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ABSTRACT. In this paper, we consider a class of semilinear elliptic
equations and extend some results about the method of sub-supper
solutions. We obtain new results for the generalized semilinear
elliptic equations using Schauder’s fixed point Theorem.
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1. INTRODUCTION

We consider the following semilinear problem:
—Au = Ag(2) (2, u) + ph(u), = EQ,

(1.1)
u(z) =0, x € oS

where, 2 is a bounded domain in R"™ with smooth boundary 0f2, and
A, i > 0 are parameters.

The classical method of sub-supper solutions (see [11, 13, 14, 15])
asserts that if f is smooth and if one can find smooth sub-super solutions
v; < vy of (1.1), then there exists a classical solution u of (1.1), such
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that v; < wu < ve. The classical proof is based on the monotone iteration
scheme. This requires f be Lipschitz (or locally Lipschitz) function.
The existence of a smallest and a largest solutions u; < we, in the
interval [v, vo], is implied by this argument. Another proof, based on
Schauder’s fixed point theorem can be found in Aké [1, 9]. In this case,
the existence of a smallest and a largest solution is proved separately, via
a Perron-type argument. Using Akd’s strategy, Clément and Sweers [8]
have implemented the method of sub-super solutions by the assumptions
that vy, v2 € C() and f is continuous. Other study of this problem can
also be found in [2, 3, 6, 7, 12, 16], specially, in Deuel-Hess [10] for
H'-solutions and in Brezis-Marcus-Ponce [4, 5] for L!-solutions when f
is continuous and nondecreasing. In this paper, we extend the method
of sub-super solutions in order to establish existence of the solutions of
(1.1) in the sense of L!-solution. We follow the strategy of [1, 8], based
on the Schauder’s fixed point theorem. Substantially, some of the details
be modified. We assume throughout the paper that f: Q xR — R is a
Carathéodory function.

Definition 1.1. We say that u is an L!-solution of (1.1) if

(a): we LN(Q) and f(.,u)po, hpo € L' ();
(b): for every v € C3(Q),

_ / whv = / (Mf(x, ) + ph(u))vdz. (1.2)

Q Q

Here, po(x) = d(x,09) for any x € Q and C3(Q) = {v € C*(Q) : v =
0 on 00}).

Definition 1.2. Let u € LY(Q) and f(.,u)po,hpo € L'(2) be given
functions. Then we say that

(i): w is an L'-sub solution of (1.1), if
—/UAU < /()\f(x,u) + ph(u))vdz,
Q Q
for every v € C2(1Q).
(ii): u is an L'-super solution of (1.1) if
—/uAv > /()\f(zr,u) + ph(uw))vdz,
Q Q

for every v € C3(Q).



146 First Author , First Author

2. Boundedness and equi-integrable

Definition 2.1. A set B C L'(; podz) is equi-integrable if for every
€ > 0 there exists § > 0 such that £ C 2 and

|E| < = /\g|pgdaj<e Vg € B.
E

Lemma 2.2. [8] Let {w,} C L' and let {E,} be a sequence of measur-
able subsets of 2 such that
|E,| — 0 and /|wn| >1 Vn>1.
En
Then there exists a subsequence {wy, } and a sequence of disjoint mea-
surable sets {Fy} such that
F, C E,, and /|wn] >1Vn>1.
Fy,

Proposition 2.3. [8] Let f : 2 x R — R be a Carathéodory function,
h € C(Q) and vy,vy € LY () such that vi < Va a.e. Suppose that

f(.,v)po, hpo € LY (Q) Yo € LY (Q) such that vy < v < vy a.e.
Then, the set
B ={f(.,v) € LYQ;podz) : ve L'Q) and v; <v < vy a.e.}
is bounded and equi-integrable in L' (§2; podw).

Theorem 2.4. Let f : @ X R = R be a Carathéodory function and
h € C(2) such that

f(.,v)po, hpo € L (Q) Yv € LY(Q).
Then, the Nemytskii operator F : L' (2; podz) — L*(Q) defined by
v = Af(L,v) + ph(v)
18 continuous.

