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Abstract. We introduce the fundamental relation α∗ on an (m,n)-
hyperring R and prove that it is the smallest strongly regular equiv-
alence relation on R, such that the quotient R/α∗ is a commuta-
tive (m,n)-ring. We use α∗ to construct the fundamental func-
tor from category of (m,n)-hyperrings to category of commutative
(m,n)-rings, which assign to each (m,n)-hyperring its fundamental
(m,n)-ring. Finally, some necessary and sufficient conditions for
transitivity of α are given.
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1. Introduction

The first paper about n-ary groups was written by Dörnte ([12]) in
1928. This concept was extended to algebraic hyperstructures with n-ary
hypergroups, defined by Davvaz and Vougiouklis ([10]) as a generaliza-
tion of hypergroups (Marty [17]). (m,n)-hyperrings are other type of
n-ary algebraic hyperstructures, which are as an extension of (m,n)-
rings ([6], [7]) in the framework of hyperstructures. Some applications
of n-hypergroups and (m,n)-hyperrings can be seen in [3] (hyperideals),
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[11], [20] (fundamental relations), [15], [16], [19] (binary relations) and
also other concepts in [7].

On the other hands, one of the most important tools in algebraic
hyperstructures is represented by strongly regular relations, in particu-
lar fundamental relations, which connect an algebraic hyperstructure
to the associated algebraic structure. The fundamental relation Γ∗

were studied on hyperrings by Vougiouklis and Spartalis in [22], [23]
and [24]. After defining (m,n)-hyperrings by Mirvakili and Davvaz in
[20], they introduced the concept of strongly regular relations on (m,n)-
hyperrings and were able to obtain (m,n)-rings from (m,n)-hyperrings,
using the fundamental relation Γ∗ defined on (m,n)-hyperrings. N. Ja-
farzadeh and R. Ameri introduced and studied the category of (m,n)-
hypermodules and shown this category is exact [1].

The α∗-relation is another fundamental relation on hyperrings which
was introduced by Davvaz and Vougiouklis in [9] (for more details see
[8]). In [21], Pelea applied α∗-relation for general hyperstructures and
arbitrary identities and also for (m,n)-hyperrings, in framework of mul-
tialgebras theory and universial algebras. Now, in this paper, we provide
α-relation for (m,n)-hyperrings, with its usual and conventional view in
n-ary hyperstructures, similar to what happens for Γ∗-relation on (m,n)-
hyperrings ([20]). Hence, we prove that α∗ as transitive closure of α is a
commutative fundamental relation which commutative (m,n)-rings can
be derived by it. Moreover, the connection between categories of (m,n)-
rings and (m,n)-hyperrings is investigated by using functors and the
fundamental relation α∗. Finally, some necessary and sufficient condi-
tions for transitivity of the relation α are stated, and some results are
obtained regarding them.

2. Preliminaries

In this section we give some definitions and results of n-ary hyper-
structures which we need in what follows.

A mapping f : H × · · · ×H︸ ︷︷ ︸
n

−→ P∗(H) is called an n-ary hyperop-

eration, where P∗(H) is the set of all the nonempty subsets of H. An
algebraic system (H, f), where f is an n-ary hyperoperation defined on
H, is called an n-ary hypergroupoid.

For abbreviation, we denote

f(x1, ..., xi, yi+1, ..., yj , zj+1, ..., zn)

as f(xi1, y
j
i+1, z

n
j+1). Also, if yi+1 = · · · = yj = y, then it will be written

as f(xi1, y
(j−i), znj+1). Moreover, if f is an n-ary hyperoperation and

t = l(n − 1) + 1, for some l ≥ 0, then t-ary hyperoperation f
(l)

is given
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by

f
(l)
(x

l(n−1)+1
1 ) = f(f(..., f(f︸ ︷︷ ︸

l

(xn1 ), x
2n−1
n+1 ), ...), x

l(n−1)+1
(l−1)(n−1)+1)

and f(0)(x) = {x}. For nonempty subsets A1, ..., An of H we define
f(An

1 ) =
⋃

xi∈Ai
f(xn1 ) such that 1 ≤ i ≤ n. An n-ary hyperoperation f

is called associative if

f
(
xi−1
1 , f(xn+i−1

i ), x2n−1
n+i

)
= f

(
xj−1
1 , f(xn+j−1

j ), x2n−1
n+j

)
,

hold for every 1 ≤ i < j ≤ n and all x2n−1
1 ∈ H. An n-ary hy-

pergroupoid with the associative n-ary hyperoperation is called an n-
ary semihypergroup.

