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Abstract. In this study, we investigate the effects of heat and
mass transfer on the magnetohydrodynamic (MHD) peristaltic mo-
tion of solid particles in a dusty fluid. This analysis encompasses
considerations of nonlinear thermal radiation and joule heating.
The flow dynamics are modeled for both the fluid and dust phases
within the context of a wave frame. We compute solutions for the
velocity, temperature, and concentration profiles, analyzing the in-
fluence of various physical parameters. Specifically, we examine
the impact of particle volume fraction, Hartmann number, Prandtl
number, Eckert number, Schmidt number, and Soret number. The
mathematical and graphical discussions reveal that both the mag-
netic field and particle volume fraction exert an opposing influence
on the flow. Additionally, it is observed that while the particle
volume fraction has a significant effect on the temperature and
concentration profiles, these effects are contrasting.
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1. Introduction

Heat and mass transfer of solid particles are incredibly common in vari-
ous engineering and everyday life applications. Water contains a variety
of suspended solid particles, air is filled with dust particles, and bever-
ages have particles in the form of bubbles. Furthermore, a wide range of
industrial engineering challenges, including the movement of pollutants
in water environments, the removal of petroleum residues, and the op-
eration of nuclear nanotechnology reactors, require the use of different
carrier fluids to disperse solid particles, droplets, and bubbles. In het-
erogeneous mixtures with two or more phases, the constituents display
a wide range of physical motions and characteristics, each with its own
unique velocities. During the flow process of heterogeneous mixtures
like particle-fluid suspensions, there is an exchange of mass, energy, an-
gular, and linear momentum. For example, in different heat exchanger
scenarios, colder droplets are introduced into condensed vapors. These
droplets absorb enthalpy from the vapor, leading to heat transfer. This
phenomenon arises from the direct interaction between the vapor and
the droplets. Studying the movement of particles in various fluids has
posed a considerable obstacle in scientific research for many years.
Living organisms exhibit a fascinating phenomenon where smooth mus-
cles contract and expand symmetrically, resulting in a rhythmic wave-
like motion called peristaltic motion. This type of motion plays a vital
role in the transportation of different biological fluids within the body.
Some examples are ciliary movement, ureteral peristalsis, chyme move-
ment in the small intestines, hydronephrosis, sperm transport, ureteral
dilation, gastrointestinal system function, and the movement of arti-
ficial calculi. One can make a straightforward assumption about the
movement of calculi through a ureteral bolus. Peristaltic motion in the
human body happens quite frequently throughout the day, moving a
small calculus bolus from the renal pelvis to the bladder within a day.
This movement happens within a narrow diameter of about 2.5 mm and
at a relatively fast speed of around 3 cm/s, thanks to ureteral peristal-
sis. Understanding the behavior of calculi in relation to the bladder
involves considering the mechanical and physiological challenges posed
by their interaction with the ureteral wall structure and surrounding
tissues. This contact occurs due to the contraction of smooth muscle
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tissue, like the ureter, and the force of gravity, which causes solid par-
ticles to be propelled through the ureter. The movement of calculi in
the ureter is defined by its shape, the process of two-phase flow, and the
speed of ureteral peristalsis [1-5].
Peristaltic flow with particle-liquid suspensions has been extensively re-
searched by numerous scientists. In a study conducted by Mekheimer
et al. [6], the peristaltic action of particle-liquid suspensions through
a planar channel was investigated. In a study conducted by Nagarani
and Sarojamma [7], the researchers examined the movement of small
contaminants within a channel using a power law liquid model. In their
study, Mekheimer et al. [8] examined the flow of particulate suspen-
sions caused by a sinusoidal peristaltic wave using an eccentric cylin-
der. Additional analytical and numerical analyses of peristaltic flow and
particle-fluid suspensions can be found in references [9-12]. Peristaltic
motion with heat and mass transfer is widely utilized in numerous com-
mercial applications. These include heat convection in blood circulation,
tissue conduction, food processing, vasodilation, hemodialysis, oxygena-
tion, reverse osmosis, combustion, distillation, and various industrial
processes. Several researchers have conducted studies on peristaltic flow
with heat and mass transfer. As an illustration, Mekheimer et al. [13]
investigated the impact of heat and mass transfer on peristaltic motion
in a vertical asymmetric porous channel. In their study, Hayat and Hina
[14] examined the impact of heat and mass transfer on MHD peristaltic
motion of a non-Newtonian Maxwell fluid with compliant walls. In their
study, Hayat et al. [15] investigated the impact of wall properties on
the peristaltic flow of a third-grade fluid in a curved channel, specifically
focusing on heat and mass transfer. In a study conducted by Ellahi et
al. [16], the researchers examined the movement of a viscous fluid in a
non-uniform rectangular duct, taking into account heat and mass trans-
fer.
Magnetohydrodynamics (MHD) is also of great importance in various
industrial processes and biomedical engineering. The study of Magne-
tohydrodynamics with heat and mass transfer is important in a wide
range of engineering applications, including Hall accelerators, power
generators, heating elements, and electric transformers. Understanding
the magnetic field’s impact on blood flow is incredibly valuable in var-
ious medical applications, such as magnetic resonance imaging (MRI),
magnetic resonance angiography (MRA), hyperthermia, magnetic drug
targeting, and blood pumping. Through precise utilization of pulsat-
ing fields and low-intensity magnetic fields, tissue and cell behavior can
be effectively altered. The effect of the magnetic field on chyme is re-
duced by the heat produced by ions in the chyme or the magnetic field.
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Magnets have been found to have potential benefits in treating various
health conditions, including inflammations, bowel diseases, ulceration,
and uterine conditions. Peristaltic flow with the combined influences
of the Hall current and magnetic field has been extensively studied by
numerous researchers. As an example, the study conducted by Hayat et
al. [17] examined the combined impact of the Hall and ion slip effects
on the peristaltic motion of a nano-Newtonian Jeffrey fluid model with
Joule heating. In their study, Hayat et al. [18] investigated the impact
of the Hall current and chemical reactions on the peristaltic flow of a
Prandtl fluid with mixed convection. In their study, Eldabe et al. [19]
investigated the impact of the Hall current on the peristaltic flow of a
Williamson fluid with heat and mass transfer through a porous medium.
Additional research on this subject can be found in the cited references
[20-22].
This work attempts to investigate the combined impacts of heat and
mass transfer on MHD peristaltic flow of solid particles in a dusty fluid,
based on the analysis provided above. The governing flow problem is
represented in a wave frame, taking into account the assumptions of long
wavelengths and a Reynolds number of zero. Analytical solutions are
obtained for the ensuing differential equations, and closed-form solutions
are provided for both the fluid and dust phases. The structure of this
document is as follows: Section 1 serves as an introductory part, Section
2 demonstrates the process of defining the problem, Section 3 explains
the approach used to solve the problem, and Section 4 showcases the
numerical findings and subsequent discussion.

