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Abstract. Elzaki transform and Adomian polynomial is used to
obtain the exact solutions of nonlinear fifth order Korteweg-de Vries
(KdV) equations. In order to investigate the effectiveness of the
method, three fifth order KdV equations were considered. Ado-
mian polynomial is introduced as an essential tool to linearize all
the nonlinear terms in any given equation because Elzaki transform
cannot handle nonlinear functions on its own. In all the three prob-
lems considered, the series solutions obtained converges to the exact
solutions. Three dimensional graphs were also plotted to give the
shape of the solutions of some KdV equations considered. Hence,
Elzaki transform and Adomian polynomial together gives a very
powerful and effective method for solving nonlinear partial differ-
ential equations.
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1. Introduction

In 1895, D.J. Korteweg and G. de Vries derived Korteweg-de Vries
(KdV) equation, they proposed that KdV equation describes the prop-
agation of shallow water wave. Several attempts have been made by
scientists to obtain the solution of KdV equation which is called soliton
after its discovery. The word soliton which is a solution to a nonlinear
partial differential equation was used for the first time by Zabusky and
Kruskal [30]. The KdV equation was categorized as a typical nonlinear
partial differential equation that results to soliton solution.

The Fifth order Korteweg-de Vries (KdV) equation is of the form
[5, 26]:

ϕt − aϕxxxxx = F (x, t, ϕ, ϕ2, ϕx, ϕxx, ϕxxx), (1.1)

with the initial conditions

ϕ(x, 0) = f(x). (1.2)

where a is a constant, this equation occur in the theory of magnetoa-
coustic waves in plasmas [1] as well as shallow water waves with surface
tension [18]. Over the years, the fifth order KdV equation has been
studied extensively. Previous studies showed that the travelling-wave
solutions of this equation do not vanish at infinity [3, 4].

So many methods have been applied to find the approximate analyti-
cal solutions and numerical solutions of KdV equations and some nonlin-
ear differential equations. These methods are Homotopy Perturbation
method using Elzaki Transform [6], Homotopy Perturbation method [9],
Numerical solutions to a linearized KdV equation on unbounded do-
main [31], the numerical solutions of KdV equation using radial basis
functions [7], numerical solution of separated solitary waves for KdV
equation through finite element technique [23]. Moreover, several other
methods have also been used to solve KdV equations, which are given
in [2, 19, 22, 24, 25, 27, 28, 29].

The solutions of nonlinear KdV equations by Elzaki transform method
(ETM) and Adomian Polynomial is obtained in this paper. This method
gives the solutions as an approximate analytical solutions in series form,
most of the time the series solutions converge to the exact solutions.

This article is structured as follows. Section 2 contain the basic def-
initions and the properties of the proposed method. Section 3 shows
the theoretical approach of the proposed method on KdV equation. In
section 4, we applied the Elzaki transform method and Adomian poly-
nomial to solve three problems in order to show its efficiency.



Adomian Polynomial and Elzaki Transform Method for Solving KdV Equation 105

2. Properties of Elzaki transform

Elzaki transform [8, 10, 11, 12, 13, 14, 15] is defined for function of
exponential order as

A =

{
f(t) : ∃M, c1, c2 > 0, |f(t)| < Me

|t|
cj , if t ∈ (−1)j × [0,∞)

}
,

for any given function in the set A defined above, the constant c1, c2
may either be finite or infinite, but M must definitely be infinite.

According to Tarig Elzaki [11], Elzaki transform is defined as:

E[f(t)] = u2
∫ ∞

0
f(ut)e−tdt = T (u), t ≥ 0, u ∈ (c1, c2),

or

E[f(t)] = u

∫ ∞

0
f(t)e−

t
udt = T (u), t ≥ 0, u ∈ (c1, c2). (2.1)

where u in the above definition is used to factor t in the analysis of
function f .

Let T (u) be the Elzaki transform of f(t) that is, E[f(t)] = T (u), then:

(i) E[f ′(t)] = T (u)
u − uf(0).

(ii) E[f ′′(t)] = T (u)
u2 − f(0)− uf ′(0).

(iii) E[f (n)(t)] = T (u)
un −

∑n−1
k=0 u

2−n+kf (k)(0).

E[f(t)] = T (u) means that T (u) is the Elzaki transform of f(t), and
f(t) is the inverse Elzaki transform of T (u). that is,

f(t) = E−1[T (u)].

