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Abstract. In this paper, we consider a class of semilinear elliptic
equations and extend some results about the method of sub-supper
solutions. We obtain new results for the generalized semilinear
elliptic equations using Schauder’s fixed point Theorem.
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1. Introduction

We consider the following semilinear problem: −∆u = λg(x)f(x, u) + µh(u), x ∈ Ω,

u(x) = 0, x ∈ ∂Ω.
(1.1)

where, Ω is a bounded domain in Rn with smooth boundary ∂Ω, and
λ, µ > 0 are parameters.

The classical method of sub-supper solutions (see [11, 13, 14, 15])
asserts that if f is smooth and if one can find smooth sub-super solutions
v1 ≤ v2 of (1.1), then there exists a classical solution u of (1.1), such
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that v1 ≤ u ≤ v2. The classical proof is based on the monotone iteration
scheme. This requires f be Lipschitz (or locally Lipschitz) function.
The existence of a smallest and a largest solutions u1 ≤ u2, in the
interval [v1, v2], is implied by this argument. Another proof, based on
Schauder’s fixed point theorem can be found in Akô [1, 9]. In this case,
the existence of a smallest and a largest solution is proved separately, via
a Perron-type argument. Using Akô’s strategy, Clément and Sweers [8]
have implemented the method of sub-super solutions by the assumptions
that v1, v2 ∈ C(Ω̄) and f is continuous. Other study of this problem can
also be found in [2, 3, 6, 7, 12, 16], specially, in Deuel-Hess [10] for
H1-solutions and in Brezis-Marcus-Ponce [4, 5] for L1-solutions when f
is continuous and nondecreasing. In this paper, we extend the method
of sub-super solutions in order to establish existence of the solutions of
(1.1) in the sense of L1-solution. We follow the strategy of [1, 8], based
on the Schauder’s fixed point theorem. Substantially, some of the details
be modified. We assume throughout the paper that f : Ω× R → R is a
Carathéodory function.

Definition 1.1. We say that u is an L1-solution of (1.1) if

(a): u ∈ L1(Ω) and f(., u)ρ0, hρ0 ∈ L1(Ω);
(b): for every v ∈ C2

0 (Ω̄),

−
∫
Ω

u4v =

∫
Ω

(λf(x, u) + µh(u))vdx. (1.2)

Here, ρ0(x) = d(x, ∂Ω) for any x ∈ Ω and C2
0 (Ω̄) = {v ∈ C2(Ω̄) : v =

0 on ∂Ω}).

Definition 1.2. Let u ∈ L1(Ω) and f(., u)ρ0, hρ0 ∈ L1(Ω) be given
functions. Then we say that

(i): u is an L1-sub solution of (1.1), if

−
∫
Ω

u4v ≤
∫
Ω

(λf(x, u) + µh(u))vdx,

for every v ∈ C2
0 (Ω̄).

(ii): u is an L1-super solution of (1.1) if

−
∫
Ω

u4v ≥
∫
Ω

(λf(x, u) + µh(u))vdx,

for every v ∈ C2
0 (Ω̄).
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2. Boundedness and equi-integrable

Definition 2.1. A set B ⊂ L1(Ω; ρ0dx) is equi-integrable if for every
ϵ > 0 there exists δ > 0 such that E ⊂ Ω and

|E| < δ ⇒
∫
E

|g|ρ0dx < ϵ ∀g ∈ B.

Lemma 2.2. [8] Let {wn} ⊂ L1 and let {En} be a sequence of measur-
able subsets of Ω such that

|En| → 0 and

∫
En

|wn| ≥ 1 ∀n ≥ 1.

Then there exists a subsequence {wnk
} and a sequence of disjoint mea-

surable sets {Fk} such that

Fk ⊂ Enk
and

∫
Fk

|wn| ≥ 1 ∀n ≥ 1.

Proposition 2.3. [8] Let f : Ω × R → R be a Carathéodory function,
h ∈ C(Ω) and v1, v2 ∈ L1(Ω) such that v1 ≤ V2 a.e. Suppose that

f(., v)ρ0, hρ0 ∈ L1(Ω) ∀v ∈ L1(Ω) such that v1 ≤ v ≤ v2 a.e.

Then, the set

B = {f(., v) ∈ L1(Ω; ρ0dx) : v ∈ L1(Ω) and v1 ≤ v ≤ v2 a.e.}
is bounded and equi-integrable in L1(Ω; ρ0dx).

Theorem 2.4. Let f : Ω × R → R be a Carathéodory function and
h ∈ C(Ω) such that

f(., v)ρ0, hρ0 ∈ L1(Ω) ∀v ∈ L1(Ω).

Then, the Nemytskii operator F : L1(Ω; ρ0dx) → L1(Ω) defined by

v 7→ λf(., v) + µh(v)

is continuous.

Proof. Suppose that vn → v in L1(Ω). Let vnk
be a subsequence such

that vnk
→ v a.e. and |vnk

| ≤ V a.e. For some function V ∈ L1(Ω). In
particular,

λf(., vnk
) + µh(vnk

) → λf(., v) + µh(v) a.e.

