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Abstract. In this work we will introduce center of cat2-group and re-
lated structures in the sense of [7]. By using the equivalence between
crossed squares and cat2-groups we will introduce the center of crossed
square.
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1. Introduction

In [6], J.-L. Loday introduced the notion of crossed squares and it was gener-
alized in [2] to crossed n-cubes, which can be thought as higher dimensional
crossed modules [8], and are algebraic models for homotopy (n + 1) types.
Crossed 1-cubes are equivalent to crossed modules.

In the sense of [6], a crossed square of groups, which is equivalent to
crossed 2-cubes, is a commutative diagram of groups;

L

λ′

��

λ // M

µ

��
N ν

// P

together with actions of P on L, M and N (and hence actions of M on L
and N via µ) and of N on L and M via υ) and a function h : M × N −→ L
such that the following axioms are satisfied:
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(i) The maps λ, λ′ preserve the actions of P . The maps µ, ν and µλ = λ′ν
are crossed modules with the given actions..
(ii) h(mm′, n) = h(mm′,m n)h(m, n),
(iii) h(m, nn′) = h(m, n)h(nm,n n′),
(iv) λh(m, n) = mnm−1,
(v) λ′h(m, n) = mnn−1,
(vi) h(λ(l), n) = lnl−1,
(vii) h(m, λ′(l)) = mll−1,
(viii) h(pm,p n) = ph(m, n),
for all l ∈ L, m, m′ ∈ M, n, n′ ∈ N and p ∈ P.

A morphism of crossed square is a quadtuple ϕ = (ϕ1, ϕ2, ϕ3, ϕ4) of group
homomorphisms

ϕ1 : L1 −→ L2 ϕ3 : N1 −→ N2

ϕ2 : M1 −→ M2 ϕ4 : P1 −→ P2

which makes the diagram

L2
λ2 //

λ′
2

��

M2

µ2

��

L1

ϕ1

AA�������� λ1 //

λ′
1

��

M1

ϕ2

@@���������

µ1

��

N2
ν2 // P2

N1

ϕ3

AA�������� ν1 // P1

ϕ4

@@���������

commutative such that ϕ1(h(m, n)) = h(ϕ2(m1), ϕ3(n1)), for all m1 ∈ M1,
n1 ∈ N1 and each of the homomorphisms ϕ1, ϕ2, ϕ3 is ϕ4-equivariant.

Consequently, we have the category of crossed squares which we denote
by Crs2.

Example 1.1. Let P be a group. Let M, N be normal subgroups of P, λ,
and λ′ are inclusions and L = M ∩ N, with h being the conjugation map is
a crossed square.

M ∩ N

λ′

��

λ // M

µ

��
N

µ′
// P
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Recall from [6] that a cat1-group is a triple (G, s, t) consisting of a group G
and endomorphisms s, the source map, and t, the target map of G, satisfying
st = t, ts = s and [kers, kert] = 1.

There exists a natural equivalence between crossed modules and cat1-
groups. The notion was also generalized to catn-groups in the same work.
For n = 2 we get the cat2-groups. Namely, a cat2-group is a system
(G, s1, t1, s2, t2) consists of a group G and endomorphisms s1, t1, s2, t2 such
that (G, s1, t1) and (G, s2, t2) are cat2-groups and sisj = sjsi, titj = tjti, sitj =
tjsi, for i, j = 1, 2, i 6= j. A morphism between cat2-groups (G, s1, t1, s2, t2)
and (G′, s′

1, t′
1, s′

2, t′
2) is a homomorphism α : G → G′ such that αsi = s′

iα
and αti = t′

iα, for all i = 1, 2. Consequently, we have the category of cat2-
groups which will be denoted here by Cat2. In [6], it was proved that the
categories Crs2 and Cat2 are naturally equivalent.

Proposition 1.2. [6]The category Crs2 of crossed squares is naturally
equivalent to the category Cat2 of cat2-groups.

Proof. Here, we only give a sketch of the proof. Details can be found in [6]
. Given a crossed square

L

λ′

��

λ // M

µ

��
N ν

// P

Since λ′ and µ are crossed modules, we have the corresponding semi-direct
products LoN and MoP which give rise to the crossed module ∂ : LoN →
M o P with the action of M o P on L o N defined by

(m,p)(l, n) = (m(pl)h(m,p n),p n),

for all (m, n) ∈ M o N and (l, n) ∈ L o N . Using this action, we thus form
its associated cat1-group with big group (L o N) o (M o P ) and induced
endomorphisms s1, t1, s2, t2. That is, if (L, M, N, P ) is a crossed square, then
the corresponding cat2 -group is ((L o N) o (M o P ), s1, t1, s2, t2).