2. MATHEMATICAL FORMULATION

Consider the peristaltic motion of magnetic solid particles within a
dusty Casson fluid, characterized by a velocity denoted as c̃, flowing
through a two-dimensional planar channel of uniform thickness. An ex-
ternal magnetic field is applied to this system, while the induced mag-
netic field is assumed to be negligible due to its relatively small magni-
tude. A Cartesian coordinate system is employed for the analysis, with
the X̃-axis aligned along the centerline of the channel and the Ỹ -axis
oriented perpendicular to the channel, as depicted in Fig. 1. This config-
uration allows for a detailed examination of the interactions between the
magnetic particles and the fluid flow under the influence of the external
magnetic field.
The geometry of the wall surface can be expressed as follows:

H̃
(
X̃, t̃

)
= ã+ b̃sin

2π

λ

(
X̃ − c̃t̃

)
. (2.1)
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Figure 1. Geometric Configuration of Magnetized Cas-
son Fluid Flow with Concurrent Heat and Mass Transfer

In the above equation, t̃is the time,c̃ is the velocity of the wave,λis
the wave length, ãis the width of the channel from inlet, and b̃is the
amplitude of the wave. The magnetic field is considered of the following
form

B = (0, B0) . (2.2)

With the help of Ohm’s Law, we have

J = σ
[
E+Ṽ×B

]
. (2.3)

