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A triple sequence (real or complex) can be defined as a function x :
N×N×N → R (C) , where N,R and C denote the set of natural numbers,
real numbers and complex numbers respectively. The different types of
notions of triple sequence was introduced and investigated at the initial
by ”Duden et al [3], Sahiner et al. [15], Esi et al. [4-7], Datta et al. [1],
Debnath et al. [2]” and many others.
A triple sequence x = (xmnk) is said to be triple analytic if

supm,n,k |xmnk|
1

m+n+k < ∞.

The space of all triple analytic sequences are usually denoted by Λ3.
A triple sequence x = (xmnk) is called triple entire sequence if

|xmnk|
1

m+n+k → 0 as m,n, k → ∞.

The space of all triple entire sequences are usually denoted by Γ3.
A triple sequence x = (xmnk) is called triple chi sequence if

((m+ n+ k)! |xmnk|)
1

m+n+k → 0 as m,n, k → ∞.

The space of all triple chi sequences are usually denoted by χ3.
The space Λ3 and Γ3 is a metric space with the metric

d(x, y) = supm,n,k

{
|xmnk − ymnk|

1
m+n+k : m,n, k : 1, 2, 3, ...

}
, (0.1)

for allx = {xmnk}andy = {ymnk} inΓ3.
The notion of difference sequence spaces (for single sequences) was

introduced by Kizmaz [10] as follows

Z (∆) = {x = (xk) ∈ w : (∆xk) ∈ Z}
for Z = c, c0 and ℓ∞, where ∆xk = xk − xk+1 for all k ∈ N.

Let w3, χ3 (∆mnk) ,Λ
3 (∆mnk) be denote the spaces of all, triple gai

difference sequence space and triple analytic difference sequence space
respectively. The difference triple sequence space was introduced by
Debnath et al. (see [2]) and is defined as
∆xmnk = xmnk−xm,n+1,k−xm,n,k+1+xm,n+1,k+1−xm+1,n,k+xm+1,n+1,k+
xm+1,n,k+1 − xm+1,n+1,k+1 and ∆0xmnk = ⟨xmnk⟩ .

1. Definitions and Preliminaries

Throughout the article w3, χ3 (∆) ,Λ3 (∆) denote the spaces of all,
triple gai difference sequence spaces and triple analytic difference se-
quence spaces respectively.

For a triple sequence x ∈ w3, Murugesan et al. introduced by ([13]),
the spaces Γ3 (∆) ,Λ3 (∆) as follows:
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Γ3 (∆) =
{
x ∈ w3 : |∆xmnk|1/m+n+k → 0asm, n, k → ∞

}
Λ3 (∆) =

{
x ∈ w3 : supm,n,k |∆xmnk|1/m+n+k < ∞

}
.

The spaces Γ3 (∆) ,Λ3 (∆) are metric spaces with the metric

d (x, y) = supm,n,k

{
|∆xmnk −∆ymnk|1/m+n+k : m,n, k = 1, 2, · · ·

}
for all x = (xmnk) and y = (ymnk) in Γ3 (∆) ,Λ3 (∆) .

1.1. Definition. An Orlicz function ([see [9]) is a functionM : [0,∞) →
[0,∞) which is continuous, non-decreasing and convex with M (0) =
0, M (x) > 0, for x > 0 and M (x) → ∞ as x → ∞. If convexity of
Orlicz function M is replaced by M (x+ y) ≤ M (x) +M (y) , then this
function is called modulus function.

”Linden-strauss and Tzafriri ([11])” used the idea of Orlicz function
to construct Orlicz sequence space.

A sequence g = (gmnk) defined by

gmnk (v) = sup {|v|u− (fmnk) (u) : u ≥ 0} ,m, n, k = 1, 2, · · ·
is called the complementary function of a Musielak-Orlicz function f .
For a given Musielak-Orlicz function f, (see [12] ) the Musielak-Orlicz
sequence space tf is defined as follows

tf =
{
x ∈ w3 : If (|xmnk|)1/m+n+k → 0asm, n, k → ∞

}
,

where If is a convex modular defined by

If (x) =
∑∞

m=1

∑∞
n=1

∑∞
k=1 fmnk (|xmnk|)1/m+n+k , x = (xmnk) ∈ tf .

