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Abstract. In this paper, biochemical reaction problem is given in
the form of a system of non–linear differential equations involving
Caputo fractional derivative. The aim is to suggest an instrumental
scheme to approximate the solution of this problem. To achieve this
goal, the fractional derivation terms are expanded as the elements
of shifted Legendre scaling functions. Then, applying operational
matrix of fractional integration and collocation technique, the main
problem is transformed to a set of non–linear algebraic equations.
This obtained algebraic system can be solved by available standard
iterative procedures. Numerical results of applying the proposed
method are investigated in details.
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1. Introduction

In order to explain enzyme processes and their basic enzymatic reaction,
Michaelis and Menten recommended a clear and useful plan which is
represented as [18]

E + S ⇌ I → E + P, (1.1)

in which E, S, I and P denote enzyme, substrate, enzyme–substrate
intermediate complex and product, respectively.
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Considering the law of mass action, which expresses that reaction
rates are proportional to the concentrations of the reactants, the time
evolution of (1.1) can be identified from the solution of the following
system of non–linear ordinary differential equations [19]

S′(t) = −r1E(t)S(t) + r−1I(t),

E′(t) = −r1E(t)S(t) + (r−1 + r2)I(t),

I ′(t) = r1E(t)S(t)− (−r−1 + r2)I(t),

P ′(t) = r2I(t),

(1.2)

under initial conditions S(0) = S0, E(0) = E0, I(0) = I0, P (0) = P0,
where r1, r−1 and r2 are positive rate constants for each reaction. The
system (1.2) can be converted to two equations for S and I and in
dimensionless form of concentrations of substrate, u, and intermediate
complex between enzyme and substrate, v, it is stated by{

u′(t) = −u(t) + (β − α)v(t) + u(t)v(t),

v′(t) = 1
γ (u(t)− βv(t)− u(t)v(t)) ,

(1.3)

subject to the initial conditions u(0) = 1, v(0) = 0 so that α, β and γ are
dimensionless parameters. For knowing more details about converting
(1.2) to (1.3), see [19]. In order to solve (1.3), some methods have been
used. These methods can be categorized in the following: Multi–stage
variational iteration method [6], Multi–stage homotopy perturbation
method [7], Legendre wavelets Picard method [8], Picard Pade technique
[10], and also Adomian decomposition method [19].

It has been indicated in [6] and [7] that variational iteration and
homotopy perturbation methods do not work for solving the classical
biochemical reaction problem. Hence, the authors proposed modification
of the mentioned methods. However, these schemes are based on the
analytical calculations and need to large computational effort.

It is worth mentioning that most of biological systems have memory
and after–effects [16, 17]. In the models interpreted by integer–order
derivatives, these features are ignored. Due to connection of fractional
calculus with the systems involving memory and after–effects, modelling
biological phenomena by using fractional differential equations is more
appropriate [1–3, 5, 20]. In this way, the following system of fractional
differential equations is presented{

Dµ1
∗ u(t) = −u(t) + (β − α)v(t) + u(t)v(t), 0 < µ1 ≤ 1,

Dµ2
∗ v(t) = 1

γ (u(t)− βv(t)− u(t)v(t)) , 0 < µ2 ≤ 1,
(1.4)

with the initial conditions

u(0) = 1, v(0) = 0. (1.5)
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In this regard, Molliq et al. utilized modified step variational iteration
method for solving (1.4) with the conditions (1.5) [13]. Herein, D∗ refers
to the Caputo fractional derivative. The Caputo derivative of order
0 < µ < 1 for an arbitrary function f is given as

Dµ
∗ f(t) =

1

Γ(1− µ)

∫ t

0
(t− s)−µf ′(s)ds. (1.6)

Besides this, fractional integral of Riemann–Liouville type of order µ > 0
for f : (0,∞) → R is defined as follows

Iµf(t) =
1

Γ(µ)

∫ t

0
(t− s)µ−1f(s)ds. (1.7)

It is notable that the identity below holds for Caputo fractional derivative
and fractional integral of Riemann–Liouville type for 0 < µ < 1,

IµDµ
∗ f(t) = f(t)− f(0). (1.8)

Keep in mind that (1.6) and (1.7) constitute the basic and fundamental
definitions of fractional calculus [4,15]. It is also clear that (1.4) reduces
to (1.3) for µ1 = µ2 = 1.