An n-ary semihypergroup (H, f) is called an n-ary hypergroup, if
f(xi−1

1 ,H, xni+1) = H for all xn1 ∈ H and 1 ≤ i ≤ n. An n-ary hyper-
groupoid (H, f) is commutative if for all σ ∈ Sn and for every an1 ∈ H we

have f(an1 ) = f(aσ(1), ..., aσ(n)). We denote (aσ(1), ..., aσ(n)) by a
σ(n)
σ(1) . By

([19]) A non-empty subset B of an n-ary hypergroup (H, f) is called an
n-ary subhypergroup of H, if f(xn1 ) ⊆ B for all xn1 ∈ B, and the equa-

tion b ∈ f(bi−1
1 , xi, b

n
i+1) has a solution xi ∈ B for all bi−1

1 , bni+1, b ∈ B
and 1 ≤ i ≤ n.

Definition 2.1. ([19]) An (m,n)-hyperring is an algebraic hyperstruc-
ture (R, f, g) which satisfies the following axioms:

(i) (R, f) is an m-ary hypergroup;
(ii) (R, g) is an n-ary semihypergroup;
(iii) the n-ary hyperoperation g is distributive with respect to the

m-ary hyperoperation f , i.e., for all ai−1
1 , ani+1, x

m
1 ∈ R, and 1 ≤

i ≤ n,

g(ai−1
1 , f(xm1 ), ani+1) = f(g(ai−1

1 , x1, a
n
i+1), · · · , g(ai−1

1 , xm, ani+1)).

An (m,n)-hyperring (R, f, g) is said to be Krasner ([14],[19]), if (R, f)
is a canonical n-ary hypergroup, i.e.,

(1) f is commutative;
(2) there exists a unique e ∈ H, such that f(x, e, · · · , e︸ ︷︷ ︸

n−1

) = {x}, for

all x ∈ H;
(3) for all x ∈ H there exists a unique x−1 ∈ H, such that e ∈

f(x, x−1, e, · · · , e︸ ︷︷ ︸
n−2

);

(4) if x ∈ f(xn1 ), then for all 1 ≤ i ≤ n, we have

xi ∈ f(x, x−1, · · · , x−1
i−1, x

−1
i+1, · · · , x

−1
n ).
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and (R, g) is an n-ary semigroup such that 0 is a zero element (absorbing
element) of the n-ary operation g, i.e. for all xn2 ∈ R we have

g(0, xn2 ) = g(x2, 0, x
n
3 ) = · · · = g(xn2 , 0).

Example 2.2. Consider the set of all integers, Z, with the following
hyperoperations defined for x, y ∈ Z,

x⊕ y = {x, y, x+ y}, and x⊗ y = {x · y},
where “+” and “·” are ordinary addition and multiplication on Z. It
is routine to check that (Z,⊕,⊗) is a hyperring. For xm1 , yn1 ∈ Z, set
g(yn1 ) =

⊗n
i=1 yi = {

∏n
j=1 yj} and

f(xm1 ) =
m⊕
i=1

xi =
{
xm1 , xi1 + xi2 , ... , xi1 + xi2 + · · ·+ xim

}
such that i1, i2, ..., im are different natural numbers from 1 to m. Then,
(Z, f, g) is an (m,n)-hyperring, by [4]. Note that (Z, f, g) is not a Kras-
ner (m,n)-hyperring although (Z, g) is a trivial n-ary semihypergroup.

Example 2.3. ([19]) Suppose that (L,∨,∧) is a relatively comple-
mented distributive lattice and “f” and “g” are defined on L as follows:

f(a1, a2) = {c ∈ L | a1 ∧ c = a2 ∧ c = a1 ∧ a2}, ∀a1, a2 ∈ L,

g(an1 ) = ∨n
i=1ai, ∀an1 ∈ L.

It follows that (L, f, g) is a Krasner (2, n)-hyperring.

An equivalence relation ρ on an n-ary hypergroup (H, f) is called
regular, if a1ρb1, ..., anρbn, for a

n
1 , b

n
1 ∈ R, then f(an1 )ρf(b

n
1 ), that is,

∀x ∈ f(an1 ), ∃y ∈ f(bn1 ) ; xρy and ∀u ∈ f(bn1 ), ∃v ∈ f(an1 ) ; uρv.