In order to obtain the Elzaki transform of partial derivative, we used
the integration by part on the definition of Elzaki transform and the
resulting expressions is given by [16]

E

[
∂f(x, t)

∂t

]
=

T (x, v)

v
− vf(x, 0),

E

[
∂2f(x, t)

∂t2

]
=

T (x, v)

v2
− f(x, 0)− v

∂f(x, 0)

∂t
,

E

[
∂f(x, t)

∂x

]
=

d

dx
[T (x, v)],

E

[
∂2f(x, t)

∂x2

]
=

d2

dx2
[T (x, v)],

E

[
∂3f(x, t)

∂x3

]
=

d3

dx3
[T (x, v)].
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3. Theoretical Approach: Elzaki transform on fifth Order
KdV equation

The main focus is to solve the fifth order nonlinear KdV equations
considered in this article. According to [20, 21, 33], let us consider;

∂wϕ(x, t)

∂tw
+Rϕ(x, t) +Nϕ(x, t) = f(x, t), (3.1)

where w = 1, 2, 3, and the initial conditions is given as

∂w−1ϕ(x, t)

∂tw−1

∣∣∣
t=0

= gw−1(x),

The partial derivative of the function ϕ(x, t) of wth order is the one given

as ∂wϕ(x,t)
∂tw , R represents the linear differential operator, N indicates

the nonlinear term of the differential equation, and f(x, t) is the non-
homogeneous/source term.

By applying the Elzaki transform on equation (3.1) we have;

E

[
∂wϕ(x, t)

∂tw

]
+ E [Rϕ(x, t)] + E [Nϕ(x, t)] = E [f(x, t)] . (3.2)

where

E

[
∂wϕ(x, t)

∂tw

]
=

E[ϕ(x, t)]

vw
−

w−1∑
k=0

v2−w+k ∂
kϕ(x, 0)

∂tk
. (3.3)

Substituting equation (3.3) into equation (3.2) gives;

E[ϕ(x, t)]

vw
−

w−1∑
k=0

v2−w+k ∂
kϕ(x, 0)

∂tk
+ E [Rϕ(x, t)] + E [Nϕ(x, t)]

= E [f(x, t)] .

This is the same as

E[ϕ(x, t)]

vw
= E [f(x, t)] +

w−1∑
k=0

v2−w+k ∂
kϕ(x, 0)

∂tk

− {E [Rϕ(x, t)] + E [Nϕ(x, t)]} . (3.4)

Simplifying equation (3.4) yields;

E[ϕ(x, t)] = vwE [f(x, t)] +

w−1∑
k=0

v2+k ∂
kϕ(x, 0)

∂tk

− vw {E [Rϕ(x, t)] + E [Nϕ(x, t)]} . (3.5)
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Applying the inverse Elzaki transform to equation (3.5), we have

ϕ(x, t) =E−1

[
vwE [f(x, t)] +

w−1∑
k=0

v2+k ∂
kϕ(x, 0)

∂tk

]
− E−1 [vw {E [Rϕ(x, t)] + E [Nϕ(x, t)]}] ,

this is rewrite as;

ϕ(x, t) = F (x, t)− E−1 [vw {E [Rϕ(x, t)] + E [Nϕ(x, t)]}] , (3.6)

where F (x, t) denotes the expression that arises from the given initial
conditions and the source terms after simplification.

The solution is given in the form of infinite series as

ϕ(x, t) =

∞∑
n=0

ϕn(x, t). (3.7)

The nonlinear terms can be decompose as

Nϕ(x, t) =

∞∑
n=0

An, (3.8)

where An is defined as the Adomian polynomials which can be computed
by using the formula [32]

An =
1

n!

∂n

∂λn

[
N

( ∞∑
i=0

λiϕi

)]
λ=0

, n = 0, 1, · · ·

Substituting equations (3.7) and (3.8) into equation (3.6), this gives

∞∑
n=0

ϕn(x, t) = F (x, t)− E−1

[
vw

{
E

[
R

∞∑
n=0

ϕn(x, t)

]
+ E

[ ∞∑
n=0

An

]}]
.

(3.9)

Then from equation (3.9), we have

ϕ0(x, t) = F (x, t), (3.10)

and the recursive relation is given by

ϕn+1 = −E−1 [vw {E [Rϕn(x, t)] + E [An]}] ,

here w = 1, 2, 3 and n ≥ 0. The analytical solution ϕ(x, t) can be
approximated by a truncated series:

ϕ(x, t) = lim
N→∞

N∑
n=0

ϕn(x, t).
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4. Applications

The effectiveness of the Elzaki transform and Adomian polynomial
are demonstrated by solving the following fifth order Korteweg-De Vries
(KdV) equations.

