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Abstract. In this paper, we solve higher index differential alge-
braic equations (DAEs) by transforming them into integral alge-
braic equations (IAEs). We apply collocation methods on continu-
ous piecewise polynomials space to solve the obtained higher index
IAEs. The efficiency of the given method is improved by using a
recursive formula for computing the integral part. Finally, we apply
the obtained algorithm to solve a trajectory-prescribed path control
problem and a model of simple pendulum. The numerical experi-
ments show efficiency of the given techniques.
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1. Introduction

For almost half a century, differential algebraic equations (DAEs) have
been studied and used for modeling of complicated technical processes [2,
4, 10, 12, 16]. Most numerical methods for DAEs are based on standard
methods of the ordinary differential equations (ODEs) [4, 10]. It is well
known that the robust and numerically stable application on these ODE
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methods for higher index DAEs (index greater than 1) have to be based
on the structure of DAEs ([4]). Roughly speaking, the index (differential
index), is the minimum number of differentiations needed to transform
the DAE system into an ODE system. The higher the index is, the
higher the numerical problems we get.

Motivated by physical examples, in this paper we solve the DAEs of
the form

Ax′(t) = F (t, x(t)), (1.1)

where A ∈ L(Rr, Rr) is a nonsingular matrix with constant rank and
F ∈ C(I × Rr, Rr). The idea behind the method we introduce, is easy.
We integrate the equation (1.1) and we obtain an integral algebraic
equation (IAE) and then we solve it numerically. However it needs
some consideration to operate efficiently that we will discuss in the next
section.

A system of Voltera integral equations of the form

A(t)y(t) +

∫ t

0
κ(t, s, y(s))ds = f(t), t ∈ I := [0, T ], (1.2)

where A ∈ C(I,Rr×r), f ∈ C(I,Rr), and κ ∈ C(D × Rr, Rr), with
D := {(t, s) : 0 ≤ s ≤ t ≤ T} is an IAE if A(t) be a singular matrix with
constant rank on I = [0, T ]. In recent decades, IAEs have got popular
and have been studied by researchers ([6, 9, 7, 17, 18, 15]). Numeri-
cal solutions of higher index IAEs of Hessenberg type using collocation
methods on piecewise polynomials space are studied in [17, 18]. It is
well-known that by increasing the index of DAEs, the order of the nu-
merical methods decreases. We can choose an appropriate method of
higher order to prevent these reductions, by applying the collocation
methods on piecewise polynomials space. Therefore, in this paper, we
use these methods to obtain efficient algorithm for solving higher index.

One of the interesting applied model in physics is a model of simple
pendulum which leads to DAEs of the form (1.1). The equation of
motion of a point mass m suspended from a massless rod of length l
under the influence of gravity g is

d2θ

dt2
+

g

l
sin(θ) = 0 (1.3)

where θ is the angular displacement [13]. In spite of simple construction
of this well-known equation, it is still a subject of research [13, 14], since
the analytical solutions of the nonlinear differential equation (1.3) is
not in the form of finite series of elementary functions. The analytical
solution (not in the form of finite series of elementary functions) of this
equation can be found in [14] and its numerical solution by using Runge-
Kutta can be found in [10].
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The next problem that we investigate in this paper, is a trajectory-
prescribed path control (TPPC) problem [3, 4]. This problem was in-
troduced in [3]. We consider a space shuttle, returning from its mission
which has to reenter the atmosphere. In the simulation of space shuttle,
the shape of the trajectory is often prescribed by appending a set of
path constraints to the equations of motion. The model equation then
become a nonlinear semi-explicit DAE system.

The next sections are organized as follows: In section 2, we recall
implementation of the continuous piecewise collocation methods from
[6] for IAEs. In section 3, we show how we can apply these methods for
DAEs. Finally, in section 4, we report numerical examples of the selected
problems to show the effectiveness and efficiency of the methods.