Also, ρ is called strongly regular if aiρbi for all 1 ≤ i ≤ n, implies that
xρy for all x ∈ f(an1 ) and for all y ∈ f(bn1 ), that is shown by f(an1 )ρf(b

n
1 ).

Let (R, f, g) be an (m,n)-hyperring, then we say that ρ is (strongly)
regular on R, if ρ is (strongly) regular with respect to both f and g.

Theorem 2.4. ([20]) If (R, f, g) is an (m,n)-hyperring and the rela-
tion ρ is a strongly regular relation on both (R, f) and (R, g), then the
quotient R/ρ = {ρ(x) | x ∈ R} with the following m-ary and n-ary
operations is an (m,n)-ring.

f/ρ
(
ρ(x1), ..., ρ(xm)

)
= ρ(z); ∀z ∈ f(xm1 ),

g/ρ
(
ρ(y1), ..., ρ(yn)

)
= ρ(d); ∀d ∈ g(yn1 ).

Also, Mirvakili and Davvaz in [20] defined the relation Γ on (m,n)-
hyperrings as follow:
Let (R, f, g) be an (m,n)-hyperring. For every k ∈ N and ls1 ∈ N where
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s = k(m− 1) + 1, define a relation Γk;ls1
, as follow:

xΓk;ls1
y if and only if there exist xitii1 ∈ R, where ti = li(n − 1) + 1 and

i = 1, ..., s such that {x, y} ⊆ f(k)(u1, ..., us) where for every i = 1, ..., s,

ui = g(li)(x
iti
i1 ). Now, set Γk =

⋃
ls1∈N

Γk;ls1
and Γ =

⋃
k∈N∗ Γk. This

definition is a natural generalization of the relation Γ on hyperrings
((2, 2)-hyperrings) defined by Vougiouklis in [23]. In [20], it is shown
that the transitive closure of Γ, Γ∗, is a strongly regular relation on
(m,n)-hyperrings such that (R/Γ∗, f/Γ∗, g/Γ∗) is an (m,n)-ring. More-
over, it was shown that Γ∗ is the smallest equivalence relation such that
(R/Γ∗, f/Γ∗, g/Γ∗) is an (m,n)-ring. Hence, (R/Γ∗, f/Γ∗, g/Γ∗) is said
to be fundamental (m,n)-ring obtained from Γ∗-relation.

3. α-relation on (m,n)-hyperrings

In this section, we introduce α-relation on (m,n)-hyperrings, as a
generalization of α-relation on hyperrings, to construct a commutative
fundamental (m,n)-ring.

Definition 3.1. Let (R, f, g) be an (m,n)-hyperring. For k ∈ N∗, lr1 ∈ N
and x, y ∈ R, define the relation αk;lr1

as follow:

xαk;lr1
y ⇐⇒ ∃z1t111 , ..., zrtrr1 ∈ R, ∃σ ∈ Sr, ∃σi ∈ Sti ;

x ∈ f
(k)

(
g
(l1)

(z1t111 ), ..., g
(lr)

(zrtrr1 )
)

and y ∈ f
(k)

(
uσ(1), ..., uσ(r)

)
where ui = g

(li)
(z

iσi(ti)
iσi(1)

), r = k(m − 1) + 1, ti = li(n − 1) + 1, and

1 ≤ i ≤ r. Now, set α =
⋃

k≥0

(⋃
lr1∈N

αk;lr1

)
.

It is easy to see that the relation α is reflexive and symmetric. Let
α∗ be transitive closure of α.

Theorem 3.2. The relation α∗ is a strongly regular equivalence relation
on (R, f, g).

Proof. Since α is reflexive and symmetric, and α∗ is transitive closure
of α, then α∗ is an equivalence relation. Hence, we show that α∗ is
strongly regular. In order to let a1αb1, ..., amαbm, for all am1 , bm1 ∈ R,
and let x ∈ f(am1 ) and y ∈ f(bm1 ). Thus, for i ∈ {1, ...,m} there exist

x
1itij
1i1

, ..., x
ritij
ri1

∈ R, σi ∈ Sri and σij ∈ Stij such that ri = ki(m− 1) + 1,
tij = lij(n− 1) + 1, 1 ≤ j ≤ ri and

ai ∈ f
(ki)

(
g
(li1i

)
(x1iti11i1

), ..., g
(liri

)
(x

ritiri
ri1

)
)

bi ∈ f
(ki)

