

(ψ, γ, p)-Cherednik-Opdam Lipschitz class, denoted by Lip(ψ, γ, p), if

∥τ (α,β)h f(x) + τ
(α,β)
−h f(x)− 2f(x)∥p,α,β = O

(
ψ(h)

(log 1
h)

γ

)
as h→ 0,

where ψ is a continuous increasing function on [0,∞), ψ(0) = 0 and
ψ(ts) = ψ(t)ψ(s) for all t, s ∈ [0,∞).

Theorem 2.5. Let f(x) belong to Lip(ψ, γ, p). Then∫
|λ|≥r

|Hf(λ)|qdσ(λ) = O

(
ψ(r−q)

(log r)qγ

)
, as r → ∞,

where p ∈ [1, 2) and q such that 1
p + 1

q = 1.

Proof. Let f ∈ Lip(ψ, p). Then we have

∥τ (α,β)h f(x) + τ
(α,β)
−h f(x)− 2f(x)∥p,α,β = O

(
ψ(h)

(log 1
h)

γ

)
as h→ 0.

From Lemma 2.2, we have∫
R
|φα,β

λ (h)−1|q|Hf(λ)|qdσ(λ) ≤
(cp
2

)q
∥τ (α,β)h f(x)+τ

(α,β)
−h f(x)−2f(x)∥qp,α,β.
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If |λ| ∈ [ 1h ,
2
h ] , then |λh| ≥ 1 and (iii) of Lemma 1.2 implies that

1 ≤ 1

cq
|1− φα,β

λ (h)|q.

Then∫
1
h
≤|λ|≤ 2

h

|Hf(λ)|qdσ(λ) ≤ 1

cq

∫
1
h
≤|λ|≤ 2

h

|1− φα,β
λ (h)|q|Hf(λ)|qdσ(λ)

≤ 1

cq

∫
R
|1− φα,β

λ (h)|q|Hf(λ)|qdσ(λ)

≤
( cp
2c

)q
∥τ (α,β)h f(x) + τ

(α,β)
−h f(x)− 2f(x)∥qp,α,β

= O

(
ψ(h)q

(log 1
h)

qγ

)
= O

(
ψ(hq)

(log 1
h)

qγ

)
.

We obtain ∫
r≤|λ|≤2r

|Hf(λ)|qdσ(λ) ≤ C
ψ(r−q)

(log r)qγ
, r → ∞.

where C is a positive constant. Now,∫
|λ|≥r

|Hf(λ)|qdσ(λ) =

∞∑
i=0

∫
2ir≤|λ|≤2i+1r

|Hf(λ)|qdσ(λ)

≤ C

(
ψ(r−q)

(log r)qγ
+
ψ((2r)−q)

(log 2r)qγ
+
ψ((4r)−q)

(log 4r)qγ
+ · · ·

)
≤ C

ψ(r−q)

(log r)qγ
(
1 + ψ(2−q) + (ψ(2−q))2 + (ψ(2−q))3 + · · ·

)
≤ Kδ

ψ(r−q)

(log r)qγ
,

where Kδ = C(1− ψ(2−q))−1 since ψ(2−q) < 1.
Consequently∫

|λ|≥r
|Hf(λ)|qdσ(λ) = O

(
ψ(r−q)

(log r)qγ

)
, as r → ∞.

�

3. Conclusions

In this work we have succeded to generalise the theorem in [3] for the
Cherednik-Opdam transform in the space Lp

α,β(R). We proved that f(x)

belong to Lip(ψ, γ, p). Then∫
|λ|≥r

|Hf(λ)|qdσ(λ) = O

(
ψ(r−q)

(log r)qγ

)
, as r → ∞,
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where p ∈ [1, 2) and q such that 1
p + 1

q = 1.
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