2. Preliminaries

The collocation methods on the piecewise polynomials spaces are very
suitable for the equations with integral or differential operators. They
have easily implementable strategy, rapid convergent properties, less
computational cost, and good stablity properties. Especially in solving
many operator equations, their convergence orders don’t change when
the integrals are discretized (See [6, 17, 18]). Let

Ih := {tn : 0 = t0 < t1 < ... < tN = T}

be a given (not necessarily uniform) partition of I, and set σn := (tn, tn+1],
σn := [tn, tn+1], with hn = tn+1 − tn, n = 0, 1, ..., N − 1 and diameter
h = max{hn : 0 ≤ n ≤ N}. Each component of the solution of (1.2)
(the vector function y(t)) is approximated by elements of the piecewise
polynomial space

S(0)
m (Ih) := {v ∈ C(I) : v|σn ∈ πm(n = 0, 1, ..., N − 1)}, (2.1)

where πm denotes the space of all (real valued) polynomials of degree
not exceeding m and v|σn is the restriction of function v to closure of

σn. The collocation solution uh ∈
(
S(0)
m (Ih)

)r
for (1.2) is defined by the

equation

A(t)uh(t) +

∫ t

0
k(t, s, uh(s))ds = f(t), (2.2)

for t ∈ Xh = {tn,i := tn + cihn : 0 = c0 < c1 < . . . < cm ≤ 1, n =
0, · · · , N − 1} and the continuity conditions

un−1(tn) = un(tn), n = 1, · · · , N − 1. (2.3)
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The collocation parameters ci completely determine the set of collocation
points Xh. By defining un = uh|σn ∈ (πm)r, we have

un(tn + shn) =

m∑
j=0

Lj(s)Un,j , s ∈ (0, 1], (2.4)

Un,i := u(tn,i),

where the polynomials

Lj(v) :=

m∏
k=0
k ̸=j

v − ck
cj − ck

, j = 0, . . . ,m

denote the Lagrange fundamental polynomials with respect to the dis-
tinct collocation parameters ci. By partitioning the domain of integral
in (2.2) and changing of variables, we have

A(tn,i)Un,i + Fn,i + h

∫ ci

0
κ(tn,i, tn + shn, L0(s)Un−1(tn)

+
m∑
j=1

Lj(s)Un,j)ds = f(tn,i),
(2.5)

for i = 1, . . . ,m, where the lag terms are defined by

Fn,i = h
n−1∑
l=0

∫ 1

0
κ(tn,i, tl + shl, L0(s)Ul−1(tn) +

m∑
j=1

Lj(s)Ul,j). (2.6)

By solving the system (2.5), approximate solution of (1.2) is deter-
mined at the collocation points and at tn+1 by

un(tn+1) = L0(1)un−1(tn) +

m∑
j=1

Lj(1)un(tn,j).

Remark 2.1. A suitable method to solve the system (2.5) is Newton’s
iterative method, since it can be proved (see [1]) that this method con-
verges to the solution Un,i by the initial guess un−1(tn) for sufficiently
small h. Therefore, in the prescribed method we use the initial guess

[un−1(tn), . . . , un−1(tn)︸ ︷︷ ︸
m times

].

For applying this method, it is necessary to compute the appeared
integrals in (2.5) and (2.6). To do this, we apply the following quadrature
rule by using the same collocation parameters ci, i = 0, . . . ,m, such that
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the order of the quadrature rule would be at least in the same order of
the method

(
O(hm+1)

)
,∫ ci

0
k(tn,i,tn + shn, L0(s)Un−1(tn) +

m∑
j=1

Lj(s)Un,j)ds

≃
m∑
j=1

ai,jk(tn,i, tn + cjhn, Un,j),

∫ 1

0
k(tn,i,tl + shl, L0(s)Ul−1(tn) +

m∑
j=1

Lj(s)Ul,j)ds

≃
m∑
j=1

bjk(tn,i, tn + cjhn, Ul,j),

with ai,j =
∫ ci
0 Lj(t)dt and bj =

∫ 1
0 Lj(t)dt. Using this quadrature rule

simplifies our computations considerably. If all of the integrals are com-
puted by quadrature rule then the method is called fully discretised
continuous colocation method (DCCM).