(
uσi(i1), ..., uσi(iri)

)
,
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where uij = g
(lij)

(x
1iσij(tij)

1iσij(1)
). Hence, we have

x ∈ f(am1 ) ⊆ f
(
f
(k1)

(
g
(l11)

(x11t11111
), ..., g

(l1r1
)
(x

r1t1r1
r11

)
)
,

..., f
(km)

(
g
(lm1)

(x1mtm1
1m1 ), ..., g

(lmrm )
(x

rmtmrm
rm1 )

))
= f

(1+k1+···+km)

(
g
(l11)

(x11t11111
), ..., g

(l1r1
)
(x

r1t1r1
r11

),

..., g
(lm1)

(x1mtm1
1m1 ), ..., g

(lmrm )
(x

rmtmrm
rm1 )

)
,

similarly,

y ∈ f(bm1 ) ⊆ f
(1+k1+···+km)

(
uσ1(11), ..., uσ1(1r1), ..., uσm(m1), ..., uσm(mrm)

)
.

In this case, we have r1 + · · · + rm = (1 + k1 + · · · + km)(m − 1) + 1.
Consider τ ∈ Sr1+···+rm such that τ(ij) = σi(ij), then we have

x ∈ f
(1+k1+···+km)

(
g
(l11)

(x11t11111
), ..., g

(l1r1
)
(x

r1t1r1
r11

),

..., g
(lm1)

(x1mtm1
1m1 ), ..., g

(lmrm )
(x

rmtmrm
rm1 )

)
,

and y ∈ f
(1+k1+···+km)

(
uτ(11), ..., uτ(1r1), ..., uτ(m1), ..., uτ(mrm)

)
. Therefore

(x, y) ∈ α1+k1+···+km;lmrm
11

and so xαy. Hence, f(am1 ) α f(bm1 ). Now, if

x1α
∗y1, ..., xmα∗ym for all xm1 , ym1 ∈ R, then

∃ x1 = w01, w11, ..., wn1 = y1 ∈ R ; x1 = w01αw11α · · ·αwn1 = y1

...

∃ xm = w0m, w1m, ..., wnm = ym ∈ R ; xm = w0mαw1mα · · ·αwnm = ym.

By strongly regularity of α, we have

f(xm1 ) = f(w0m
01 ) α f(w1m

11 ) α · · ·α f(wnm
n1 ) = f(ym1 ).

Therefore, for all u ∈ f(xm1 ) and v ∈ f(ym1 ), there exist z1 ∈ f(w1m
11 ),

..., zn−1 ∈ f(w
(n−1)m
(n−1)1 ) such that uαz1α · · ·αzn−1αv. Thus uα

∗v, and so

f(xm1 ) α∗ f(ym1 ). On the other hand, for 1 ≤ i ≤ n, ri = ki(m− 1) + 1,

tij = lij(n − 1) + 1, 1 ≤ j ≤ ri and x
1itij
1i1

, ..., x
ritij
ri1

of R, there exists
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k′ > 0 such that

g
(
f
(k1)

(
g
(l11)

(x
11t11
111 ), ..., g

(l1r1
)
(x

r1t1r1
r11 )

)
, ..., f

(kn)

(
g
(ln1)

(x
1ntn1
1n1 ), ..., g

(lnrn
)
(x

rntnrn
rn1 )

))
= f

(k′)

(
g
(1+l11+···+ln1)

(
x
11t11
111 , x

12t21
121 , ..., x

1n−1t(n−1)1
1n−11 , x

1ntn1
1n1

)
,

g
(1+l11+···+l(n−1)1+ln2)

(
x
11t11
111 , x

12t21
121 , ..., x

1n−1t(n−1)1
1n−11 , x

2ntn2
2n1

)
,

· · · , g
(1+l11+···+l(n−1)1+lnrn )

(
x
11t11
111 , x

12t21
121 , ..., x

1n−1t(n−1)1
1n−11 , x

rntnrn
rn1

)
,

g
(1+l11+···+l(n−1)2+ln1)

(
x
11t11
111 , x

12t21
121 , ..., x

2n−1t(n−1)2
2n−11 , x

1ntn1
1n1

)
,

g
(1+l11+···+l(n−1)2+ln2)

(
x
11t11
111 , x

12t21
121 , ..., x

2n−1t(n−1)2
2n−11 , x

2ntn2
2n1

)
,

· · · , g
(1+l11+···+l(n−1)2+lnrn )

(
x
11t11
111 , x

12t21
121 , ..., x

2n−1t(n−1)2
2n−11 , x

rntnrn
rn1

)
,

.