Example 4.1: Consider the homogeneous KdV equation [17]

ϕt + ϕϕx − ϕϕxxx + ϕxxxxx = 0, (4.1)

with the initial condition

ϕ(x, 0) = ex.

Equation (4.1) can be written as

ϕt = − [ϕϕx − ϕϕxxx + ϕxxxxx] . (4.2)

Applying the Elzaki transform to both sides of equation (4.2) gives

E[ϕt] = −E [ϕϕx − ϕϕxxx + ϕxxxxx] . (4.3)

Since

E [ϕt] =
Φ(x, v)

v
− vϕ(x, 0),

So equation (4.3) becomes;

Φ(x, v)

v
− vϕ(x, 0) = −E [ϕϕx − ϕϕxxx + ϕxxxxx] . (4.4)

Applying the given initial condition on equation (4.4) and simplifying,
we obtain;

Φ(x, v) = v2ex − vE [ϕϕx − ϕϕxxx + ϕxxxxx] . (4.5)

Applying the inverse Elzaki transform to equation (4.5), we have;

ϕ(x, t) = E−1
{
v2ex

}
− E−1 {vE [ϕϕx − ϕϕxxx + ϕxxxxx]} .

The resulting expression is

ϕ(x, t) = ex − E−1 {vE [ϕϕx − ϕϕxxx + ϕxxxxx]} . (4.6)

From equation (4.6), let

ϕ0 = ex.

The recursive relation is given as:

ϕn+1 = −E−1

{
vE

[
An +

∂5ϕn

∂x5

]}
, (4.7)
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where An is the Adomian polynomial to decompose the nonlinear terms
using the relation:

An =
1

n!

dn

dλn
f

[ ∞∑
i=0

λiϕi

]
λ=0

. (4.8)

The nonlinear term is represented by

f(ϕ) = ϕ
∂ϕ

∂x
− ϕ

∂3ϕ

∂x3
. (4.9)

By using equation (4.9) in equation (4.8), we obtain;

A0 = ϕ0

[
∂ϕ0

∂x
− ∂3ϕ0

∂x3

]
,

A1 = ϕ1

[
∂ϕ0

∂x
− ∂3ϕ0

∂x3

]
+ ϕ0

[
∂ϕ1

∂x
− ∂3ϕ1

∂x3

]
,

A2 = ϕ2

[
∂ϕ0

∂x
− ∂3ϕ0

∂x3

]
+ ϕ1

[
∂ϕ1

∂x
− ∂3ϕ1

∂x3

]
+ ϕ0

[
∂ϕ2

∂x
− ∂3ϕ2

∂x3

]
, · · ·

From Equation (4.7), when n=0, we have

ϕ1 = −E−1

{
vE

[
A0 +

∂5ϕ0

∂x5

]}
.

ϕ1 = −E−1

{
vE

[
ϕ0

[
∂ϕ0

∂x
− ∂3ϕ0

∂x3

]
+

∂5ϕ0

∂x5

]}
.

Since ϕ0 = ex, then

ϕ1 = −E−1 {vE [ex]} . (4.10)

By simplifying equation (4.10) we have;

ϕ1 = −tex. (4.11)

When n = 1, we have;

ϕ2 = −E−1

{
vE

[
A1 +

∂5ϕ1

∂x5

]}
.

Since ϕ1 = −tex, then

ϕ2 = −E−1

{
vE

[
ϕ1

[
∂ϕ0

∂x
− ∂3ϕ0

∂x3

]
+ ϕ0

[
∂ϕ1

∂x
− ∂3ϕ1

∂x3

]]
+

∂5(−tex)

∂x5

}
.

(4.12)

Simplifying equation (4.12) we obtain;

ϕ2 =
t2

2!
ex.
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When n = 2:

ϕ3 = −E−1

{
vE

[
A2 +

∂5ϕ2

∂x5

]}
.

Since ϕ2 =
t2

2!
ex, we have

ϕ3 =

− E−1

{
v

[
ϕ2

[
∂ϕ0

∂x
− ∂3ϕ0

∂x3

]
+ ϕ1

[
∂ϕ1

∂x
− ∂3ϕ1

∂x3

]
+ ϕ0

[
∂ϕ2

∂x
− ∂3ϕ2

∂x3

]]}
− E−1

{
∂5( t

2

2!e
x)

∂x5

}
. (4.13)

Simplifying equation (4.13) we obtain;

ϕ3 = − t3

3!
ex.