On the other hand, the application of Legendre scaling functions has
been investigated for various problems. For instance, these functions
have been used successfully for the solution of Emden–Fowler differential
equations [12], Riccati differential equation [14], and one–dimensional
parabolic inverse problems [22]. Some advantages and profitable features
of Legendre scaling functions can be listed as follows: (a) They are
suitable for the computer programming. (b) The operational matrix
obtained by scaling functions is often sparse. (c) By applying a few
number of basis functions, it is possible to obtain a nice approximate
solution. (d) The solution is multi–resolution type.

This paper suggests a new computer–oriented method for solving (1.4)
under the initial values (1.5). The proposed method is based on shifted
Legendre scaling functions, operational matrices and collocation points.
Using shifted Legendre scaling functions, one can find the approximate
solution of problem on any positive interval. Applying the operational
matrix of fractional integration, which will be fabricated employing
Block–Pulse functions, and collocation nodes belong to given interval,
(1.4) is transformed to a system of non–linear algebraic equations. After
solving the achieved algebraic system by every suitable method such
as the Newton–Raphson iterative scheme, the solution of (1.4) with
the initial conditions (1.5) can be determined. We display all of the
calculations of the method in the matrix forms. This representation
causes simplicity in the computer programming. The computations of
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this paper are performed by MATLAB R2013a software on a 64-bit PC
with 2.20 GHz Processor and 8 GB RAM.

The rest of this paper is organized as follows: In Sect. 2, Legendre
scaling functions are first constructed on any positive interval. Then,
some properties of them are described. Sect. 3 is devoted to the
operational matrix of fractional integral of Riemann–Liouville type and
method of solution. In Sect. 4, numerical solutions of (1.4) with the
initial conditions (1.5) are presented by some graphs. Some concluding
remarks are gathered in Sect. 5.

2. Shifted Legendre scaling functions

In what follows, the shifted Legendre scaling functions are formed
by using the characteristics of shifted Legendre polynomials and scaling
functions.

2.1. Shifted Legendre polynomials. The Legendre polynomials, Li,
defined on [−1, 1] are determined by the following recurrence relation

Li+1(x) =
2i+ 1

i+ 1
xLi(x)−

i

i+ 1
Li−1(x), i ∈ N,

with L0(x) = 1 and L1(x) = x. The orthogonality of Li is announced as∫ 1

−1
Li(x)Lj(x)dx =

{
0, i ̸= j,

2
2i+1 , i = j.

Now, let τ be a real positive constant. Changing variables by x = 2t
τ −1

transforms x ∈ [−1, 1] to t ∈ [0, τ ]. So, if Li,τ allude to shifted Legendre
polynomials for a given τ , then one implies that Li,τ (t) = Li(

2t
τ − 1).

According to this denomination, we get∫ τ

0
Li,τ (t)Lj,τ (t)dt =

{
0, i ̸= j,
τ

2i+1 , i = j.

2.2. Shifted Legendre scaling functions. Assume that M ∈ N. For
i = 0, 1, . . . ,M, consider the following normalized set of functions

φi
τ (t) =

{√
2i+1
τ Li,τ (t), t ∈ [0, τ ],

0, otherwise.

Notice coefficients
√

2i+1
τ have been inserted for normality. The shifted

Legendre scaling functions are determined for a fixed J ∈ N ∪ {0} by

φi
J,k,τ (t) = φi

τ (2
J t− kτ), (2.1)

where i = 0, 1, . . . ,M and k = 0, 1, . . . , 2J − 1.
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2.3. Function approximation. The function f(t) defined on [0, τ ] can
be approximated using Legendre scaling functions specified in (2.1) for
given J and M as

f(t) ≈
2J−1∑
k=0

M∑
i=0

ciJ,kφ
i
J,k,τ (t) = CTΦ(t), (2.2)

so that

C =
[
c0J,0, . . . , c

M
J,0, |c0J,1, . . . , cMJ,1|, . . . , |c0J,2J−1, . . . , c

M
J,2J−1

]T
,

Φ(t) =
[
φ0
J,0,τ (t), . . . , φ

M
J,0,τ (t), | . . . , |φ0

J,2J−1,τ (t), . . . , φ
M
J,2J−1,τ (t)

]T
.

(2.3)

Here, T is the transpose of a vector. In (2.2), C and Φ(t) are column
vectors with n = 2J(M + 1) entries. In addition, the orthonormality of
shifted Legendre scaling functions results in

ciJ,k =

∫ τ

0
φi
J,k,τ (t)f(t)dt.