.

.

g
(1+l11+···+l(n−1)r

n−1
+ln1)

(
x
11t11
111 , x

12t21
121 , ..., x

rn−1t(n−1)r
n−1

rn−11 , x
1ntn1
1n1

)
,

g
(1+l11+···+l(n−1)r

n−1
+ln2)

(
x
11t11
111 , x

12t21
121 , ..., x

rn−1t(n−1)r
n−1

rn−11 , x
2ntn2
2n1

)
,

· · · , g
(1+l11+···+l(n−1)r

n−1
+lnrn

)

(
x
11t11
111 , x

12t21
121 , ..., x

rn−1t(n−1)r
n−1

rn−11 , x
rntnrn
rn1

)
,

.

.

.

g
(1+l1r1

+l2r2
+···+l(n−1)r

n−1
+lnrn

)

(
x
r1t1r1
r11 , x

r2t2r2
r21 , ..., x

rn−1t(n−1)r
n−1

rn−11 , x
rntnrn
rn1

))
.

Thus by a similar manner, it can be shown that

∀ i ∈ {1, ..., n} ; aiα
∗bi =⇒ g(an1 ) α

∗ g(bn1 ).

Consequently, α∗ is a strongly regular relation on (R, f, g). �

Theorem 3.3. If (R, f, g) is an (m,n)-hyperring, then (R/α∗, f/α∗, g/α∗)
is an (m,n)-ring.

Proof. Since α∗ is strongly regular relation, by Theorem 2.4 , the quo-
tients (R/α∗, f/α∗) and (R/α∗, g/α∗) are m-ary group and n-ary semi-
group, respectively, under the following m-ary and n-ary operations:

f/α∗(α∗(x1), ..., α
∗(xm)

)
= α∗(z); ∀z ∈ f(xm1 ),

g/α∗(α∗(y1), ..., α
∗(yn)

)
= α∗(d); ∀d ∈ g(yn1 ),

such that xm1 , yn1 ∈ R. Therefore, it is enough to show that n-ary opera-
tion g/α∗ is distributive respect to f/α∗. For all xm1 , yn1 ∈ R, Ai ⊆ α∗(xi)
and Bj ⊆ α∗(yj) such that 1 ≤ i ≤ m and 1 ≤ j ≤ n, we can write

f/α∗(α∗(x1), ..., α
∗(xm)

)
= α∗(f(xm1 )) = α∗(f(Am

1 )) and

g/α∗(α∗(y1), ..., α
∗(yn)

)
= α∗(g(yn1 )) = α∗(g(Bn

1 ))
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where α∗(A) =
⋃

a∈A α∗(a). Hence, we have

g/α∗
(
α∗|yi−1

y1 , f/α∗(α∗|xm
x1

), α∗|ynyi+1

)
= g/α∗

(
α∗|yi−1

y1 , α∗(f(xm1 )), α∗|ynyi+1

)
= α∗

(
g(yi−1

1 , f(xm1 ), yni+1)
)

and

f/α∗
(
g/α∗(α∗|yi−1

y1 , α∗(x1), α
∗|ynyi+1

)
, ..., g/α∗(α∗|yi−1

y1 , α∗(xm), α∗|ynyi+1

))
= f/α∗

(
α∗(g(yi−1

1 , x1, y
n
i+1)

)
, ..., α∗(g(yi−1

1 , xm, yni+1)
))

= α∗
(
f
(
g(yi−1

1 , x1, y
n
i+1), ..., g(y

i−1
1 , xm, yni+1)

))
(for abbreviation, α∗(x1), ..., α

∗(xi) denoted by α∗|xi
x1
). Since g is dis-

tributive with respect to f in R, the distributivity law is valid in R/α∗.
�

Corollary 3.4. The quotient (R/α∗, f/α∗, g/α∗) is a commutative (m,n)-
ring.