We consider tf equipped with the Luxemburg metric

d (x, y) =
∑∞

m=1

∑∞
n=1

∑∞
k=1 fmnk

(
|xmnk|1/m+n+k

mnk

)
is an exteneded real number.

1.2. Definition. Let X,Y be a real vector space of dimension m, where
n ≤ m.A real valued function dp(x1, . . . , xn) = ∥(d1(x1, 0), . . . , dn(xn, 0))∥p
on X satisfying the following four conditions:
(i) ∥(d1(x1, 0), . . . , dn(xn, 0))∥p = 0 if and only if d1(x1, 0), . . . , dn(xn, 0)
are linearly dependent,
(ii) ∥(d1(x1, 0), . . . , dn(xn, 0))∥p is invariant under permutation,
(iii) ∥(αd1(x1, 0), . . . , dn(xn, 0))∥p = |α| ∥(d1(x1, 0), . . . , dn(xn, 0))∥p, α ∈
R
(iv) dp ((x1, y1), (x2, y2) · · · (xn, yn)) = (dX(x1, x2, · · ·xn)p + dY (y1, y2, · · · yn)p)1/p
for1 ≤ p < ∞; (or)
(v) d ((x1, y1), (x2, y2), · · · (xn, yn)) := {dX(x1, x2, · · ·xn), dY (y1, y2, · · · yn)} ,
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for x1, x2, · · ·xn ∈ X, y1, y2, · · · yn ∈ Y is called the p product metric of
the Cartesian product of n metric spaces (see [13]) .

1.3. Definition. Let X be a linear metric space. A function ρ : X → R
is called paranorm, if
(1) ρ (x) ≥ 0, for all x ∈ X;
(2) ρ (−x) = ρ (x) , for all x ∈ X;
(3) ρ (x+ y) ≤ ρ (x) + ρ (y) , for all x, y ∈ X;
(4) If (σmnk) is a sequence of scalars with σmn → σ as m,n, k → ∞ and
(xmnk) is a sequence of vectors with ρ (xmnk − x) → 0 as m,n → ∞,
then ρ (σmnkxmnk − σx) → 0 as m,n, k → ∞.
A paranorm w for which ρ (x) = 0 implies x = 0 is called total para-
norm and the pair (X,w) is called a total paranormed space. It is well
known that the metric of any linear metric space is given by some total
paranorm.

The notion of ideal convergence was introduced first by Kostyrko et
al. [14]. as a generalization of statistical convergence which was fur-
ther studied in topological spaces by Gunawan et al. [8] and also more
applications of ideals can be deals with various authors by B.Hazarika.

1.4. Definition. A family I ⊂ 2Y×Y×Y of subsets of a non empty set
Y is said to be an ideal in Y if
(1) ϕ ∈ I
(2) A,B ∈ I imply A

⋃
B ∈ I

(3) A ∈ I,B ⊂ A imply B ∈ I.
while an admissible ideal I of Y further satisfies {x} ∈ I for each x ∈

Y. Given I ⊂ 2N
3
be a non trivial ideal in N3. A sequence (xmnk)m,n,k∈N3

in X is said to be I− convergent to 0 ∈ X, if for each ϵ > 0 the set
A (ϵ) =

{
m,n, k ∈ N3 : ∥(d1(x1), . . . , dn(xn))− 0∥p ≥ ϵ

}
belongs to I.

1.5. Definition. A non-empty family of sets F ⊂ 2X×X×X is a filter
on X if and only if
(1) ϕ ∈ F
(2) for each A,B ∈ F, we have imply A

⋂
B ∈ F

(3) each A ∈ F and each A ⊂ B, we have B ∈ F.

1.6. Definition. An ideal I is called non-trivial ideal if I ̸= ϕ and
X /∈ I. Clearly I ⊂ 2X×X×X is a non-trivial ideal if and only if F =
F (I) = {X −A : A ∈ I} is a filter on X.