Remark 2.2. By choosing cm = 1, for m ≥ 2, we have tn+1 = tn,m
and u(tn+1) = u(tn,m), thus we obtain un+1 = Un,m from the previous
subinterval without reusing (2.4).

3. The continuous piecewise collocation methods for DAEs

To the DAEs of the form (1.1), by integrating we obtain

Ax(t)−
∫ t

0
F (s, x(s))ds = Ax(0), (3.1)

which is an IAEs of the form (1.2) and hence one can use the numerical
methods of the pervious section to solve this equation. Considering
the kernel of this equation which is independent of t, we can restate
the equations of lag terms in such a way that the computational cost
decreases considerably. In this case the lag terms are computed as

Fn,i = h

n−1∑
l=0

m∑
j=0

bjF (tl + cjhn, Ul,j), (3.2)

where m is a fixed integer depend on the method (usually we choose m
less than 7) but the parameter n may increase more and more for some
stiff problems. In IAEs case, the computational cost of Fn+1,i is O(n2),
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because of the presence of tn,i for each n and i. But for DAEs, we can
use the recursive formula

Fn+1,i = Fn,i +

m∑
j=0

bjF (tn,j , Un,j)

to obtain Fn,i which is independent of i, (and we can drop index i).
Thus the computation will be of order O(n), which makes this method
compatible with the Runge-Kutta methods.

Therefore, for the DAEs (1.1), the method can be simplified to

F0 = A(t0)y0, U0,0 = y0,

A(tn,i)Un,i = Fn + h
m∑
j=0

aijF (tn,j , Un,j), i = 1, . . . ,m

Fn+1 = Fn + h

m∑
j=0

bjF (tn,j , Un,j),

Un+1,0 := un(tn+1) =

m∑
j=0

Lj(1)Un,j ,

(3.3)

for n = 1, . . . , N − 1, and h = T
N .

Remark 3.1. Note that, these methods are of Runge-Kutta type iff
Un+1 = Fn+1. This condition holds for the case cm = 1, for m ≥ 2,
which has considerable simplification in the formula (3.3). In this case,
Un+1 = Fn+1 = Un,m.

The restrictions exist in choosing cis for the first IAEs of Hessenberg
type [17]. Due to [17], we should choose ci such that c0 = 0 and

ϱ = max{|λ1|, |λ2|} ≤ 1,

where λ1 and λ2 are eigenvalues of the stability matrix Ã−1B. The ma-

trices Ã−1 and B are introduced in [17] as follow

Ã =


1 0 . . . 0
a10 a11 . . . a11
...

...
. . .

...
am0 am1 . . . amm


and

B =


L0(1) . . . Lm(1)

am0 − b0 . . . amm − bm
...

. . .
...

am0 − b0 . . . amm − bm

 .
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These eigenvalues can be computed as follow

λ1 =
1

2

(
tr(Ã−1B) +

√
(tr(Ã−1B))2 − 4(L0(1))2

)
, (3.4)

λ2 =
1

2

(
tr(Ã−1B)−

√
(tr(Ã−1B))2 − 4(L0(1))2

)
, (3.5)

tr(Ã−1B) = L0(1)

(
2 +

m∑
i=1

1

ci
+

m∑
i=1

1

1− ci

)
, (3.6)

for cm < 1 and

λ1 = 0, (3.7)

λ2 = (−1)m
m−1∏
i=1

1− ci
ci

, (3.8)

for cm = 1 (see [17]). Since the solution obtained from (3.3) is exactly
the same solution obtained from (3.1), by applying (DCCM), the con-
vergence results of [17] also hold for (3.3). Therefore, the order of the
method decreases by increasing the index of the DAEs and for higher
index DAEs, we should use higher order methods which can be achieved
by increasing m.