Proof. Let g/α∗(α∗|xn
x1

)
= α∗(c) and g/α∗(α∗|xσ(n)

xσ(1)

)
= α∗(d) such that

xn1 ∈ R and σ ∈ Sn. If c ∈ g(xn1 ) and d ∈ g(x
σ(n)
σ(1) ). Then, for τ ∈ S1,

we have c ∈ f
(0)

(
g
(1)
(xn1 )

)
and d ∈ f

(0)

(
g
(τ(1))

(x
σ(n)
σ(1) )

)
. Hence cα0;1d

and so cα∗d. Then α∗(c) = α∗(d) and so g/α∗ is a commutative n-ary

operation. Also, if c 6∈ g(xn1 ) and d 6∈ g(x
σ(n)
σ(1) ), then there exist p ∈ g(xn1 )

and q ∈ g(x
σ(n)
σ(1) ) such that α∗(c) = α∗(p) and α∗(d) = α∗(q), and also

α∗(p) = α∗(q). Similarly, for other cases, it can be seen that g/α∗ is
commutative. Moreover, we can show that f/α∗ is a commutative m-
ary operation. Therefore, (R/α∗, f/α∗, g/α∗) is a commutative (m,n)-
ring. �

Let R be an (m,n)-hyperring. The mapping φ : R −→ R/α∗, defined
by φ(x) = α∗(x) for all x ∈ R, is called canonical projection with respect
to commutative fundamental relation α∗.

Theorem 3.5. The relation α∗ is the smallest strongly regular equiva-
lence such that the quotient R/α∗ is a commutative (m,n)-rings.

Proof. By Theorem 3.2 and Corollary 4.6, we know that α∗ is a strongly
regular equivalence relation on R, and the quotient R/α∗ is a commu-
tative (m,n)-rings. Hence, we show that α∗ is the smallest. Let ρ
be a strongly regular relation on R such that R/ρ is a commutative
(m,n)-rings and let ϕ : R −→ R/ρ be the canonical projection. If
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xαy then there exist z1t111 , ..., zrtrr1 ∈ R, σ ∈ Sr and σi ∈ Sti such that
r = k(m− 1) + 1, ti = li(n− 1) + 1, 1 ≤ i ≤ r and

x ∈ f
(k)

(
g
(l1)

(z1t111 ), ..., g
(lr)

(zrtrr1 )
)

and

y ∈ f
(k)

(
g
(lσ(1))

(z
σ(1)σσ(1)(tσ(1))

σ(1)σσ(1)(1)
), ..., g

(lσ(r))
(z

σ(r)σσ(r)(tσ(r))

σ(r)σσ(r)(1)
)
)
.

Hence, by Theorem 4.5, we have

ρ(x) = f/ρ
(k)

(
g/ρ

(l1)
(ρ|z1t1z11 ), ..., g/ρ

(lr)
(ρ|zrtrzr1 )

)
and

ρ(y) = f/ρ
(k)

(
g/ρ

(lσ(1))
(ρ|

zσ(1)σσ(1)(tσ(1))

zσ(1)σσ(1)(1)
), ..., g/ρ

(lσ(r))
(ρ|

zσ(r)σσ(r)(tσ(r))

zσ(r)σσ(r)(1)
)
)
.

Since f/ρ and g/ρ are commutative, ρ(x) = ρ(y) and so α ⊆ ρ. Now,
let xα∗y, then by transitivity of ρ we have xρy. Therefore, α∗ ⊆ ρ and
thus α∗ is the smallest strongly regular relation such that R/α∗ is a
commutative (m,n)-ring.. �

By Corollary 4.6 and Theorem 3.5, we conclude that α∗ is the smallest
strongly regular relation such that R/α∗ is a commutative (m,n)-ring.
Hence, the relation α∗ is called commutative fundamental relation on
(m,n)-hyperring R, and the quotient R/α∗ is said to be the fundamental
commutative (m,n)-ring.

In certain case, for xm1 , yn1 ∈ R if m-ary and n-ary hyperoperations f
and g defined by

f(xm1 ) =
m∑
i=1

xi and g(yn1 ) =
n∏

j=1

yj ,

then for r = k(m− 1) + 1, ti = li(n− 1) + 1 and 1 ≤ i ≤ r,

f
(k)

(
g
(l1)

(z1t111 ), ..., g
(lr)

(zrtrr1 )
)

means that
∑r

i=1

(∏ti
j=1 xij

)
, which is a finite sums of finite products of

elements of R. Also, for σ ∈ Sr and σi ∈ Sti ,

f
(k)

(
g
(lσ(1))

(z
σ(1)σσ(1)(tσ(1))

σ(1)σσ(1)(1)
), ..., g

(lσ(r))
(z

σ(r)σσ(r)(tσ(r))

σ(r)σσ(r)(1)
)
)

is equal to
∑r

i=1Aσ(i) such that Ai =
∏ti

j=1 xiσi(j). Therefore, by reduc-

tion of the relation α∗ to general hyperrings (R,+, ·) ((2, 2)-hyperrings),
we will obtain the α∗-relation defined on hyperrings by Davvaz and Vou-
giouklis in [9].