1.7. Definition. A non-trivial ideal I ⊂ 2X×X×X is called (i) admissi-
ble if and only if {{x} : x ∈ X} ⊂ I. (ii) maximal if there cannot exists
any non-trivial ideal J ̸= I containing I as a subset.

If we take I = If =
{
A ⊆ N3 : A is a finite subset

}
. Then If is a
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non-trivial admissible ideal of N and the corresponding convergence coin-
cides with the usual convergence. If we take I = Iδ =

{
A ⊆ N× N3 : δ(A) = 0

}
where δ (A) denote the asyptotic density of the set A. Then Iδ is a non-
trivial admissible ideal of N3 and the corresponding convergence coin-
cides with the statistical convergence.

Let D denote the set of all closed and bounded intervals X = [x1, x2]
on the real line R × N. For X,Y ∈ D, we define X ≤ Y if and only
if x1 ≤ y1 and x2 ≤ y2, d(X,Y ) = max {|x1 − y1| , |x2 − y2|}, where
X = [x1, x2] and Y = [y1, y2].

Then it can be easily seen that d defines a metric on D and (D, d) is
a complete metric space. Also the relation ≤ is a partial order on D. A
fuzzy number X is a fuzzy subset of the real line R× R i.e. a mapping
X : R → J (= [0, 1]) associating each real number t with its grade of
membership X (t).

1.8. Definition. A fuzzy number X is said to be (i) convex if X (t) ≥
X (s)∧X (r) = min {X (s) , X (r)}, where s < t < r. (ii) normal if there
exists t0 ∈ R×R such that X (t0) = 1. (iii) upper semi-continuous if for
each ϵ > 0, X−1 ([0, a+ ϵ]) for all a ∈ [0, 1] is open in the usual topology
of R3.

Let R (J) denote the set of all fuzzy numbers which are upper semi-

continuous and have compact support, i.e. if X ∈ R (J)3 the for any α ∈
[0, 1] , [X]α is compact, where [X]α =

{
t ∈ R3 : X (t) ≥ α, if α ∈ [0, 1]

}
,

[X]0 =closure of
({

t ∈ R3 : X (t) > α, ifα = 0
})

.

The set R of real numbers can be embedded R (J)3 if we define
r̄ ∈ R3 (J) by

r̄ (t) =

{
1, if t = r :

0, if t ̸= r

The absolute value, |X| of X ∈ R (J) is defined by

|X| (t) =

{
max {X (t) , X (−t)} , if t ≥ 0;

0, if t < 0

Define a mapping d̄ : R3 (J) → R+ ∪ {0}by
d̄ (X,Y ) = sup0≤α≤1d ([X]α , [Y ]α) .

It is known that
(
R (J) , d̄

)
is a complete metric space.

1.9. Definition. A metric on R3 (J) is said to be translation invariant
if d̄ (X + Z, Y + Z) = d̄ (X,Y ), for X,Y, Z ∈ R3 (J) .

1.10. Definition. A sequence X = (Xmnk) of fuzzy numbers is said to
be convergent to a fuzzy number X0 if for every ϵ > 0, there exists a
positive integer n0 such that d̄ (Xmnk, X0) < ϵ for all m,n, k ≥ n0.
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1.11. Definition. A sequence X = (Xmnk) of fuzzy numbers is said to
be (i) I-convergent to a fuzzy number X0 if for each ϵ > 0 such that

A =
{
m,n, k ∈ N3 : d̄ (Xmnk, X0) ≥ ϵ

}
∈ I.

The fuzzy number X0 is called I-limit of the sequence (Xmnk) of fuzzy
numbers and we write I − limXmnk = X0. (ii) I-bounded if there exists
M > 0 such that{

m,n, k ∈ N3 : d (Xmn, 0̄) > M
}
∈ I.