Proof. Suppose that v, — v in L}(Q). Let vy, be a subsequence such
that v,, — v a.e. and |v,, | <V a.e. For some function V € LY(Q). In
particular,

A (o) + ph(v,,) = Af(,v) + ph(v) a.e.
Moreover, by Proposition 2.3 the sequence {Af(., vy, )+ ph(vy,,)} is equi-
integrable in L'($; podx). It then follows from Egorov’s theorem that

A (o) + ph(vn,) = Af(,v) + ph(v)



Running Title 147

in L1(€2; podz). Since the limit is independent of the subsequence {vy, }
we deduce that

F(vy) — F(v) in LY(Q; podz).

3. Standard existence

Theorem 3.1. Suppose that f(.,u),h € L'(Q;podx), there exists a
unique w € L(Q) such that

- /wAv = /(/\f(x,w) + ph(w))vdz. (3.1)

Q Q

for every v € C3(Q). Moreover,
(i): For every 1 <p < -I— w € LP(w) and

n—17
lwllp < M([[ApofllLr + lpohllzr), (32)

for some constant M.

(ii): Given {fa},{hn} € LY(Q; podx) n > 1, let wy, be the solution
of (3.1) associated to {fun},{hn}. If {fu},{hn} are bounded in
LY(2), then {wy,} is relatively compact in LY(Q) for every 1 <
p <.

Proof. We prove (i) and (i¢) and refer the reader to [5] for the
existence and uniqueness of w.
Proof of (7). Note that w satisfies

| / wio| = | / (\F (o) + ph(w))o]
Q Q
< / 1000 0) + pepuh0) 1|2
Q

v _
< My[[|Apo f (- w)llr + Hupoh(w)HLl]H%HLoo Vv € C3(Q).
(3.3)
Suppose that f,h € C$°(Q) and v € CZ() be the solution of

—Av=Af+ph, z€Q,
(3.4)
v(z) =0, x € of.

By standard Caldrén-Zygmund estimates [13]

[ollw2a < Ma(IAfl[La + l[1hl| o), (3.5)
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where, %—F% = 1. On the other hand, since ¢ > n it follows from Morrey’s
embedding [13] that

v
H%HLOO < Ma([[v]| Lo + [[V]|ze) < Mslv]lw2.- (3.6)

According to conclusions above we get

I/(Af(-,w) + h(w))o] < My[[Apof s + llipohll )|l
Po
@ (3.7)

< My[[[Apofll oy + llmpoh| L] M3 ||v|l 2.
< My Mo Ms([[Apofllr + [[pohllpr)-

By duality, one deduces that w € LP(€2) and 3.2 holds. Proof of (ii). Let
U C Q be a smooth domain, v, € L*(U) be the solution of the problem

—Avy, = Afp + phy, z €U,
vp(x) =0, xz €U .

By standard elliptic estimates [17] for every 1 < p <

(3.8)

_n_
n—1’

[onllwpwy < Ma([[AfllLe + 1hlla) < Ma([ACy+ |p|C2),  (3.9)
where, || fnl|lze < C1 and ||hy||za < Ca. On the other hand, since w,, — vy,
is harmonic in U so for every Y C U we have

[Jwn — Un”cl(Y) < Ky [lwy — UnHLl(U)
< Ky [Afpo + phpol| 1
< Ky (IAllfpoll e + [ulllhpoll 1)
< Ky ([Apol K1 + [upo| K2)
where, K7, Ko are constants that || f||;1 < K; and ||h||r < Ko respec-
tively. Therefore, there exists a subsequence {wy, } such that w,, —

w a.e. in 2. On the other hand by (i) the sequence {wy,} is bounded in
LP(Q2) for every 1 < p-"g. By Egorov’s theorem {w,} is converges in

(3.10)

L' (2) so this proof complete.
Proposition 3.2. Let w € LY(Q) and f,h € L*(Q; podx) be such that

— /wAv > /()\f + ph)v (3.11)
Q Q
for every v € C3(Q) and v > 0 in Q. Then,
— /w_Av > / (Af + ph) (3.12)
Q [0>w]

for every v € C3(Q) and v > 0 in Q, where, w~ = max{—w, 0}.
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Proof. It is straightforward.