In the following theorem, the convergence of shifted Legendre scaling
functions expansion (2.2) is verified.

Theorem 2.1. Let τ > 0. Assume that the function f : [0, τ ] → R is
i times continuously differentiable, namely f ∈ Ci[0, τ ]. Then, CTΦ(t)
approximates f(t) with mean error bounded as follows

∥f(t)−CTΦ(t)∥ ≤
√
τ

i!2iJ
sup

0≤t≤τ
|f (i)(t)|,

in which ∥ · ∥ denotes to the usual norm in L2[0, τ ].

Proof. The interval [0, τ ] may be divided into subintervals
[
kτ
2J
, (k+1)τ

2J

]
and if CTΦ(t) and f̃(t) be shifted Legendre scaling functions approach
and interpolating polynomial of the function f(t), respectively, then one
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can deduce

∥f(t)−CTΦ(t)∥2 =
∫ τ

0

(
f(t)−CTΦ(t)

)2
dt

=
2J−1∑
k=0

∫ (k+1)τ

2J

kτ

2J

(
f(t)−CTΦ(t)

)2
dt

≤
2J−1∑
k=0

∫ (k+1)τ

2J

kτ

2J

(
f(t)− f̃(t)

)2
dt

≤
2J−1∑
k=0

∫ (k+1)τ

2J

kτ

2J

(
1

i!2iJ
sup

0≤t≤τ
|f (i)(t)|

)2

dt

≤
∫ τ

0

(
1

i!2iJ
sup

0≤t≤τ
|f (i)(t)|

)2

dt

= τ

(
1

i!2iJ
sup

0≤t≤τ
|f (i)(t)|

)2

.

Ultimately, taking the square roots completes the proof. □

The error of shifted Legendre scaling functions CTΦ(t) decays like
2−iJ . As it was mentioned before, the number of basis functions is
n = 2J(M + 1). It is expressible that M refers to the degree of shifted
scaling functions and J is the level of resolution. Theorem 2.1 exposes
that by increasing M or J sufficiently, one can refine accuracy of the
approximation.

3. Operational matrix and method of solution

In this section, we first construct operational matrix of fractional
integration of the shifted Legendre scaling functions with the aid of
Block–Pulse functions. Then, the proposed method is implemented for
solving (1.4) under initial conditions (1.5). Hence, it is necessary to
review some relevant materials of Block–Pulse functions [9].

3.1. Block–Pulse functions. The n-set of Block–Pulse Functions on
[0, τ ] is defined in the following

bi(t) =

{
1, (i−1)τ

n ≤ t < iτ
n ,

0, otherwise,

where i = 1, . . . , n. They are also disjoint and orthogonal, that is

• bi(t)bj(t) =

{
0, i ̸= j,

bi(t), i = j.
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•
∫ τ
0 bi(t)bj(t)dt =

{
0, i ̸= j,
τ
n , i = j.

Paying attention to the orthogonality of Block–Pulse functions, the
function f(t) ∈ L2[0, τ ] can be written as

f(t) ≈
n∑

i=1

fibi(t) = FTBn(t),

where

F = [f1, f2, . . . , fn]
T , Bn(t) = [b1(t), b2(t), . . . , bn(t)]

T ,

fi =
n

τ

∫ τ

0
f(t)bi(t)dt.

Moreover, if f(t) = FTBn(t) and g(t) = GTBn(t), then we can write
f(t)g(t) =

(
FT ⊗GT

)
Bn(t). Here, the notation ⊗ denotes to the tensor

product of two vectors F = [f1, . . . , fn]
T and G = [g1, . . . , gn]

T which is

defined in the form of FT ⊗GT = [f1g1, . . . , fngn]
T .

3.1.1. Operational matrix of fractional integration. In order to obtain
the operational matrix of fractional integration for shifted Legendre
scaling functions, we first expand the shifted Legendre scaling functions
vector, Φ(t), into an n–set of Block–Pulse functions, Bn(t). As it was
noted before n = 2J(M + 1). Then, operational matrix of fractional
integration of Bn(t) is used to find operational matrix of fractional
integration of Φ(t). To the best of our knowledge, construction of the
operational matrix of fractional integration using this process is easy
to perform and has low computational effort. From [11], the fractional
integration of order µ of Bn(t) is assigned as

IµBn(t) ≈ Fµ
n×nBn(t), (3.1)

where

Fµ
n×n =

( τ
n

)µ 1

Γ(µ+ 2)


1 ξ1 ξ2 . . . ξn−1

0 1 ξ1 . . . ξn−2

0 0 1 . . . ξn−3
...