Conversely, let (G, s1, t1, s2, t2) be a cat2-group. The cat1-group (G, s1, t1)
and (G, s2, t2) give rise to the crossed square

kers1 ∩ kers2

λ′

��

λ // Ims1 ∩ kers2

µ

��
kers1 ∩ Ims2 ν

// Ims1 ∩ Ims2

where λ, υ = t1|; λ′, µ = t2| and each morphism is a crossed module with
the action defined by conjugation in G and the h-map is the commutator in
G. �



Centers, Commutators and Abelianization of Crossed Squares 155

Finally, we recall from [7] the notion of a category of interest in the sense
of [3]. Let C be a category of groups with a set of operations Ω and with
a set of identities E, such that E includes the group laws and the following
conditions hold. If Ωi is the set of i-ary operations in Ω, then:
(a) Ω = Ω0 ∪ Ω1 ∪ Ω2;
(b) the group operations (written additively : 0, −, +) are elements of Ω0,
Ω1 and Ω2 respectively. Let Ω′

2 = Ω2 \ {+}, Ω′
1 = Ω1 \ {−} and assume that

if ∗ ∈ Ω2, then Ω′
2 contains ∗◦ defined by x ∗◦ y = y ∗ x. Assume further

that Ω0 = {0};
(c) for each ∗ ∈ Ω′

2, E includes the identity x ∗ (y + z) = x ∗ y + x ∗ z;
(d) for each ω ∈ Ω′

1 and ∗ ∈ Ω′
2, E includes the identities ω(x + y) =

ω(x) + ω(y) and ω(x) ∗ y = ω(x ∗ y).
If C is an object of C and x1, x2, x3 ∈ C:
Axiom 1 x1 + (x2 ∗ x3) = (x2 ∗ x3) + x1, for each ∗ ∈ Ω′

2.
Axiom 2 For each ordered pair (∗, ∗) ∈ Ω′

2 × Ω′
2 there is a word W such

that

(x1 ∗ x2)∗x3 = W (x1(x2x3), x1(x3x2), (x2x3)x1,

(x3x2)x1, x2(x1x3), x2(x3x1), (x1x3)x2, (x3x1)x2),

where each juxtaposition represents an operation in Ω′
2.

A category of groups with operations satisfying Axiom 1 and Axiom 2 is
called a category of interest.

Example 1.3. The category of catn-groups is a category of interest, for
each positive integer n.

2. Centers, Commutators and Abelianizations in Cat2

In this section, first we recall from [7] and [3], the notions of centers,
commutators and abelianizations in categories of interest and consider the
particular case, namely cat2-groups as a preparation for the next section to
define the center and consequently the commutator and the abelianization
of a crossed square.

Definition 2.1. Let C be a category of interest and A ∈ ob(C). Then the
center of A is the ideal Z(A) = {z ∈ A : for all a ∈ A, a unary operation of A
and ∗ ∈ Ω′

2, a + z = z + a, a + ω(z) = ω(z) + a, a ∗ z = 0}

Example 2.2. Given a group G and consider the cat2-group (G, s1, t1, s2, t2)
where si = ti = idG, for i = 1, 2. Then the center of (G, s1, t1, s2, t2) is the
ideal (Z(G), s1|, t1|, s2|, t2|) where Z(G) is the center of G in the category
of groups. Let G be a group and a, b ∈ G such that ab = ba. Consider the
maps s : G → G, t : G → G defined by s(x) = axa−1 and t(x) = bxb−1.

Example 2.3. A direct calculation shows that (G, s1, t1, s2, t2) is a cat2

-group where s1, s2 = s and t1, t2 = t. Then the center of (G, s1, t1, s2, t2) is
the normal subobject
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Z(G) = {z ∈ G : z + g = g + z, si(z) + g = g + si(z),
ti(z) + g = g + ti(z), i = 1, 2, for all g ∈ G}

= {z ∈ G : z + g = g + z, a + z − a + g = g + a + z − a,

b + z − b + g = g + b + z − b}
= {z ∈ G : g + z = z + g, [−a + g + a, z] = 0 = [−b + g + b, z]}.

Definition 2.4. A cat2-group (G, s1, t1, s2, t2) is abelian if it coincides with
its center.