Remark 3.6. Let (m,n)−HRg and (m,n)−CRg denote the categories
of (m,n)-hyperrings and commutative (m,n)-rings, respectively. Also,
let h : R −→ R′ be a homomorphism of (m,n)-hyperrings. Consider
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the commutative fundamental relation α∗ on R and R′. Then the map
h∗ : R/α∗ −→ R′/α∗ given by h∗

(
α∗(r)

)
= α∗(h(r)) for all r ∈ R, is

a homomorphism of (m,n)-rings. Moreover, the following diagram is
commutative

R
h−−−−→ R′

φ

y yφ′

R/α∗ h∗
−−−−→ R′/α∗

and hence we have the next result.

Theorem 3.7. The mapping Φ :(m, n)−HRg −→(m, n)−CRg, defined
by R 7−→ R/α∗, is a functor.

Proof. The proof is similar to corresponding result in [2]. �

Consider the fundamental relation Γ∗ on (m,n)-hyperrings was de-
fined and studied by Mirvakili and Davvaz in [20]. Then, we have the
following corollary:

Corollary 3.8. If (R, f, g) is a commutative (m,n)-hyperring, then α∗

coincide with Γ∗.

Proof. It is an immediate consequence from definition of α∗. �

Let R be an (m,n)-hyperring and ϕ be a relation on R such that
α∗ ⊆ ϕ. Set

ϕ/α∗ = {(α∗(a), α∗(b)) ∈ R/α∗ ×R/α∗ | (a, b) ∈ ϕ}.

Then we have the following result:

Theorem 3.9. If ϕ is a strongly regular relation on (m,n)-hyperring
(R, f, g) such that α∗ ⊆ ϕ, then ϕ/α∗ is a strongly regular relation on
R/α∗.

Proof. Let (α∗(ai), α
∗(bi)) ∈ ϕ/α∗ for 1 ≤ i ≤ m, then (a1 , b1) ∈

ϕ, ..., (am , bm) ∈ ϕ. Since ϕ is a strongly regular relation, we have

f(am1 ) ϕ f(bm1 ). It implies that (x, y) ∈ ϕ for every x ∈ f(am1 ) and
y ∈ f(bm1 ). Thus (α∗(x), α∗(y)) ∈ ϕ/α∗, for

α∗(x) = f/α∗(α∗|ama1
)

and α∗(y) = f/α∗(α∗|bmb1
)
.

Then f/α∗(α∗(a1), ..., α
∗(am)

)
ϕ/α∗ f/α∗(α∗(b1), ..., α

∗(bm)
)
. Similarly,

we can show that ϕ/α∗ is strongly regular with respect to g/α∗. This
completes the proof. �
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4. Transitivity of α-relation

Transitivity of α-relation on hyperrings was investigated in [18], by α-
parts on hyperrings. The concept of complete parts of n-ary hypergroups
was studied by Leoreanu-Fotea and Davvaz in [16] as a generalization
of this concept in hypergroups. In this section, the notion of complete
parts of (m,n)-hyperings is defined, and some necessary and sufficient
conditions are determined such that the relation α is transitive.

Definition 4.1. A non-empty subset B of an (m,n)-hyperring (R, f, g)

is called a α − part of R, whenever for z
iti
i1 ∈ R, σ ∈ Sr, σi ∈ Sti and

1 ≤ i ≤ r

f
(k)

(
g
(l1)

(z1t111 ), ..., g
(lr)

(zrtrr1 )
)
∩B 6= ∅ =⇒ f

(k)
(u

σ(1)
, ..., u

σ(r)
) ⊆ B

such that ui = g
(li)

(z
iσi(ti)
iσi(1)

), r = k(m− 1) + 1 and ti = li(n− 1) + 1.

Lemma 4.2. If B is a non-empty subset of (m,n)-hyperring (R, f, g),
then the following conditions are equivalent:

(i) B is a α-part of R;
(ii) x ∈ B and xαy implies that y ∈ B;
(iii) x ∈ B and xα∗y implies that y ∈ B.