In the given equation, σ represents the electrical conductivity, J denotes
the current density, B represents the magnetic field, and E represents
the electric field. The theory of continuum mechanics states that the
equations regulating continuity and linear momentum, along with heat
and mass transport for both the fluid phase and the particulate phase,
can be represented as follows:
Fluid Phase:

∂Ũf

∂X̃
+

∂Ṽf

∂Ỹ
= 0, (2.4)
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(1− C) ρf

(
∂Ũf

∂t̃
+ Ũf

∂Ũf

∂X̃
+ Ṽf

∂Ũf

∂Ỹ

)
= − (1− C)

∂P̃

∂X̃

+(1− C)

(
∂

∂X̃
τX̃X̃ +

∂

∂Ỹ
τX̃Ỹ

)
+ CS

(
Ũp − Ũf

)
+ J×B, (2.5)

(1− C) ρf

(
∂Ṽf

∂t̃
+ Ũf

∂Ṽf

∂X̃
+ Ṽf

∂Ṽf

∂Ỹ

)
= − (1− C)

∂P̃

∂Ỹ

+(1− C)

(
∂

∂X̃
τỸ X̃ +

∂

∂Ỹ
τỸ Ỹ

)
+ CS

(
Ṽp − Ṽf

)
, (2.6)

(1−C) ρfcp

(
∂Tf

∂t̃
+ Ũf

∂Tf

∂X̃
+ Ṽf

∂Tf

∂Ỹ

)
= k (1−C)

∂2Tf

∂Ỹ 2

+
ρpcpC

ϖT
(Tp − Tf ) + CS

(
Ũf − Ũp

)2
+µ (1− C) τX̃Ỹ

∂Ũf

∂Ỹ
− ∂qr

∂y
+

J · J
σ

, (2.7)

(1−C)

(
∂Ff

∂t̃
+ Ũf

∂Ff

∂X̃
+ Ṽf

∂Ff

∂Ỹ

)
=Dm (1−C)

∂2Ff

∂Ỹ 2

+
ρpC

ρfϖC
(Fp − Ff ) +

DmKT

Tm
(1−C)

∂2Tf

∂Ỹ 2
, (2.8)

Dusty Phase:
∂Ũp

∂X̃
+

∂Ṽp

∂Ỹ
= 0, (2.9)

Cρp

(
∂Ũp

∂t̃
+ Ũp

∂Ũp

∂X̃
+ Ṽp

∂Ũp

∂Ỹ

)
= −C

∂P̃

∂X̃
+CS

(
Ũf − Ũp

)
, (2.10)

Cρp

(
∂Ṽp

∂t̃
+ Ũp

∂Ṽp

∂X̃
+ Ṽp

∂Ṽp

∂Ỹ

)
= −C

∂P̃

∂Ỹ
+CS

(
Ṽf − Ṽp

)
, (2.11)

ρpCcp

(
∂Tp

∂t̃
+ Ũp

∂Tp

∂X̃
+ Ṽp

∂Tp

∂Ỹ

)
=

ρpCcp
ϖT

(Tf − Tp) , (2.12)

C

(
∂Fp

∂t̃
+ Ũp

∂Fp

∂X̃
+ Ṽp

∂Fp

∂Ỹ

)
=

C

ϖC
(Ff − Fp) . (2.13)

In the given equations, Ũ and Ṽ represent the velocity components in
a fixed frame. ϖT represents the time it takes for temperature to relax,
ϖv represents the time it takes for velocity to relax, and τ represents
the stress tensor. The variables X̃ and Ỹ represent Cartesian coordi-
nates in a fixed frame. The symbol ρ represents the density. The term
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specific heat is denoted by cp. T represents temperature, F represents
concentration, and C represents particle volume fraction. The variable
k represents thermal conductivity, while Tm represents the mean tem-
perature.The symbol Dm represents the coefficient of mass diffusivity.
KT represents the thermal diffusion ratio. The subscript f, p indicates
the fluid and particle phases.
The mathematical expression for the drag coefficient, as well as the
empirical relation for the viscosity of the suspension, are articulated as
follows:

S =
9µ0

2a2
λ̃ (C) , λ̃ (C) =

4 + 3
√
8C − 3C2 + 3C

(2− 3C)2
,

µ =
µ0

1− χC
, χ = 0.07e

[
2.49C+ 1107

T
e−1.69C

]
. (2.14)

