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ABSTRACT. Deleanu, Frei and Hilton have developed the notion of gener-
alized Adams completion in a categorical context. In this note, it is shown
that given an algebra, its exterior algebra is isomorphic to the Adams com-
pletion of the algebra with respect to a chosen set of morphisms in a suitable
category.
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1. ADAMS COMPLETION

The notion of (generalized) Adams completion arose from a general categori-
cal completion process, suggested by Adams [1, 2]. Originally, this was con-
sidered for admissible categories and generalized homology (or cohomology)
theories. Subsequently, this notion has been considered in a more general
framework by Deleanu, Frei and Hilton [5] where an arbitrary category and
an arbitrary set of morphisms of the category are considered.

It is to be emphasized that many algebric and geometrical constructions in
algebra, general topology, algebric topology can be viewed as Adams comple-
tions or cocompletions of objects in suitable categories, with respect to care-
fully chosen sets of morphisms. The current work is also in the same direction.
The central idea of this note is to investigate a case that given an algebra, its
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clifford algebra is expressed in terms of Adams completion of the given alge-
bra.

Let C be a category and S a set of morphisms of C . Let C [S−1] denote
the category of fractions of C with respect to S and F : C → C [S−1], the
canonical functor. Let S denote the category of sets and functions. Then for a
given object Y of C ,C [S−1](-,Y ) : C → S defines a contravariant functor. If
this functor is representable by an object Ys of C , i.e., C [S−1](-,Y )∼= C (-,YS),
then YS is called the generalized Adams completion of Y with respect to the set
of morphisms S or simply the S-completion of Y. We shall often refer to YS as
the completion of Y [5].

2. EXTERIOR ALGEBRA

Let A be an associative algebra with unit element e and let F be a linear
mapping of V into A such that F(v)2 = 0 for all v∈V . Then F extends uniquely
to an associative algebra homomorphism F̃ from a unique associative algebra
homomorphism F̃ : ∧(V ) → A such that F̃(1) = e and F̃iA where iA is the
natural inclusion mapping of V = ∧1(V ) into ∧(V ) [10]

A
iA //

F
��

∧(V )

F̃}}{{
{{
{{
{{

A

.

For any R-module M the tensor algebra T (M) is defined to be the R-module
T (M) =

⊕∞
i=0 M⊗i = R⊕M⊕ (M⊗M)⊕·· · The map M → T (M) defined by

m 7→ (0,m,0 · · ·) is a morphism of R-modules, which gives an isomorphism of
R-modules of M with its image T 1(M)[8] .

Theorem 2.1. Let V,W be K-modules and let f : V → W be module isomor-
phism of K- modules. Then f has the following property: given a module
isomorphism g : V → T 1(V ), there exists a unique module isomorphism such
that g = θ f .

Proof. For w∈W , define θ : W → T 1(V ) by the rule θ(w) = g f−1(w). Clearly
θ is well-defined and is a homomorphism. We show that θ is one-one. If
θ(w) = θ(w′) then g f−1(w) = g f−1(w′) impling g( f−1(w)) = g( f−1(w′));
thus f−1(w) = f−1(w′) i.e., w = w′. Next we show that θ is onto. Since g, f
are surjective, we have T 1(V ) = g(V ) = g( f−1(W )) = θ(W ). Furthermore
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θ f (v) = θ( f (v)) = g f−1 f (v) = g(v) implying θ f = g, i.e., the following dia-
gram is commutative.

V
g //

f
��

T 1(V )

W
θ

<<y
y

y
y

We show that θ is unique. Let there exist another θ ′ : W → T 1(V ) such that
θ ′ f = g. Consider θ(w) = g f−1(w) = θ ′ f f−1(w) = θ ′(w) for each w ∈ W .
This completes the proof . �

Theorem 2.2. Let V,W be K-modules and let f : V →W be injective morphism
of K-modules and f (v)2 = 0 for all v ∈V . Then f has the following property:
given an injective K- module homorphism iv : V →∧(V ), there exists a unique
injective module such that θ ′ f = iv, i.e., the following diagram is commutative.