...
...

. . .
...

0 0 0 . . . 1

 ,

in which ξl = (l+ 1)µ+1 − 2lµ+1 + (l− 1)µ+1, l = 1, . . . , n− 1. Now, let
Pµ

n×n be the operational matrix of shifted Legendre scaling functions,
that is

IµΦ(t) ≈ Pµ
n×nΦ(t). (3.2)
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By choosing the collocation nodes ti =
(2i−1)τ

2n , i = 1, . . . , n, we define

Ψn×n = [Φ(t1),Φ(t2), . . . ,Φ(tn)] . (3.3)

By this definition, the relation between Bn(t) and Φ(t) for every t = ti
becomes

Φ(t) = Ψn×nBn(t). (3.4)

From (3.1) and (3.4), we have

IµΦ(t) = Ψn×nI
µBn(t) ≈ Ψn×nF

µ
n×nBn(t) = Ψn×nF

µ
n×nΨ

−1
n×nΦ(t).

(3.5)

Note that Ψ−1
n×n is the inverse of Ψn×n. Eventually, comparison (3.2)

with (3.5) entails

Pµ
n×n ≈ Ψn×nF

µ
n×nΨ

−1
n×n. (3.6)

3.2. Method of solution. Expanding fractional derivative terms of
(1.4) as the elements of Φ(t), one can write{

Dµ1
∗ u(t) = CTΦ(t),

Dµ2
∗ v(t) = DTΦ(t),

(3.7)

in which C and D are the unknown column vectors. As we know, each
of them has n entries. Integrating of fractional order from (3.7) and
imposing initial conditions (1.5), enables one to get{

u(t) = CT Iµ1Φ(t) + 1 = CTPµ1
n×nΦ(t) + 1,

v(t) = DT Iµ2Φ(t) = DTPµ2
n×nΦ(t).

(3.8)

In (3.8), we have used the property (1.8). Collocating (3.8) at the
collocation points ti, (i = 1, . . . , n), and using (3.4), it is obvious that{

u(t) = CTPµ1
n×nΨn×nBn(t) + [1, . . . , 1]1×nBn(t),

v(t) = DTPµ2
n×nΨn×nBn(t).

(3.9)

Substituting (3.7) and (3.9) into (1.4) and considering (3.4), one points
out

CTΨn×nBn(t) = −CTPµ1
n×nΨn×nBn(t)− [1, . . . , 1]1×nBn(t)

+(β − α)DTPµ2
n×nΨn×nBn(t)

+
{(

CTPµ1
n×nΨn×n + [1, . . . , 1]1×n

)
⊗
(
DTPµ2

n×nΨn×n

)}
Bn(t),

DTΨn×nBn(t) =
1
γC

TPµ1
n×nΨn×nBn(t) +

1
γ [1, . . . , 1]1×nBn(t)

−β
γD

TPµ2
n×nΨn×nBn(t)

− 1
γ

{(
CTPµ1

n×nΨn×n + [1, . . . , 1]1×n

)
⊗
(
DTPµ2

n×nΨn×n

)}
Bn(t).
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Consequently,
CTΨn×n = −CTPµ1

n×nΨn×n − [1, . . . , 1]1×n + (β − α)CTPµ2
n×nΨn×n

+
(
CTPµ1

n×nΨn×n + [1, . . . , 1]1×n

)
⊗
(
CTPµ2

n×nΨn×n

)
,

DTΨn×n = 1
γ

(
CTPµ1

n×nΨn×n + [1, . . . , 1]1×n

)
− β

γD
TPµ2

n×nΨn×n

− 1
γ

(
CTPµ1

n×nΨn×n + [1, . . . , 1]1×n

)
⊗
(
DTPµ2

n×nΨn×n

)
.

(3.10)

Clearly, (3.10) is a non–linear algebraic system including 2n equations
and 2n unknowns. This system can be solved by the Newton–Raphson
method or fsolve function of MATLAB software. At the end, solution
of problem can be uncovered by (3.8) for every t ∈ [0, τ ].

The algorithm of the proposed method is summarized as follows:

Algorithm.
Input: M ∈ N, J ∈ N∪{0}, τ ∈ R+; 0 < µ1, µ2 ≤ 1, and the parameters
α, β, γ.
Step 1: Define φi

J,k,τ (t) by (2.1).