The symbol S represents the drag force, T represents the absolute tem-
perature, and a represents the radius of the particle. The expression for
the radiative heat flux, which is not linear, can be represented as

qr = −4σ

3k

∂T 4

∂Ỹ
= −16σT 3

3k

∂T

∂Ỹ
. (2.15)

The stress tensor for the Casson fluid model is defined as follows:

τ1/n=τ
1/n
0 + µγ̇1/n , (2.16)

τi,j = 2ei,j

(
µb +

℘y√
2πD

)
. (2.17)

where ℘y represents the yield stress, π denotes ei,j , which is the (i, j)
component of the deformation rate, and µb stands for the plastic viscos-
ity of the fluid.

Let’s establish the transformation variable from the fixed frame to the
wave frame as follows:

x̃ = X̃ − c̃t̃, ỹ = Ỹ , ũf,p = Ũf,p − c̃, ṽf,p = Ṽf,p, p̃ = P̃ . (2.18)
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Introducing the following non-dimensional quantities

x̃ =
x

λ
, ỹ =

y

ã
, ũf,p =

uf,p
c̃

, ṽf,p =
vf,p
c̃δ

, h =
H̃

ã
, ϕ =

b̃

ã
,

p =
ã2

λc̃µ
p̃, Re =

ρãc̃

µ
, θf,p =

Tf,p − T0

T1 − T0
, Pr =

µcp
k

,M =

√
B2

0 ã
2σ

µ
,

Sc =
µ

ρDm

, Sr =
ρDmKT

µTm

(
T1 − T0

F1 − F0

)
, Φf,p =

Ff,p − F0

F1 − F0
,

Ec =
c̃2

cp (T1 − T0)
, δ =

ã

λ
,Nr =

16σT 3

3kk
, ζ =

℘y

µb
√
2πD

.

(2.19)
In the given equation, x and y represent the coordinates in the wave
frame, u and v represent the velocity components, M represents the
Hartmann number, p represents the pressure, and ϕ represents the am-
plitude ratio. The Reynolds number, denoted as Re, represents a dimen-
sionless quantity. The variables θ and Φ correspond to the dimensionless
temperature and concentration, respectively. The Prandtl number (Pr)
represents the ratio of momentum diffusivity to thermal diffusivity. The
Eckert number (Ec) quantifies the ratio of kinetic energy to enthalpy.
The Schmidt number (Sc) characterizes the ratio of momentum diffu-
sivity to mass diffusivity. The wave number (δ) denotes the spatial
frequency of a wave. The radiation parameter (Nr) measures the im-
portance of radiation in heat transfer. The Soret number (Sr) represents
the ratio of mass diffusivity to thermal diffusivity.
By substituting Eq. (2.18) and Eq. (2.19) into Eq. (2.1) through Eq.
(2.17), and assuming a long wavelength and zero Reynolds number ap-
proximation, the resulting equations for the fluid phase can be expressed
as follows: (

1 +
1

ζ

)
∂2uf
∂y2

− M2

1− C
(uf + 1) =

1

1− C

dp

dx
, (2.20)

(
1

Pr
+

Nr

(1− C)

)
∂2θf

∂y2
+ Ec

(
1 +

1

ζ

)(
∂uf
∂y

)2

+
Ec

N(1− C)

(
dp

dx

)2

+
M2

1− C
u2f = 0, (2.21)

1

Sc

∂2Φf

∂y2
+ Sr

∂2θf

∂y2
= 0, (2.22)

For the particulate phase, the equations can be expressed as follows:

up = uf − dp

dx

1

N
, (2.23)
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θf = θp, (2.24)
Φf = Φp, (2.25)

Where N = Sã2

µ .