1.12. Definition. A sequence space EF of fuzzy numbers is said to
be (i) solid ( or normal) if (Ymnk) ∈ EF whenever (Xmnk) ∈ EF and
d̄ (Ymnk, 0̄) ≤ d̄ (Xmnk, 0̄) for allm,n, k ∈ N3. (ii) symmetric if (Xmnk) ∈
EF implies

(
Xπ(mnk)

)
∈ EF where π is a permutation of N3.

Let K = {k1 < k2 < ...} ⊆ N and E be a sequence space. A K-step
space of E is a sequence space

λE
mnk =

{(
Xmpnpkp

)
∈ w3 : (mpnpkp) ∈ E

}
.

A canonical preimage of a sequence
{(

xmpnpkp

)}
∈ λE

K is a sequence

{ymnk} ∈ w3 defined as

ymnk =

{
xmnk, if m,n, k ∈ E

0, otherwise.

A canonical preimage of a step space λE
K is a set of canonical preimages

of all elements in λE
K , i.e. y is in canonical preimage of λE

K if and only if
y is canonical preimage of some x ∈ λE

K .

1.13. Definition. A sequence space EF is said to be monotone if EF

contains the canonical pre-images of all its step spaces.

1.14. Lemma. A sequence space EF is normal implies EF is monotone.
(For the crisp set case, one may refer to Kamthan and Gupta [9], page
53).

1.15. Lemma. If I ⊂ 2N
3
is a maximal ideal, then for each A ⊂ N3 we

have either A ∈ I or N3 −A ∈ I.

2. Some new integrated sequence spaces of fuzzy numbers

The main aim of this article to introduce the following sequence spaces
and examine topological and algebraic properties of the resulting se-
quence spaces. Let p = (pmnk) be a sequence of positive real num-
bers for all m,n, k ∈ N3. f = (fmnk) be a Musielak-Orlicz function,(
X, ∥(d (x1) , d (x2) , · · · , d (xn−1))∥p

)
be a p−metric space, and (λmnk)

be a sequence of non-zero scalars,

µmnk (X) = d̄
(
λmnk ((m+ n+ k)!∆mXmnk)

1/m+n+k , 0̄
)
and
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ηmnk (X) = d̄
(
λmnk (∆

mXmnk)
1/m+n+k , 0̄

)
are sequence spaces of fuzzy

numbers, we define the following sequence spaces as follows:[
χ3q
fµ, ∥(d (x1) , d (x2) , · · · , d (xn−1))∥p

]I(F )
={

(r, s, t) ∈ N3 :
[
fmnk

(
∥µmnk (x) , (d (x1) , d (x2) , · · · , d (xn−1))∥p

)]qmnk

≥ ϵ
}
∈

I,[
Λ3q
fµ, ∥(d (x1) , d (x2) , · · · , d (xn−1))∥p

]I(F )
={

(r, s, t) ∈ N3 :
[
fmnk

(
∥ηmnk (x) , (d (x1) , d (x2) , · · · , d (xn−1))∥p

)]qmnk

≥ K
}
∈

I.

2.1. Theorem. Let f = (fmnk) be a Musielak-Orlicz function, q =
(qmnk) be a triple analytic sequence of strictly positive real numbers,
the sequence spaces[
χ3q
fµ, ∥(d (x1) , d (x2) , · · · , d (xn−1))∥p

]I(F )
and

[
Λ3q
fµ, ∥(d (x1) , d (x2) , · · · , d (xn−1))∥p

]I(F )

are linear spaces.

Proof: We prove the result only for the space
[
χ3q
fµ, ∥(d (x1) , d (x2) , · · · , d (xn−1))∥p

]I(F )
.