The approximate series solution is given as

ϕ(x, t) = ϕ0 + ϕ1 + ϕ2 + ϕ3 + ϕ4 + · · · ,

substituting all the values computed above

ϕ(x, t) = ex − tex +
t2

2!
ex − t3

3!
ex + · · · ,

we can rewrite this as;

ϕ(x, t) = ex
[
1− t+

t2

2!
− t3

3!
+ · · ·

]
Note that from the Taylor’s series expansion of exponential function we
have:

e−t = 1− t+
t2

2!
− t3

3!
+ · · · . (4.14)

Therefore;

ϕ(x, t) = exe−t = ex−t. (4.15)

The closed form solution of the equation (4.1) is in agreement with the
one obtained by the Laplace decomposition method [17]

Figure 1 below shows the 3D graph of the solution of equation (4.1).

Example 4.2: Consider the homogeneous KdV equation [17]

ϕt + ϕx + ϕ2ϕxx + ϕxϕxx − 20ϕ2ϕxxx + ϕxxxxx = 0, (4.16)
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Figure 1. The solution of the first fifth order KdV equa-
tion in (4.1) by ETM.

with the initial condition

ϕ(x, 0) =
1

x
.

Equation (4.16) could be written as:

ϕt + ϕx = −
[
ϕ2ϕxx + ϕxϕxx − 20ϕ2ϕxxx + ϕxxxxx

]
. (4.17)

Applying the Elzaki transform to both sides of equation (4.17), this gives

E[ϕt] + E[ϕx] = −E
[
ϕ2ϕxx + ϕxϕxx − 20ϕ2ϕxxx + ϕxxxxx

]
, (4.18)

where

E [ϕt] =
Φ(x, v)

v
− vϕ(x, 0),

E [ϕx] =
d

dx
E[ϕ].

So equation (4.18) becomes;

Φ(x, v)

v
− vϕ(x, 0) +

d

dx
E[ϕ] = −E

[
ϕ2ϕxx + ϕxϕxx − 20ϕ2ϕxxx + ϕxxxxx

]
.

(4.19)

Applying the given initial condition to equation (4.19) and simplifying,
we obtain;

Φ(x, v) = v2
1

x
− v

d

dx
E[ϕ]− vE

[
ϕ2ϕxx + ϕxϕxx − 20ϕ2ϕxxx + ϕxxxxx

]
.

(4.20)
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Applying the inverse Elzaki transform to equation (4.20), we have;

ϕ(x, t) = E−1

{
v2

1

x

}
− E−1

{
v
d

dx
E[ϕ] + vE

[
ϕ2ϕxx + ϕxϕxx − 20ϕ2ϕxxx + ϕxxxxx

]}
.

The resulting expression is

ϕ(x, t) =
1

x

− E−1

{
v
d

dx
E[ϕ] + vE

[
ϕ2ϕxx + ϕxϕxx − 20ϕ2ϕxxx + ϕxxxxx

]}
.

(4.21)

From equation (4.21), let

ϕ0 =
1

x
,

and the recursive relation is given as:

ϕn+1 = −E−1

{
v
d

dx
E[ϕn] + vE

[
An +

∂5ϕn

∂x5

]}
, (4.22)

An is the Adomian polynomial to decompose the nonlinear terms by
using the relation:

An =
1

n!

dn

dλn
f

[ ∞∑
i=0

λiϕi

]
λ=0

. (4.23)

The nonlinear term is represented by

f(ϕ) = ϕ2∂
2ϕ

∂x2
+

∂ϕ

∂x

∂2ϕ

∂x2
− 20ϕ2∂

3ϕ

∂x3
. (4.24)

By using equation (4.24) in equation (4.23), we obtain;

A0 = ϕ2
0

∂2ϕ0

∂x2
+

∂ϕ0

∂x

∂2ϕ0

∂x2
− 20ϕ2

0

∂3ϕ

∂x3
,

A1 = 2ϕ0ϕ1
∂2ϕ0

∂x2
+ ϕ2

0

∂2ϕ1

∂x2
+

∂ϕ1

∂x

∂2ϕ0

∂x2
+

∂ϕ0

∂x

∂2ϕ1

∂x2
− 40ϕ0ϕ1

∂3ϕ0

∂x3
− 20ϕ2

0

∂3ϕ1

∂x3
,

A2 = (ϕ2
1 + 2ϕ0ϕ2)