Step 2: Construct the vector Φ(t) from (2.3).
Step 3: Construct the matrix Ψn×n according to (3.3).
Step 4: Compute the fractional operational matrices, Pµ1

n×n and Pµ2
n×n,

by (3.6).
Step 5: Define unknown vectorsC = [c1, . . . , cn]

T andD = [d1, . . . , dn]
T .

Step 6: Constitute the system of algebraic equations from (3.10).
Step 7: Solve system of Step 6 using Newton–Raphson scheme or fsolve
function.
Step 8: Substitute the obtained C and D into (3.8).
Output: The approximate solutions of u(t) and v(t) on [0, τ ].

4. Numerical results

In the following, the competence of present method and the treatment
of the fractional model are discussed. We offer the outcomes of applying
the recommended algorithm through several figures.

Consider that µ1 = µ2 = µ, τ = 1, α = 0.375, β = 1 and γ = 0.1.
To test the accuracy and efficiency of the present method, we compute
the differences of our solution (for J = 2) in the case of µ = 1 from
the fourth order Runge–Kutta method (with step–size=0.001). These
values are as follows {

err(u) = |u(t)− urk(t)|,
err(v) = |v(t)− vrk(t)|,
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Figure 1. The graphs of err(u) and err(v) for J = 2

where (u(t), v(t)) and (urk(t), vrk(t)) are the present solution and RK4
solution, respectively. Figure 1 demonstrates the graphs of err(u) and
err(v) for J = 2 with different M in logarithmic scale. As we expect, by
augmentation of M sufficiently, err(u) and err(v) decrease. This means
that the solutions of present method for µ = 1 and RK4 method are
closer to each other when M increases.

Figure 2 illustrates the behaviour of solution for aforesaid α, β, γ and
J = 2, M = 7 (or n = 32) with various amounts of µ. We have chosen
µ = 0.65, 0.75, 0.85, 0.95 and 1.00. It is obvious that when µ tends to 1,
then the solution of fractional biochemical reaction model (0 < µ < 1)
closes to the solution of classical model (µ = 1). Furthermore, the
present approach for µ = 1.00 is well–adapted to the RK4 solution.

Now, the solution of (1.4) is evaluated for each dimensionless reaction
parameter (namely α, β, γ) we want to vary it. Indeed, we are interested
to assess the effects of α, β, γ on the concentration of u(t) and v(t) for
the problem (1.4).

Let µ = 0.9 is given and n = 32. Figure 3 shows the behaviour of u(t)
and v(t) for β = 1, γ = 0.1 and variant α. Here, α = 0.2, 0.4, 0.6, 0.8, 1.0.
It is visible that when the amount of α increases, the concentration of
u(t) and v(t) decreases.

Figure 4 portrays the treatment of u(t) and v(t) for α = 0.375, γ = 0.1
and different quantities of β; β = 0.2, 0.4, 0.6, 0.8, 1. It is seen that if
the value of β increases, then the concentration of u(t) increases and the
concentration of v(t) decreases.
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Figure 2. Solutions of u(t) and v(t) for α = 0.375, β =
1, γ = 0.1 and n = 32
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Figure 3. Solutions of u(t) and v(t) for β = 1, γ = 0.1,
µ = 0.9 and n = 32

Figure 5 exhibits behaviour of u(t) and v(t) for α = 0.375, β = 0.1 and
diverse values of γ; γ = 0.2, 0.4, 0.6, 0.8, 1. One can observe that when
the value of γ increases, the concentration of u(t) and v(t) decreases.

Briefly, from Figures 3, 4, and 5, we conclude the following points

(i) For fixed β and γ, by increasing α, the concentration of u(t) and
v(t) decreases.
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Figure 4. Solutions of u(t) and v(t) for α = 0.375, γ =
0.1, µ = 0.9 and n = 32
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Figure 5. Solutions of u(t) and v(t) for α = 0.375, β =
1, µ = 0.9 and n = 32

(ii) For fixed α and γ, by increasing β, the concentration of u(t)
increases and the concentration of v(t) decreases.

(iii) For fixed α and β, by increasing γ, the concentration of u(t) and
v(t) decreases.
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5. Conclusion

The fractional biochemical reaction model produces freedom in the
growing or decaying of the substrate and enzyme–substrate intermediate
complex. Throughout this paper, a contributory method was derived to
solve numerically fractional biochemical reaction problem. As it was
shown in the present research, the proposed method can solve both the
classical and fractional model, effectively.
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