Corollary 3.3. If u,v are solutions of problem (1) then min{u,v} is a
super solution.

Proof. Weset w = v—uand ¢ := [Af(.,v)+ph(v)]|—[Af(., w)+ph(uw)],
then

~femw sz [ (@) ah(w)] - M)+ ph)sdz,
Q [v<u]
for every s € CZ(w) and s > 0 in . Since min{u,v} = u+ (v —u)~ so
the result follows.
Now, we can state the main result.

Theorem 3.4. Let v1,vy be a sub and a super solution of problem (1),
respectively. Suppose that v < v9 a.e. and

f(,v)po € LX), and h(v)po € L (Q) (3.13)

for every v € LY(Q) such that v < vy a.e. Then there exist solutions
up < ug of problem (1) in [v1,ve] such that solution u of problem (1.1)
in the interval [vi,ve| satisfies

v <ul<u<uy <vy a.e. (3.14)
Proof. Let be (z,t) € Q x R, we define f: Q x R — R such that
Ul('r)v t< Ul(.’B),
flat)=4q vi(z) <t < vp(w),
va(x), wa(x) <t
Then f is a Carathéodory function and by (3.13) fpo, hpo € L' (Q) for
every v € LY(Q). We set G : LY(Q2) — LY(Q;podx) defined by v
(Af(.,v)) + ph(v) and K : LY(Q; podx) — LY(Q) defined by s — w,
where, w is the unique solution of the problem
—Aw=s, x€f,
w =0, x € 0N .
By Theorem 2.4 and 3.1 KG : L'(2) — LY(Q) is continuous. More-
over, by Proposition 2.3 G(L'(f2)) is a bounded subset of L(£; podz).
Therefore, by Theorem 3.1 K G is compact and there exists C' > 0 such
that
IKG@)[r < CillG)|lpr <C
for every v € L1(Q). It follows from Schauder’s fixed point theorem that
KG has a fixed point u € L1(£2). In other words, u satisfies

—Au = Af(z,u) + ph(u), =€,
u =0, x € 0N.
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We will show that u is a solution of problem (1.1) and satisfies v; < u <
v9 a.e. . To do this, we show that v; < u a.e., the proof of the inequality
u < vy a.e. is similar. Note that

Af(,v1) 4 ph(v) = Af(.,u) + ph(u) a.e.

on the set [v1 < u]. Therefore, by proposition 3.2 and with w = v; — u,
we get

_ /w—m > / (O f(@00) + h(v1)) — (Mf (2u) + () vdz = 0

Q [v1<u]

for every v € C2(Q) and v > 0 in Q. since w™ > 0 a.e. so w = 0 a.e.,
this implies that v; < w a.e. Now, we show that there exist a smallest
and largest solution u; < ug of problem (1.1) in the interval [v, v2]. We
prove the existence of the smallest solution wup, the existence of ugy is
similar. Let

A:inf{/w; v <w < v ae. },
Q

where, w is a solution of problem (1.1).

By definition of solution for problem (1.1) implies that A < oco. If
w1, wsg are two solutions of problem (1.1) and v, vy are sub-super so-
lution of problem (1.1), respectively, such that v; < wi,wy < vy a.e.
Then, the problem (1.1) has a solution w such that

v1 < w < min{wy,ws} < vy a.e. . (3.15)

For proof of this claim we use corollary 3.3, where, min{w;, ws} is a super
solution of problem (1.1). Similarly, By applying above arguments with
vy = min{wy, ws},v1, (without loss of generality), one finds a solution w
of problem (1.1) satisfies (3.15). Therefore, it follows from the claim
above that one finds a non-increasing sequence of solutions {w,} of
problem (1.1) such that

v < w, < vy ae. and /wn—>A.
Q

On the other hand, by Proposition 2.3 the sequence {f(.,wy)} is equi-
integrable in L(£); podz). It then follows from Egorov’s theorem that

Af(wn) + ph(wn) = Af(w) + ph(w)
in L' (Q; podz). Therefore, w is a solution of problem (1.1) and [w = A.
Q

By the claim above, w is the largest solution of problem (1.1) in the
interval [v1, v2]. This completes the proof.
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