The other spaces can be treated, similarly. Let X = (Xmnk) and Y =

(Ymnk) be three elements
[
χ3q
fµ, ∥(d (x1) , d (x2) , · · · , d (xn−1))∥p

]I(F )
. We

have
A ϵ

2
={

(r, s, t) ∈ N3 :
[
fmnk

(
∥µmnk (x) , (d (x1) , d (x2) , · · · , d (xn−1))∥p

)]qmnk

≥ ϵ
2

}
∈

I
and
B ϵ

2
={

(r, s, t) ∈ N3 :
[
fmnk

(
∥µmnk (y) , (d (x1) , d (x2) , · · · , d (xn−1))∥p

)]qmn

≥ ϵ
2

}
∈

I.
Let α and β be two scalars. By the Musielak continuity of the function
f = (fmnk) the following inequality holds:[
fmnk

(∥∥∥µmnk(αx+βy)
|α|+|β| , (d (x1) , d (x2) , · · · , d (xn−1))

∥∥∥
p

)]qmnk

≤

D
[

|α|
|α|+|β|fmnk

(
∥µmnk (x) , (d (x1) , d (x2) , · · · , d (xn−1))∥p

)]qmnk

+

D
[

|β|
|α|+|β|fmnk

(
∥µmnk (y) , (d (x1) , d (x2) , · · · , d (xn−1))∥p

)]qmn

≤

D
[
fmnk

(
∥µmnk (x) , (d (x1) , d (x2) , · · · , d (xn−1))∥p

)]qmnk

+

D
[
fmnk

(
∥µmnk (y) , (d (x1) , d (x2) , · · · , d (xn−1))∥p

)]qmnk

. From the above
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relation we obtain the following:{
(r, s, t) ∈ N3 :

[
fmn

(∥∥∥µmnk(αx+βy)
|α|+|β| , (d (x1) , d (x2) , · · · , d (xn−1))

∥∥∥
p

)]qmnk

≥ ϵ

}
⊆{

(r, s, t) ∈ N3 : DK
[
fmnk

(
∥µmnk (x) , (d (x1) , d (x2) , · · · , d (xn−1))∥p

)]qmnk

≥ ϵ
2

}
∪{

(r, s, t) ∈ N3 : DK
[
fmnk

(
∥µmnk (y) , (d (x1) , d (x2) , · · · , d (xn−1))∥p

)]qmnk

≥ ϵ
2

}
∈

I. This completes the proof.

2.2. Remark. It is easy to verify
[
Λ3q
fµ, ∥(d (x1) , d (x2) , · · · , d (xn−1))∥p

]I(F )

is a linear space

2.3. Theorem. The classes of sequences
[
χ3q
fµ, ∥(d (x1) , d (x2) , · · · , d (xn−1))∥p

]F
and

[
Λ3q
fµ, ∥(d (x1) , d (x2) , · · · , d (xn−1))∥p

]F
are paranormed spaces para-

normed by g, defined by

g (X) =

inf
{

qmnk
H : supmnkfmnk

(
∥µmnk (x) , (d (x1) , d (x2) , · · · , d (xn−1))∥p

)
≤ 1

}
where H = max {1, supmnkqmnk} .
Proof: Clearly g (X) ≥ 0, g (−X) = g (X) and g (X + Y ) ≤ g (X) +
g (Y ) . Next we show the continuity of the product. Let α be fixed and
g (X) → 0. Then it is obvious that g (αX) → 0. Next let α → 0 andX be

fixed. Since fmnk are continuous, we have fmnk

(
α ∥µmnk (x) , (d (x1) , d (x2) , · · · , d (xn−1))∥p

)
→

0, as α → 0. Thus we have

inf
{

qmnk
H : supmnkfmnk

(
∥µmnk (x) , (d (x1) , d (x2) , · · · , d (xn−1))∥p

)
≤ 1

}
→

0, as α → 0.

Hence g (αX) → 0 as α → 0. Therefore g is a paranorm.

2.4. Proposition.
[
χ3q
fµ, ∥(d (x1) , d (x2) , · · · , d (xn−1))∥p

]I(F )
⊂[

Λ2q
fµ, ∥(d (x1) , d (x2) , · · · , d (xn−1))∥p

]I(F )
and the inclusion is proper

Proof: Let I (F ) = I, fmnk

(
∥µmnk (x) , (d (x1) , d (x2) , · · · , d (xn−1))∥p

)
=

(−1)m+n+k , λmnk = qmnk = m,n, k = 1 then µ (x) =
[
Λ3q
fµ, ∥(d (x1) , d (x2) , · · · , d (xn−1))∥p