4. Sample problems

In this section, we use some selected sample problems to illustrate the
effectiveness and high accuracy of the given method.

.
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Figure 1. Simple pendulum-scheme

4.1. Simple pendulum. In this section we consider the simple pen-
dulum of length l, mass m under the influence of gravity Fg = −mg,
where g = 9.8 m/s2 is the gravity constant (Figure 1). Using the classi-
cal Euler-Lagrange formula [8, 11] in Cartesian coordinates [x1, x2]

T =
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Table 1. Numerical results of index 3 DAE (4.1) for
x1(t) with N = 500.

t method 1 method 2 ode15s
2 0.791415503888909 0.791415099102267 0.79141509926
4 −0.584175128656931 −0.584197053914579 −0.58419714676
6 −0.999568975065766 −0.999569743078752 −0.99956974661
8 −0.915348262923567 −0.915330990754696 −0.91533091583
10 0.296123754641507 0.296271070783072 0.29627172089

Computing time 2.06s 3.14s 3.76s

Table 2. Numerical results of index 3 DAE (4.1) for
x2(t) with N = 500.

t method 1 method 2 ode15s
2 −0.611278553797112 −0.611279102303482 −0.61127910209
4 −0.811627593357415 −0.811611854396871 −0.81161178758
6 −0.029358053740116 −0.029331360716471 −0.02933124145
8 −0.402663087278485 −0.402702343380354 −0.40270251353
10 −0.955149523562636 −0.955103896242212 −0.95510369463

Computing time 2.06s 3.14s 3.76s

Table 3. Numerical results of index 2 DAE (4.2) for
x1(t) with N = 500.

t method 1 method 2 ode15s
2 0.791415170748194 0.791415099376876 0.79141509926
4 −0.584196752919579 −0.584197220670537 −0.58419714676
6 −0.999569736371046 −0.999569755689938 −0.99956974661
8 −0.915331234981749 −0.915330861481158 −0.91533091583
10 0.296269503434385 0.296272220867141 0.29627172089

Computing time 1.99s 3.07s 3.76s

[x, y]T and the velocity vector [x3, x4]
T = [ẋ, ẏ]T , one obtain the follow-

ing index 3 DAE problem

ẋ1 =x3,

ẋ2 =x4,

ẋ3 =− x1λ,

ẋ4 =− g − x2λ,

0 =x21 + x22 − l2,

(4.1)
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Table 4. Numerical results of index 2 DAE (4.2) for
x2(t) with N = 500.

t method 1 method 2 ode15s
2 −0.611279003691347 −0.611279108658166 −0.61127910209
4 −0.811612064882334 −0.811611737838670 −0.81161178758
6 −0.029331555088146 −0.029331165734774 −0.02933124145
8 −0.402701741692676 −0.402702663299050 −0.40270251353
10 −0.955104342069682 −0.955103550550979 −0.95510369463

Computing time 1.99s 3.07s 3.76s

Table 5. Numerical results of index 1 DAE (4.3) for
x1(t) with N = 500.

t method 1 method 2 ode15s
2 0.791415239425474 0.791415065252080 0.79141509926
4 −0.584206187091868 −0.584196780385478 −0.58419714676
6 −0.999571288011394 −0.999569533743246 −0.99956974661
8 −0.915318931747990 −0.915331688232221 −0.91533091583
10 0.296463994504867 0.296250795527552 0.29627172089

Computing time 1.6s 2.59s 3.76s

Table 6. Numerical results of index 1 DAE (4.3) for
x2(t) with N = 500.

t method 1 method 2 ode15s
2 −0.611278141437346 −0.611279176060579 −0.61127910209
4 −0.811606367517056 −0.811611944121050 −0.81161178758
6 −0.029307506124896 −0.029333223880495 −0.02933124145
8 −0.402723355480016 −0.402701610197581 −0.40270251353
10 −0.955045825877874 −0.955109908908153 −0.95510369463