Moreover, by Proposition 2.3 the sequence {λf(., vnk
)+µh(vnk

)} is equi-
integrable in L1(Ω; ρ0dx). It then follows from Egorov’s theorem that

λf(., vnk
) + µh(vnk

) → λf(., v) + µh(v)
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in L1(Ω; ρ0dx). Since the limit is independent of the subsequence {vnk
}

we deduce that

F (vn) → F (v) in L1(Ω; ρ0dx).

3. Standard existence

Theorem 3.1. Suppose that f(., u), h ∈ L1(Ω; ρ0dx), there exists a
unique w ∈ L1(Ω) such that

−
∫
Ω

w4v =

∫
Ω

(λf(x,w) + µh(w))vdx. (3.1)

for every v ∈ C2
0 (Ω̄). Moreover,

(i): For every 1 ≤ p ≤ n
n−1 , w ∈ Lp(ω) and

‖w‖p ≤ M(‖λρ0f‖L1 + ‖µρ0h‖L1), (3.2)

for some constant M.
(ii): Given {fn}, {hn} ∈ L1(Ω; ρ0dx) n ≥ 1, let wn be the solution

of (3.1) associated to {fn}, {hn}. If {fn}, {hn} are bounded in
L1(Ω), then {wn} is relatively compact in L1(Ω) for every 1 ≤
p ≤ n

n−1 .

Proof. We prove (i) and (ii) and refer the reader to [5] for the
existence and uniqueness of w.

Proof of (i). Note that w satisfies

|
∫
Ω

w4v| = |
∫
Ω

(λf(., w) + µh(w))v|

≤
∫
Ω

‖λρ0f(., w) + µρ0h(w)‖L1‖
v

ρ0
‖L∞

≤ M1[‖λρ0f(., w)‖L1 + ‖µρ0h(w)‖L1 ]‖
v

ρ0
‖L∞ ∀v ∈ C2

0 (Ω̄).

(3.3)

Suppose that f, h ∈ C∞
0 (Ω̄) and v ∈ C2

0 (Ω̄) be the solution of −∆v = λf + µh, x ∈ Ω,

v(x) = 0, x ∈ ∂Ω .
(3.4)

By standard Caldrón-Zygmund estimates [13]

‖v‖W 2,q ≤ M2(‖λf‖Lq + ‖µh‖Lq), (3.5)
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where, 1
p+

1
q = 1. On the other hand, since q > n it follows from Morrey’s

embedding [13] that

‖ v

ρ0
‖L∞ ≤ M3(‖v‖L∞ + ‖∇v‖L∞) ≤ M3‖v‖W 2,q . (3.6)

According to conclusions above we get

|
∫
Ω

(λf(., w) + µh(w))v| ≤ M1[‖λρ0f‖L1 + ‖µρ0h‖L1 ]‖
v

ρ0
‖L∞

≤ M1[‖λρ0f‖L1 + ‖µρ0h‖L1 ]M3‖v‖W 2,q

≤ M1M2M3(‖λρ0f‖L1 + ‖µρ0h‖L1).

(3.7)

By duality, one deduces that w ∈ Lp(Ω) and 3.2 holds. Proof of (ii). Let
U ⊂ Ω be a smooth domain, vn ∈ L1(U) be the solution of the problem{

−∆vn = λfn + µhn, x ∈ U,
vn(x) = 0, x ∈ ∂U .

(3.8)

By standard elliptic estimates [17] for every 1 ≤ p ≤ n
n−1 ,

‖vn‖W1,p(U) ≤ M2(‖λf‖Lq + ‖µh‖Lq) ≤ M2(|λ|C1 + |µ|C2), (3.9)

where, ‖fn‖Lq ≤ C1 and ‖hn‖Lq ≤ C2. On the other hand, since wn−vn
is harmonic in U so for every Y ⊂ U we have

‖wn − vn‖C1(Ȳ ) ≤ KY ‖wn − vn‖L1(U)

≤ KY ‖λfρ0 + µhρ0‖L1

≤ KY (|λ|‖fρ0‖L1 + |µ|‖hρ0‖L1)

≤ KY (|λρ0|K1 + |µρ0|K2)

(3.10)

where, K1,K2 are constants that ‖f‖L1 ≤ K1 and ‖h‖L1 ≤ K2 respec-
tively. Therefore, there exists a subsequence {wnk

} such that wnk
→

w a.e. in Ω. On the other hand by (i) the sequence {wn} is bounded in
Lp(Ω) for every 1 ≤ p n

n−1 . By Egorov’s theorem {wn} is converges in

L1(Ω) so this proof complete.

Proposition 3.2. Let w ∈ L1(Ω) and f, h ∈ L1(Ω; ρ0dx) be such that

−
∫
Ω

w4v ≥
∫
Ω

(λf + µh)v (3.11)

for every v ∈ C2
0 (Ω̄) and v ≥ 0 in Ω. Then,

−
∫
Ω

w−4v ≥
∫

[0≥w]

(λf + µh) (3.12)

for every v ∈ C2
0 (Ω̄) and v ≥ 0 in Ω, where, w− = max{−w, 0}.
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Proof. It is straightforward.