∂2ϕ0

∂x2
+ 2ϕ0ϕ1

∂2ϕ1

∂x2
+ ϕ2

0

∂2ϕ2

∂x2
+

∂ϕ2

∂x

∂2ϕ0

∂x2
+

∂ϕ1

∂x

∂2ϕ1

∂x2

+
∂ϕ0

∂x

∂2ϕ2

∂x2
− 20(ϕ2

1 + 2ϕ0ϕ2)
∂3ϕ0

∂x3
− 40ϕ0ϕ1

∂3ϕ1

∂x3
− 20ϕ2

0

∂3ϕ2

∂x3
, · · ·

From equation (4.22), when n=0, we have

ϕ1 = −E−1

{
v
d

dx
E[ϕ0] + vE

[
A0 +

∂5ϕ0

∂x5

]}
.
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Since ϕ0 =
1

x
, then

ϕ1 = −E−1

{
v
d

dx
E

[
1

x

]
+ vE

[
A0 +

∂5

∂x5

[
1

x

]]}
.

And A0 is computed as

A0 =
120

x6
,

so that

ϕ1 = −E−1

{
−v3

x2
+ vE

[
120

x6
+

∂5

∂x5

[
1

x

]]}
. (4.25)

By simplifying equation (4.25), we have;

ϕ1 =
t

x2
. (4.26)

When n=1,

ϕ2 = −E−1

{
v
d

dx
E[ϕ1] + vE

[
A1 +

∂5ϕ1

∂x5

]}
.

Since ϕ1 =
t

x2
, then

ϕ2 = −E−1

{
v
d

dx
E

[
t

x2

]
+ vE

[
A1 +

∂5

∂x5

[
t

x2

]]}
.

A1 is computed as:

A1 =
720t

x7
,

so that

ϕ2 = −E−1

{
−2v4

x3
+ vE

[
720t

x7
+

∂5

∂x5

[
t

x2

]]}
. (4.27)

Simplifying equation (4.27) yields;

ϕ2 =
t2

x3
. (4.28)

When n = 2,

ϕ3 = −E−1

{
v
d

dx
E[ϕ2] + vE

[
A2 +

∂5ϕ2

∂x5

]}
.

Since ϕ2 =
t2

x3
, we have

ϕ3 = −E−1

{
v
d

dx
E

[
t2

x3

]
+ vE

[
A2 +

∂5

∂x5

[
t2

x3

]]}
.
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And A2 is computed as

A2 =
2520t2

x8
,

so that,

ϕ3 = −E−1

{
−6v5

x4
+ vE

[
2520t2

x8
+

∂5

∂x5

[
t2

x3

]]}
. (4.29)

Simplifying equation (4.29), we get;

ϕ3 =
t3

x4
. (4.30)

The approximate series solution is given by

ϕ(x, t) = ϕ0 + ϕ1 + ϕ2 + ϕ3 + ϕ4 + · · · ,

substituting the values of ϕ0, ϕ1, ϕ2, ϕ3, ϕ4

ϕ(x, t) =
1

x
+

t

x2
+

t2

x3
+

t3

x4
+ · · · ,

and can be written as;

ϕ(x, t) =
1

x

[
1 +

(
t

x

)
+

(
t

x

)2

+

(
t

x

)3

+ · · ·

]
.

Therefore, the closed form solution is

ϕ(x, t) =
1

x− t
. (4.31)

The closed form solution of the equation (4.16) is in agreement with the
one obtained by the Laplace decomposition method [17]

Figure 2 below shows the 3D graph of the solution of equation (4.16).

Example 4.3: Consider the homogeneous KdV equation [17]

ϕt + ϕϕx − ϕxxx + ϕxxxxx = 0, (4.32)

with the initial condition

ϕ(x, 0) =
105

169
sech4

[
1

2
√
13

(x− x0)

]
.

Equation (4.32) could be written as:

ϕt = − [ϕϕx − ϕϕxxx + ϕxxxxx] . (4.33)

Applying Elzaki transform to both sides of equation (4.33), this gives

E[ϕt] = −E [ϕϕx − ϕxxx + ϕxxxxx] , (4.34)
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Figure 2. The solution of the second fifth order KdV
equation in (4.16) by ETM

where

E [ϕt] =
Φ(x, v)

v
− vϕ(x, 0),

so equation (4.34) becomes;

Φ(x, v)

v
− vϕ(x, 0) = −E [ϕϕx − ϕxxx + ϕxxxxx] . (4.35)

Applying the given initial condition to equation (4.35) and simplifying,
to obtain;

Φ(x, v) = v2
105

169
sech4

[
1

2
√
13

(x− x0)

]
− vE [ϕϕx − ϕxxx + ϕxxxxx] .