]I(F )

but (xmnk) /∈
[
χ3q
fµ, ∥(d (x1) , d (x2) , · · · , d (xn−1))∥p

]I(F )
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2.5. Theorem. The spaces
[
χ3q
fµ, ∥(d (x1) , d (x2) , · · · , d (xn−1))∥p

]I(F )

and[
Λ3q
fµ, ∥(d (x1) , d (x2) , · · · , d (xn−1))∥p

]I(F )
are neither solid nor mono-

tone in general
Proof: Let (xmnk) be a given sequence and (αmnk) be a sequence of
scalars such that |αmnk| ≤ 1, for all m,n, k ∈ N3. Then we have[
fmnk

(
∥µmnk (αx) , (d (x1) , d (x2) , · · · , d (xn−1))∥p

)]qmnk

≤[
fmnk

(
∥µmnk (x) , (d (x1) , d (x2) , · · · , d (xn−1))∥p

)]qmnk

, for allm,n, k ∈
N3.
If ∆mnk = 1 then solidness follows above inequality. The monotonicity
follows by lemma 2.12.
The first part of the proof follows from the following example:

Example: Let I (F ) = I,
[
fmnk

(
∥µmnk (x) , (d (x1) , d (x2) , · · · , d (xn−1))∥p

)]qmnk

=[
f
(
∥µmnk (x) , (d (x1) , d (x2) , · · · , d (xn−1))∥p

)]qmnk

=[(
∥µmnk (x) , (d (x1) , d (x2) , · · · , d (xn−1))∥p

)]qmnk

,m, n, k = 1, λmnk =

1 for all m,n, k ∈ N, qmnk = 1 for m,n, k odd, qmnk = 3 for m,n, k even,

(xmnk) = (mnk)m+n+k for allm,n, k ∈ N3 belongs to
[
Λ3q
µ , ∥(d (x1) , d (x2) , · · · , d (xn−1))∥p

]I
.

For E, a sequence space, consider its step space EJ defined by (ymnk) ∈
EJ implies ymnk = 0 for all m,n, k odd and ymnk = xmnk for m,n, k
even. Then

(ymnk) ∈
[
Λ3q
µ , ∥(d (x1) , d (x2) , · · · , d (xn−1))∥p

]I
J
. Hence the spaces are

not monotone. Hence are not solid.

2.6. Theroem. The spaces
[
χ3q
µ , ∥(d (x1) , d (x2) , · · · , d (xn−1))∥p

]I
and[

Λ3q
µ , ∥(d (x1) , d (x2) , · · · , d (xn−1))∥p

]I
are not convergence free

Example: Let I (F ) = I,
[
fmnk

(
∥µmnk (x) , (d (x1) , d (x2) , · · · , d (xn−1))∥p

)]qmnk

=[
f
(
∥µmnk (x) , (d (x1) , d (x2) , · · · , d (xn−1))∥p

)]qmnk

=[(
∥µmnk (x) , (d (x1) , d (x2) , · · · , d (xn−1))∥p

)]qmnk

,m, n, k = 1, λmnk =

1 for all m,n, k ∈ N, qmnk = 1 for m,n, k odd, qmnk = 2 for m,n, k even,

consider the sequence (xmnk) = (mnk)−(m+n+k) for all m,n, k ∈ N3 be-

longs to each of
[
χ3q
µ , ∥(d (x1) , d (x2) , · · · , d (xn−1))∥p

]I
. and

[
Λ3q
µ , ∥(d (x1) , d (x2) , · · · , d (xn−1))∥p

]I
.

Consider the sequence (ymnk) defined by (ymnk)
1/m+n+k = m3n3k3, for

all m,n, k ∈ N3. Then (ymnk) neither belongs to



The Generalized difference of d
(
χ3I

)
253[

χ3q
µ , ∥(d (x1) , d (x2) , · · · , d (xn−1))∥p

]I
nor

[
Λ3q
µ , ∥(d (x1) , d (x2) , · · · , d (xn−1))∥p

]I
.

Hence the spaces are not convergence free.
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