Consequently, a cat2-group is abelian if and only if G is an abelian object
in the category of groups.

3. Application

In this section, using the natural equivalence between Cat2 and Crs2,
we will carry the center of corresponding cat2-group of a crossed square to
Crs2 to get its center. This gives to obtain abelian objects in Crs2.

Definition 3.1. Let (G1, s1, t1) and (G0, s0, t0) be cat1-groups. Then we say
that (G0, s0, t0) has an action on (G1, s1, t1) iff there exist a split extension

(G1, s1, t1) � (H, sHtH)
x� (G0, s0, t0)

of cat1-groups.
As indicated in [4], we may represent an action of (G0, s0, t0) on (G1, s1, t1)

by a homomorphism from (G0, s0, t0) to the actor of (G1, s1, t1).

Definition 3.2. A crossed module of cat1-groups is a cat1-group homomor-
phism

∂ : (G1, s1, t1) → (G0, s0, t0)

with an action of (G0, s0, t0) on (G1, s1, t1) such that
1) ∂(c0.c1) = c0 + ∂(c1) − c0,
2) ∂(c1).c′

1 = c1 + c′
1 − c1,

for all c0 ∈ C0 and c1 ∈ C1.

The equivalence between the category of crossed module of cat1-groups
and the category of cat2-groups, leads us to define the center of crossed
module of cat1-groups which is a particular case of the general definition
given in [1].

The center of ∂ : (G1, s1, t1) → (G0, s0, t0) is the crossed ideal ∂| : Z1 →
Z0 where Z1 = {z1 ∈ G1 : g0.z1 = z1, g0.s1(z1) = s1(z1), g0.t1(z1) =
t1(z1), for all g0 ∈ G0}
and
Z0 = {z0 ∈ G0 : z0.g1 = g1, s0(z0).g1 = g1, t0(z0).g1 = g1for allg1 ∈
G1} ∩ Z(G0, s0, t0) with inducedsource and target morphisms.
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Now, consider the crossed square

L

λ′

��

λ // M

µ

��
N ν

// P

and the corresponding crossed module

∂ : (L o N, s1, t1) → (M o P, s0, t0)
(l, n) 7→ (λ(l), ν(n)).

The center of ∂ : (LoN, s1, t1) → (M oP, s0, t0) is ∂| : Z1 → Z0 where Z1 =
{(zl, zn) ∈ LoN : (m, p).(zl, zn) = (zl, zn), (m, p).s1(zl, zn) = s1(zl, zn), (m, p).t1(zl, zn) =
t1(zl, zn)} and Z0 = {(zm, zp) ∈ MoP : (zm, zp).(l, n) = (l, n), w(zm, zp).(l, n) =
s1(l, n), w = s0, t0, for all(l, n) ∈ L o N} ∩ Z(M o P, s0, t0).

By a direct calculation we have;

Z1 = {(zl, zn) ∈ L o N : m.(p, zl) + h(m, p.zn) = zl,

p.zn = zn, h(m, p.zn) = 0, h(m, p.(∂(zl)zn)) = 0}

and

Z0 = {(zm, zp) ∈ M o P : zm.(zp.l) + h(zm, zp.n) = l, zp.n = n, zp.l = l, ∂(zm).l = l,

(∂(zm)zp).n = n} ∩ {(zm, zp) : m = zp.m, p + zp = zp + p, m + zm = zm + m, p.zm = zm}.

So, we get the crossed square

ZL

λ′|

��

λ| // ZM

µ|

��
ZN

ν|
// ZP

where ZL
∼= Ker(s1) ∩ Z1, ZN

∼= Im(s1) ∩ Z1, ZM
∼= Ker(s0) ∩ Z0 and

ZP
∼= Im(s0) ∩ Z0.

Proposition 3.3.

ZL

λ′|

��

λ| // ZM

µ|

��
ZN

ν|
// ZP
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is the center of
L

λ′

��

λ // M

µ

��
N ν

// P

in the sense of [5].

Proof. It is clear from the natural equivalences and the definition of center
of a crossed module in a modified category of interest given in [1]. �
Definition 3.4. A crossed square is called abelian if it coincides with its
center.

A direct checking shows that, an abelian crossed square is an abelian
object in the category of crossed squares with a categorical view point.

4. Conclusion

The work is a preparation for the different kinds of extensions and (co)homology
of crossed squares. In further wworks the related concepts can be introduced
and many gadgets in group theory can be appliedto crossed squares as their
generalizations.
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