Computing time 1.6s 2.59s 3.76s

which is equivalent to (1.3) with some consideration. Differentiating
from the last equation of system (4.1), we obtain the index 2 DAE

ẋ1 =x3,

ẋ2 =x4,

ẋ3 =− x1λ,

ẋ4 =− g − x2λ,

0 =x1x3 + x2x4,

(4.2)
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and another differentiating from the last equation of system (4.2), we
can obtain an index 1 DAE

ẋ1 =x3,

ẋ2 =x4,

ẋ3 =− x1λ,

ẋ4 =− g − x2λ,

0 =x23 + x24 − gx2 − l2λ.

(4.3)

This is called the index reduction procedure. After this index reduc-
tion one can solve the index 1 DAE (4.3) by available software and
codes like “ode15s” in MATLAB. However, this index reduction cannot
be obtained for many DAEs because of their nonlinearity or complex-
ity (sometimes the obtained equations are very complicated with many
nonlinear long terms). Consequently, we are interested in direct solving
of index 3 DAE (4.1). Thus, we solve all of the equations (4.1)-(4.3) as a
test problem and compare them with the numerical solution of applying
“ode15s” on (4.3).

Example 4.1. We consider the system (4.1)-(4.3) by the parameter
l = 1 and the consistency initial conditions

x1(0) = 1, x2(0) = 0, x3(0) = 0, x4(0) = 0, λ(0) = 0.

We use the following methods to get numerical solutions of this example
on t ∈ [0, 10] and h = 10

N with N = 500.

Method 1:: Let c = [0, 0.5, 0.8, 0.88]. For this c, we have λ1 =
−0.0016 and λ2 = −0.7389.

Method 2:: Let c = [0, 0.5, 0.8, 0.88, 1]. For this c, we have λ1 = 0
and λ2 = −0.034.

In Tables 1 and 2, we compared the obtained results with the numerical
results of the command “ode15s” in MATLAB software. We set the ex-
treme ode options abstol = 100eps and reltol = 100eps for the command
“ode15s”. These Tables show the efficiency of the method.

4.2. Trajectory-prescribed path control problem. Trajectory- pre-
scribed path control problem for shuttle reentry was solved for different
shuttles and different conditions (see for examples [3, 5, 19]). Here,
we use the scale and data of [5]. Suppose a space shuttle with mass
m = 2.890532728 slugs, cross sectional reference area S = 1 ft2, and
with relative velocity VR = 12000 ft/s, at the altitude of H = 100000 ft,
longitude ϵ = 0◦, and latitude λ = 0◦, has to reenter the atmosphere.
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Figure 2. Numerical solution of TPPC problem using
method 1, with N = 250, state variables.
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Figure 3. Numerical solution of TPPC problem using
method 1, with N = 250, state and control variables.

Here, the aerodynamic lift and drag force are given by L = 1
2ρV

2
RSCL,

and D = 1
2ρV

2
RSCD, respectively, where, ρ(H) = 0.002378e−H/23800,

and the drag and lift coefficients are calculated by CL = 0.01α, and
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Table 7. Numerical results of index 2 DAE (4.4)-(4.5)
at t = 300 with N = 250.

method 1 method 2 method 3
H 14200.786553704 14200.786553653 14200.786553654
ϵ 0.0727991723743 0.0727991723742 0.0727991723742
λ 0.0406923062717 0.0406923062717 0.0406923062717
VR 1433.2929482465 1433.2929482436 1433.2929482436
γ −0.174532925199 −0.174532925199 −0.174532925199
A 2.3561944901923 2.3561944901923 2.3561944901923
α 7.1564690302731 7.1564690301584 7.1564690301516
β 0.4603119285387 0.4603119285335 0.4603119285300
Computing time 1.5s 2.6s 30s

Table 8. Numerical results of index 2 DAE (4.4)-(4.5)
at t = 300 with N = 500.