V
iv //

f
��

∧(V )

W
θ ′

<<z
z

z
z

Proof. By Theorem 2.1 , there exists a unique θ :W →T 1(V ) such that θ f = g.
Let g′ = ivg−1. Consider the diagram

T 1(V )
==

g

{{
{{
{{
{{
{ OO

θ
�
�
�

g′

##G
GG

GG
GG

GG

V
f

// W
θ ′

//____ ∧(V )

For w ∈W , define θ ′ : W →∧(V ) by the rule θ ′(w) = g′θ(w). Now consider
θ ′( f (v)) = g′θ( f (v)). For v ∈V let f (v) = w and we have θ ′ f (v) = θ ′(w) =
g′θ(w) = iV g−1θ(w) = iV f−1θ−1θ(w) = iV f−1(w) = iV (v), showing θ ′ f =
iV . We show that θ ′ is one-one. Now consider the commutative diagram

V
iV //

f
��

∧(V )

∧( f )
��

W

θ ′
==z

z
z

z

iW
// ∧(W )

.

Since ∧( f )θ ′ : W → ∧(W ) is injective we have that θ ′ is injective. Next we
show that θ ′(w)2 = 0. We have θ ′(w) = g′g(v). Since g is isomorphism, θ ′ is
well defined. Thus θ ′(w)2 = g′g(v)2 = 0.
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We show that θ ′ is unique. Let there exist θ ′′ : W →∧(V ) such that θ ′′ f =
g′g and g′θ = θ ′,g′θ = θ ′′. Here θ ′( f (v)) = g′θ( f (v)) = θ ′′( f (v)) implies
θ ′ = θ ′′. This completes the proof . �

3. THE CATEGORY A

Let U be a fixed Grothendieck universe [9]. Let A denote the category of
all K- module and module homomorphisms. We assume that the underlying
sets of the elements of A are elements of U . Let S denote the set of all maps
f : M → N such that f is injective and f (m)2 = 0 for all m ∈ M.

Proposition 3.1. Let si : P → Q lies in S, for each i ∈ I, where the index set I
is an element of U . Then ∨

i∈I
Si : ∨

i∈I
P → ∨

i∈I
Q lies in S.

Proof. Coproducts in A are direct sums equipped with a collection of projec-
tion maps. Here P = ∨

i∈I
Pi = ⊕

i∈I
Pi = ∏

i∈I
Pi,Q = ∨

i∈I
Qi = ⊕

i∈I
Qi = ∏

i∈I
Qi. Define

s = ∨
i∈I

si : P → Q by the rule s(p) = (si(pi))i∈I. Clearly, s is well defined and

is also a homomorphism. In order to show s is injective, take p, p′ ∈ P and
consider s(p) = s(p′). Then (si(pi))i∈I = (si(p′i))i ∈ I for each i ∈ I (since si is
injective for each i ∈ I) showing p = p′. Hence s is injective. Now we have to
show that s(p)2 = 0. Consider s(p)2 = s(p)∧ s(p) =−(s(p)∧ s(p)) implying
2(s(p)∧ s(p)) = 0. Thus s(p)∧ s(p) = 0. This competes the proof. �

We will show that the set of morphisms S of the category A of K-modules
and homomorphisms admits a calculus of left fraction.

Proposition 3.2. S admits a calculus of left fractions.

Proof. Let M,N,P be in A . Let s : M → N and t : N → P be two morphisms
of the category A . We have to show that ts(m)2 = 0 for all m ∈ M. Since s and
t are in S, we have s(m)2 = 0, t(n)2 = 0. Consider ts(m)2 = t(s(m))2 = 0 for
all m ∈ M. So S is a closed family of morphisms of category A .We shall verify
conditions (i) and (ii) of Theorem 1.3 ([5], P.67). Let s, t be two morphisms as
described above of the category A . We show that if ts ∈ S and s ∈ S, then t ∈ S
i.e., t(n)2 = 0 and t is injective. Consider the following commutative diagram.

M s //

iM
��

N t //

iN
��

P

iP
��

φ ′

{{ww
ww
ww
ww
w

∧(M)
∧(s)

// ∧(N)
∧(t)

// ∧(P)
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From the above diagram we have a diagram

∧(M)
==

iM

{{
{{
{{
{{

OO
φ
�
�
�

∧(s)

##G
GG

GG
GG

G

M
ts

// P
φ ′

//____ ∧(N)

By Theorem 2.2, φ is one-one and φts = iM. Again we have φ ′ = ∧(s)φ
implying φ ′ is injective. From φ ′t = iN we conclude t is injective. Now con-
sider t(n)2 = t(n)∧ t(n) = −(t(n)∧ t(n)) implying 2(t(n)∧ t(n)) = 0. Thus
t(n)∧ t(n) = 0. Hence the condition (i) of Theorem 1.3 ([5],P.67) holds.