Corollary 3.3. If u, v are solutions of problem (1) then min{u, v} is a
super solution.

Proof. We set w = v−u and φ := [λf(., v)+µh(v)]−[λf(., u)+µh(u)],
then

−
∫
Ω

(v − u)−4s ≥
∫

[v≤u]

([λf(x, v) + µh(v)]− [λf(x, u) + µh(u)]sdx,

for every s ∈ C2
0 (ω̄) and s ≥ 0 in Ω. Since min{u, v} = u+ (v − u)− so

the result follows.
Now, we can state the main result.

Theorem 3.4. Let v1, v2 be a sub and a super solution of problem (1),
respectively. Suppose that v1 ≤ v2 a.e. and

f(., v)ρ0 ∈ L1(Ω), and h(v)ρ0 ∈ L1(Ω) (3.13)

for every v ∈ L1(Ω) such that v1 ≤ v2 a.e. Then there exist solutions
u1 ≤ u2 of problem (1) in [v1, v2] such that solution u of problem (1.1)
in the interval [v1, v2] satisfies

v1 ≤ u1 ≤ u ≤ u2 ≤ v2 a.e. (3.14)

Proof. Let be (x, t) ∈ Ω× R, we define f : Ω× R → R such that

f(x, t) =

 v1(x), t < v1(x),
t, v1(x) ≤ t ≤ v2(x),
v2(x), v2(x) < t.

Then f is a Carathéodory function and by (3.13) fρ0, hρ0 ∈ L1(Ω) for
every v ∈ L1(Ω). We set G : L1(Ω) → L1(Ω; ρ0dx) defined by v 7→
(λf(., v)) + µh(v) and K : L1(Ω; ρ0dx) → L1(Ω) defined by s 7→ w,
where, w is the unique solution of the problem{

−∆w = s, x ∈ Ω,
w = 0, x ∈ ∂Ω .

By Theorem 2.4 and 3.1 KG : L1(Ω) → L1(Ω) is continuous. More-
over, by Proposition 2.3 G(L1(Ω)) is a bounded subset of L1(Ω; ρ0dx).
Therefore, by Theorem 3.1 KG is compact and there exists C > 0 such
that

‖KG(v)‖L1 ≤ C1‖G(v)‖L1 ≤ C

for every v ∈ L1(Ω). It follows from Schauder’s fixed point theorem that
KG has a fixed point u ∈ L1(Ω). In other words, u satisfies{

−∆u = λf(x, u) + µh(u), x ∈ Ω,
u = 0, x ∈ ∂Ω.
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We will show that u is a solution of problem (1.1) and satisfies v1 ≤ u ≤
v2 a.e. . To do this, we show that v1 ≤ u a.e., the proof of the inequality
u ≤ v2 a.e. is similar. Note that

λf(., v1) + µh(v1) = λf(., u) + µh(u) a.e.

on the set [v1 ≤ u]. Therefore, by proposition 3.2 and with w = v1 − u,
we get

−
∫
Ω

w−4v ≥
∫

[v1≤u]

[(λf(x.v1) + µh(v1))− (λf(x.u) + µh(u))]vdx = 0

for every v ∈ C2
0 (Ω̄) and v ≥ 0 in Ω. since w− ≥ 0 a.e. so w = 0 a.e.,

this implies that v1 ≤ u a.e. Now, we show that there exist a smallest
and largest solution u1 ≤ u2 of problem (1.1) in the interval [v1, v2]. We
prove the existence of the smallest solution u1, the existence of u2 is
similar. Let

A = inf{
∫
Ω

w ; v1 ≤ w ≤ v2 a.e. },

where, w is a solution of problem (1.1).
By definition of solution for problem (1.1) implies that A < ∞. If

w1, w2 are two solutions of problem (1.1) and v1, v2 are sub-super so-
lution of problem (1.1), respectively, such that v1 ≤ w1, w2 ≤ v2 a.e.
Then, the problem (1.1) has a solution w such that

v1 ≤ w ≤ min{w1, w2} ≤ v2 a.e. . (3.15)

For proof of this claim we use corollary 3.3, where, min{w1, w2} is a super
solution of problem (1.1). Similarly, By applying above arguments with
v2 = min{w1, w2}, v1, (without loss of generality), one finds a solution w
of problem (1.1) satisfies (3.15). Therefore, it follows from the claim
above that one finds a non-increasing sequence of solutions {wn} of
problem (1.1) such that

v1 ≤ wn ≤ v2 a.e. and

∫
Ω

wn → A.

On the other hand, by Proposition 2.3 the sequence {f(., wn)} is equi-
integrable in L1(Ω; ρ0dx). It then follows from Egorov’s theorem that

λf(., wn) + µh(wn) → λf(., w) + µh(w)

in L1(Ω; ρ0dx). Therefore, w is a solution of problem (1.1) and
∫
Ω

w = A.

By the claim above, w is the largest solution of problem (1.1) in the
interval [v1, v2]. This completes the proof.
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