method 1 method 2 method 3
H 14200.786553656 14200.786553653 14200.786553654
ϵ 0.0727991723742 0.0727991723742 0.0727991723742
λ 0.0406923062717 0.0406923062717 0.0406923062717
VR 1433.2929482437 1433.2929482436 1433.2929482436
γ −0.174532925199 −0.174532925199 −0.174532925199
A 2.3561944901923 2.3561944901923 2.3561944901923
α 7.1564690301574 7.1564690301595 7.1564690301516
β 0.4603119285320 0.4603119285337 0.4603119285300

Computing time 3.1s 5.3s 30s

0.04 + 0.1C2
L, respectively. The gravity force is mg, where the gravita-

tional acceleration g is given by g = µ
r2
. Here µ = 1.407653916× 1016, is

the gravitational constant, r = H + ae, is the distance of shuttle from
the center of the earth, and ae = 20902900, is the earth radius. The cen-
trifugal and coriolis forces are proportional to Ω2 and Ω, respectively,
where Ω = 2π/(24× 60× 60), is the angular velocity of the earth. The
dynamic of the shuttle is obtained by the following 6 dimensional system
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of first order differential equations:

H ′ = VR sin(γ),

ϵ′ =
VR cos(γ) sin(A)

r cos(λ)
,

λ′ =
VR

r
cos(γ) cos(A),

V ′
R = −D

m
− g sin(γ) (4.4)

−Ω2r cos(λ) (sin(λ) cos(A) cos(γ)− cos(λ) sin(γ)) ,

γ′ =
L cos(β)

mVR
+

cos(γ)

VR

(
V 2
R

r
− g

)
+ 2Ωcos(λ) sin(A),

+
Ω2r cos(λ)

VR
(sin(λ) cos(A) cos(γ)− cos(λ) sin(γ)) ,

A′ =
L sin(β)

mVR cos(γ)
+

VR

r
cos(γ) sin(A) tan(λ),

−2Ω (cos(λ) cos(A) tan(γ)− sin(λ)) ,

+
Ω2r cos(λ) sin(λ) sin(A)

VR cos(γ)
.

Here, the control parameters are α and β which show the angle and the
bank of the attack, respectively. The constraints for the trajectory to
be followed by the vehicle are given only in terms of zenith angle γ, and
azimuth angle A :

γ = −1− 9

(
t

300

)2

,

(4.5)
A = 45 + 90

(
t

300

)2

.

The system (4.4)-(4.5) is a 8 dimensional nonlinear DAE of index2. Sub-
stituting the derivative of (4.5) into the last equations of (4.4), we can
obtain algebraic equations for α, and β. For t = 0, the solution of these
equations gives initial conditions α0 = 2.6733 and β0 = −0.0520.

Example 4.2. Now, we can apply the (3.3) to the DAE (4.4)-(4.5). To
obtain more accurate results, we can increase m, the number of collo-
cation points or increase N. For this index 2 problem, we can obtain

the methods with order of convergence O
(
T
N

)m+1−2
, [17]. Therefore, we

choose

Method 3: c = [0, 0.5, 0.6, 0.7, 0.8, 0.9, 0.95, 1], with λ1 = 0, and
λ2 = 0.00042,
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and set N = 1000 to get a more accurate result. We apply the method 1
and 2, of Example 4.1. Figures 2 and 3 illustrate the numerical solutions
using method 1, with N = 250. Tables 7 and 8 show the numerical
solutions of Methods 1, 2 at the end point t = 300 for N = 250, 500.
These tables show efficiency and effectiveness of the introduced methods.

conclusion

In this paper we used continuous piecewise collocation methods for
solving DAEs appeared in some physical models. The equations that
we dealt with did not have closed form analytical solutions. Our nu-
merical experiments show efficiency and effectiveness of the proposed
methods with rapid convergence, easily implementable properties, and
less computational cost.
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