In order to prove conditions (ii) of 1.3 ([5],P.67) consider the diagram

A
f //

s
��

B

C

in A with s ∈ S. We assert that the above diagram can be embedded to a weak
push-out diagram

A
f //

s
��

B

t
���
�
�

C g
//___ D

in A with t ∈ S. Let D = (B⊕C)/N where N is a sub module of B⊕C gener-
ated by {( f (a),−s(a) : a ∈ A}. Define t : B → D by the rule t(b) = (b,0)+N
and g : C → D by the rule g(c) = (0,c)+N. Clearly, the two maps are well de-
fined and homomorphisms. For any a ∈ A, t f (a) = ( f (a),0)+N = (0,s(a))+
N = gs(a), impling that t f = gs. Hence the diagram is commutative.

Next we show t ∈ S, i.e., t is injective. Take b ∈ B with t(b) = N; this im-
plies (b,0)+N = N i.e., (b,0) ∈ N. So (b,0) = ( f (a),−s(a)) from which it
follows that a = 0. Now we get f (0) = (b) = 0. Thus t is injective. Clearly
t(b)2 = 0 for all b ∈ B.

Next let u : B → X and v : C → X be in category A such that u f = vs.
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A
f //

s
��

B

t
�� u

��

C g
//

v //

D
θ

��?
?

?
?

X

.

Define θ : D → X , by the rule θ((b,c)+N) = u(b)+ v(c). It is easy to show
that θ is well defined and also a homomorphism. Next we show the two tri-
angles are commutative. For any b ∈ B,θ t(b) = θ((b,0)+N) = u(b) and for
any c ∈C,θg(c) = θ(0,(c)+N) = v(c). So θ t = u and θg = v.

For showing the uniqueness of θ suppose that there exists another θ ′ : D →
X with θ ′t = u and θ ′g = v. For any d = (b,c),θ(d +N) = u(b) + v(c) =
θ ′t(b)+θ ′g(c) = θ ′(t(b)+θ ′g(c)) = θ ′(b),0)+N +(0,c+N) = θ ′((b,0)+
(0,c)+N) = θ ′(b,c)+N = θ ′(d+N). Therefore, θ is unique. This completes
the proof . �
Theorem 3.3. The category A is cocomplete.

From Theorems 3.1, 3.2 and 3.3 we see that all the conditions of the Theo-
rem 1([7], P.32) are satisfied, hence we have the following result.

Theorem 3.4. Every object V of the category A has an Adams completion VS
with respect to the set of morphisms S. Furthermore, there exists a morphism
e : V →VS in S which is couniversal with respect to the morphisms in S : given
a morphism s : V →U in S there exists a unique morphism t : U →VS in S such
that ts = e. In other words the following diagram is commutative :

V e //

s
��

VS

U
t

??~
~

~
~

Theorem 3.5. The morphism e : V →VS is in S.

Proof. S1 = {s : P → Q in A | s is a injective and s(p)2 = 0 } S2 = {s : P →
Q in A | s is a homomorphism}. For S1 and S2, it easily follows that all the
conditions of (Theorem 1.3 [4], P.533) are satisfied. Therefore, e ∈ S. This
completes the proof. �

We show that the Exterior algebra ∧(V ) of a K- module V , is precisely the
Adams completion VS of V .

Theorem 3.6. ∧(V )∼=VS.
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Proof. Consider the following diagram :

V
g //

e
��

∧(V )

VS

φ

==z
z

z
z

By Theorem 2.1, there exists a unique morphism φ : VS →∧(V ) in S such that
φe = g.

Next consider the following diagram :

V e //

g
��

VS

∧(V )

ψ

==z
z

z
z

By Theorem 3.4, there exists a unique morphism ψ : ∧(V )→VS in S such that
ψg = e.

Consider the following diagram :

V e //

e

��

VS

∧(V )

ψ

==zzzzzzzz

VS

φ

==zzzzzzzz 1VS

==zzzzzzzzzzz

We have ψφe = ψg = e. By the uniqueness condition of the couniversal prop-
erty of e, we conclude ψφ = 1VS .

Next consider the following diagram :

V
g //

g

��

∧(V )

VS

φ

==zzzzzzzz

∧(V )

ψ

==zzzzzzzz 1∧(V )

==zzzzzzzzzzz
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We have φψg = φe = g. By the uniqueness condition of the couniversal prop-
erty of g, we conclude φψ = 1∧(V ).

Thus ∧(V )∼=VS. This completes the proof �
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