The corresponding non-dimensional boundary conditions are as follows:
∂uf
∂y

= θf = Φf = 0 at y = 0,

uf + 1 = 0, θf=Φf = 1 at y = h (x, t) = 1 + ϕsin2πx. (2.26)

3. SOLUTION OF THE PROBLEM

After performing two integrations, the exact solutions for velocity, tem-
perature, and concentration can be expressed in simplified form as fol-
lows:
Velocity profile :

uf = −
M2 + dp

dx − dp
dxcosh[y L1]sech[h L1]

M2
, (3.1)

up = −
M2 + dp

dx − dp
dxcosh[y L1]sech[h L1]

M2
− dp

dx

1

N
, (3.2)

Temperature profile:

θf,p =
1

8 (−1 + c)hL1
2M4n (1 +Nr(1− C)−1Pr) ζ[

8M4N(−dp/dxPr + (C − 1)L2
1(1 +Nr(1− C)−1Pr))ζ

2L2
1Pry(2EchM4(dp/dx)2ζ − 2hM4N(M2 + dp/dx)ζ)

+2L2
1Pr(2hM

4N(M2 + dp/dx)(h− y)ζ + Ec(dp/dx)2

(2hM4(y − h)ζ + (C − 1)N(1 + ζ))) +Ndp/dxPrsech[hL1]

(8M4ζ(1 + hL1sinh[L1y])− (−1 + c)EcL2
1dp/dx(1 + ζ)

sech[hL1](2 + h(2L2
1(h− y)− 2L2

1y) + 2hL1sinh[2L1y]))
]
, (3.3)

Concentration profile:

Φf,p =
1

8hL1
2

(
8L1

2y + L4ScSr

(
−
(
(h− y)(−L3 + 2hL2

1(−2L2 + L3)y)
)

−8M4Ndp/dxyζ
)
+ L4ScSr

(
L3ycosh[2hL1]− hL3cosh[2L1y]

+8M4Ndp/dxζ(−h+ y + hcosh[L1y])sech[hL1]
))

.

(3.4)



212 M. M. Bhatti, A. Zeeshan

where
L1 =

M
√
ζ√

− ((−1 + C) (1 + ζ))
,

L2 = M6Nζ +M4dp/dx(N − Ecdp/dx)ζ,

L3 = (−1 + C)EcL2
1N(dp/dx)2(1 + ζ])(sech[hL1]

2),

L4 = − Pr

(−1 + C)M4N(1 +Nr(1− C)−1Pr)ζ

The volume flow rates for the fluid phase and the particulate phase are
given by:

Q = (1− C)

∫ h

0
ŨfdỸ+C

∫ h

0
ŨpdỸ . (3.5)

The pressure gradient, denoted as dp/dx, is derived upon solving the
aforementioned equation. Subsequently, the non-dimensional pressure
rise, ∆p, is computed numerically using the following expression:

∆p =

∫ 2π

0

dp

dx
dx, (3.6)

4. RESULTS AND DISCUSSION

In this section, graphical representations of the relevant parameters are
presented to elucidate their distinctive characteristics. These parame-
ters include the Hartmann number (M), particle volume fraction (C),
Prandtl number (Pr), radiation parameter (Nr), Eckert number (Ec),
Schmidt number (Sc), and Soret number (Sr). To this end, Figures 2
through 9 illustrate the pressure rise, temperature profile, and concentra-
tion profile. The expression for pressure rise in Eq. (3.6) is determined
through numerical computations.
Peristaltic pumping is essential for the movement of different biological
fluids in a living organism during peristaltic occurrences. This mech-
anism is physically demonstrated in the human gastrointestinal tract.
The biomedical sector has created various devices utilizing the princi-
ple of peristalsis, including roller pumps, the heart-lung machine, and
finger pumps. Figures 2 to 5 depict the increase in pressure and the
pattern of velocity. Figure 2 clearly demonstrates that an increase in
particle volume fraction (C) leads to an enhancement in the pumping
rate in the retrograde pumping zone. However, this effect transitions in
the peristaltic pumping region and reverses in the co-pumping region.
Furthermore, Figure 2 demonstrates that an intensified magnetic field
(M) diminishes the increase in pressure in both the co-pumping area
and the vicinity of the peristaltic pumping area.
Figure 3 demonstrates that increasing values of the fluid parameter ζ
result in a reduction of pressure rise in the retrograde pumping region
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and an increase in the co-pumping region. Figures 4 and 5 depict the
velocity profile. Figure 4 demonstrates that an augmentation in the
volume flow rate (Q) results in a corresponding enhancement in the
velocity profile. However, the velocity diminishes as the magnetic field
(M) increases near the walls. Applying a magnetic field causes a Lorentz
force to be produced, which acts against the flow and decreases the speed
of the fluid. Figure 5 illustrates that the velocity profile diminishes as the
fluid parameter (ζ) increases, but it increases for values of y greater than
0.5. Moreover, an augmentation in the volume percentage of particles
(C) substantially amplifies the velocity profile.
Figures 6 through 9 depict the temperature distribution in relation
to particle volume fraction, Eckert number, radiation parameter, and
Prandtl number. Figure 6 demonstrates that elevated values of particle
volume fraction (C) result in an augmentation of the temperature profile.
The inclusion of solid particles in a dusty fluid diminishes the thermal
efficiency of heat transfer across a channel, leading to elevated tempera-
tures during propulsion. Figure 6 also shows that the temperature falls
as the radiation parameter (Nr) increases. Figure 7 demonstrates that
the Eckert number (Ec) has a positive effect on the temperature profile.
This indicates that kinetic energy is converted into heat through viscous
dissipation, resulting in an increase in temperature. The chosen values
of the Eckert number for this investigation are suitable, as greater values
(Ec > 2) indicate compressible flow, which is pertinent to this study.