(4.36)

Applying the inverse Elzaki transform to equation (4.36), we have;

ϕ(x, t) =E−1

{
v2

105

169
sech4

[
1

2
√
13

(x− x0)

]}
− E−1 {vE [ϕϕx − ϕxxx + ϕxxxxx]} .

The resulting expression is

ϕ(x, t) =
105

169
sech4

[
1

2
√
13

(x− x0)

]
− E−1 {vE [ϕϕx − ϕxxx + ϕxxxxx]} .

(4.37)
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From equation (4.37), let

ϕ0 =
105

169
sech4

[
1

2
√
13

(x− x0)

]
.

The recursive relation is given by

ϕn+1 = −E−1

{
vE

[
An +

∂3ϕn

∂x3
− ∂5ϕn

∂x5

]}
, (4.38)

An is the Adomian polynomial to decompose the nonlinear terms by
using the relation:

An =
1

n!

dn

dλn
f

[ ∞∑
i=0

λiϕi

]
λ=0

. (4.39)

The nonlinear term is represented by

f(ϕ) = ϕ
∂ϕ

∂x
. (4.40)

By substituting equation (4.40) into equation (4.39), we obtain;

A0 = ϕ0
∂ϕ0

∂x
,

A1 = ϕ1
∂ϕ0

∂x
+ ϕ0

∂ϕ1

∂x
,

A2 = ϕ2
∂ϕ0

∂x
+ ϕ1

∂ϕ1

∂x
+ ϕ0

∂ϕ2

∂x
, · · ·

From equation (4.38), when n=0, we have

ϕ1 = −E−1

{
vE

[
A0 +

∂3ϕ0

∂x3
− ∂5ϕ0

∂x5

]}
.

Since ϕ0 =
105

169
sech4

[
1

2
√
13

(x− x0)

]
, we obtain

ϕ1 =
7560

28561
√
13

tsech4
[

1

2
√
13

(x− x0)

]
tanh4

[
1

2
√
13

(x− x0)

]
. (4.41)

When n = 1, we have;

ϕ2 = −E−1

{
vE

[
A1 +

∂3ϕ1

∂x3
− ∂5ϕ1

∂x5

]}
,

which gives,

ϕ2 =
68040

62748517
√
13

t2sech6
[

1

2
√
13

(x− x0)

]
×[

−3 + 2 cosh

[
1

2
√
13

(x− x0)

]]
.
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When n = 2

ϕ3 = −E−1

{
vE

[
A2 +

∂3ϕ2

∂x3
− ∂5ϕ2

∂x5

]}
.

Therefore,

ϕ3 =
816480

10604499373
√
13

t3sech7
[

1

2
√
13

(x− x0)

] [
−13 sinh

[
1

2
√
13

(x− x0)

]]
+ 2 sinh

[
1

2
√
13

(x− x0)

]
.

The approximate series solution is given by

ϕ(x, t) = ϕ0 + ϕ1 + ϕ2 + ϕ3 + ϕ4 + · · · ,
substituting ϕ0, ϕ1, ϕ2, and ϕ3 into ϕ(x, t) gives the solution in a series
form. However, the closed form solution is

ϕ(x, t) =
105

169
sech4

[
1

2
√
13

(x− 36t

169
− x0)

]
. (4.42)

The closed form solution of the equation (4.32) is in agreement with the
one obtained by the Laplace decomposition method [17]

5. Conclusion

In this paper, Elzaki transform and Adomian polynomial have been
effectively used to solve nonlinear fifth order Korteweg-de Vries (KdV)
equations. The solutions obtained were presented in series form and
converges to the exact solutions in all the three problems considered.
These solutions also agree with the solutions obtained when Laplace
decomposition method is used as provided in the reference. Three di-
mensional graphs were also plotted to give the shape of the solutions to
KdV equations considered. Furthermore, the combination of the Elzaki
transform and Adomian polynomial has overcome the hurdle of nonlin-
earity which Elzaki transform cannot handle independently as well as
other linear transforms like Sumudu transforms and Laplace transforms.
However, it is not in all cases the series solutions converges directly to
the exact solution and so the solution obtained in this scenario would
be approximate analytical solution.
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