Similarly, the Prandtl number amplifies the temperature profile, as
shown in Figure 7. The Prandtl number, defined as the ratio of thermal
diffusivity to momentum diffusivity, indicates that when the Prandtl
number is less than 1, thermal diffusivity is greater than momentum
diffusivity. This leads to more heat transport in the channel dusty sus-
pension and higher temperatures. Figure 8 demonstrates that increasing
values of the Eckert number (Ec) and Schmidt number (Sc) result in
a reduction of the concentration profile. The Schmidt number, which
represents the ratio of mass diffusivity to momentum diffusivity, plays
a crucial role in describing the flow. Figure 9 demonstrates that a sub-
stantial impact of the Soret number decreases the concentration profile.
Nevertheless, the concentration profile behavior exhibits similarity for
the Prandtl number, as depicted in Figure 9.
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Fig. 2: Correlation between Pressure Increase and Volume Flow Rate
for Various Coefficients C and M

Fig. 3: Relationship between Pressure Increase and Volume Flow Rate
for Distinct Values of C and ζ
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Fig. 4: Velocity Distribution for Different Parameters Q and M

Fig. 5: Velocity Distribution for Various Values of C and ζ
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Fig. 6: Temperature Profile for Different Values of C and Nr

Fig. 7 Temperature distribution for various values of Pr and Ec.
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Fig. 8: Concentration Distribution for Various Values of Ec and Sc

Fig. 9: Concentration Distribution for Different Parameters Pr and Sr

5. CONCLUSIONS

This study investigates the transmission of heat and mass during the
movement of solid particles in a dusty fluid, considering the influence of
nonlinear thermal radiation and Joule heating in the presence of mag-
netohydrodynamics (MHD). Velocity, temperature, and concentration
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profiles have been determined by analytical solutions, whereas the pres-
sure rise has been calculated using numerical methods. The magnetic
field and particle volume fraction have opposite impacts on the velocity
profile. To be more specific, a rise in magnetic field strength causes a de-
crease in velocity, whereas an increase in the fraction of particle volume
leads to an increase in velocity. As the radiation parameter increases,
the temperature profile decreases because of the greater radiative heat
loss. On the other hand, when the amount of particles in the fluid grows,
the temperature likewise increases, indicating that particles contribute
to the total heating of the fluid. Furthermore, it has been noted that
both the Prandtl number and the Eckert number play a role in enhanc-
ing the temperature distribution. Therefore, a higher temperature is
achieved when there is a greater thermal diffusivity and enhanced vis-
cous dissipation. On the other hand, the Schmidt number and the Soret
number cause a reduction in the concentration profile, indicating that
higher mass diffusivity and thermal diffusion effects lead to a decrease in
solute concentration. Ultimately, the present discoveries can be reduced
to those of a Newtonian fluid by allowing the value of ζ to tend towards
infinity. This simplification simplifies the complex behavior of the dusty
fluid to the more basic dynamics of Newtonian fluids.
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