Proof. (i) ⇒ (ii) Let B be a α-part of R and x, y ∈ R such that x ∈ B

and xαy. Hence, there exist z
iti
i1 ∈ R, σ ∈ Sr, σi ∈ Sti , and 1 ≤ i ≤ r

such that

x ∈ f
(k)

(
g
(l1)

(z1t111 ), ..., g
(lr)

(zrtrr1 )
)
= T and y ∈ f

(k)
(u

σ(r)
σ(1)),

for ui = g
(li)

(z
iσi(ti)
iσi(1)

), r = k(m− 1)+1 and ti = li(n− 1)+1. Therefore,

x ∈ T ∩B, and so f
(k)
(u

σ(r)
σ(1)) ⊆ B, since B is α-part. Thus y ∈ B.

(ii) ⇒ (iii) Assume that x ∈ B and xα∗y for x, y ∈ R. Then there exist
x = w0 , w1 , ..., wm = y of R such that

x = w0αw1α · · ·αwm = y.

Since x ∈ B, by applying (ii) m times, we obtain that y ∈ B.

(iii) ⇒ (i) Suppose that T ∩B 6= ∅ and x ∈ T ∩B. Let y ∈ f
(k)
(u

σ(r)
σ(1)),

then we have xαy and so xα∗y. By (iii), it implies that y ∈ B and thus

f
(k)
(u

σ(r)
σ(1)) ⊆ B. Therefore, B is a α-part of R. �

In the following we introduce some notions which will be used in the
next results:



Fundamental Commutative (m,n)-rings 173

For x, z
iti
i1 ∈ R, σ ∈ Sr, σi ∈ Sti , r = k(m − 1) + 1, ti = li(n − 1) + 1,

ui = g
(li)

(z
iσi(ti )

iσi(1)
) and 1 ≤ i ≤ r, define

Cr(x) =
⋃{

f
(k)
(u

σ(r)
σ(1)) | σ ∈ Sr, σi ∈ Sti

, x ∈ f
(k)

(
g
(l1)

(z1t111 ), ..., g
(lr)

(zrtrr1 )
)}

Jσ(x) =
⋃
r≥1

Cr(x).

Then, we have:

Lemma 4.3. For all x, y ∈ R, y ∈ Jσ(x) if and only if xαy.

Proof. For every (x, y) ∈ R2 we have

xαy ⇐⇒ ∃ z
1t1
11 , ..., z

rtr
r1 ∈ R ∃σ ∈ Sr ∃σi ∈ Sti ;

x ∈ f
(k)

(
g
(l1)

(z1t111 ), ..., g
(lr)

(zrtrr1 )
)

and y ∈ f
(k)
(u

σ(r)
σ(1))

⇐⇒ ∃ r ; y ∈ Cr(x)

⇐⇒ y ∈ Jσ(x).

�

Theorem 4.4. If α is transitive on (R, f, g), then α∗(x) = Jσ(x), for
all x ∈ R.

Proof. Let α be transitive, then by Lemma 4.4, we have

y ∈ α∗(x) ⇐⇒ xα∗y ⇐⇒ xαy ⇐⇒ y ∈ Jσ(x).

�

Theorem 4.5. Let (R, f, g) be an (m,n)-hyperring. For every x ∈ R,
if α∗(x) = Jσ(x), then Jσ(x) is a α-part of R.

Proof. Suppose that f
(k)

(
g
(l1)

(z1t111 ), ..., g
(lr)

(zrtrr1 )
)
∩ Jσ(x) 6= ∅ and y ∈

f
(k)
(u

σ(r)
σ(1)). Hence, there exists t ∈ R such that t ∈ f

(k)

(
g
(l1)

(z1t111 ), ..., g
(lr)

(zrtrr1 )
)

and t ∈ Jσ(x). Then tαy. Moreover, by Lemma 4.4, we have

y ∈ Jσ(t) = α∗(t) = α∗(x) = Jσ(x).

Then f
(k)
(u

σ(r)
σ(1)) ⊆ Jσ(x) and so Jσ(x) is a α-part of R. �

Theorem 4.6. Let (R, f, g) be an (m,n)-hyperring. If for every x ∈ R,
Jσ(x) is a α-part of R, then α is transitive on R.

Proof. Let xαy and yαz, then there exist a
iti
i1 , b

jtj
j1 ∈ R, σ ∈ Sr1 , τ ∈ Sr2 ,

σi ∈ Sti
, τj ∈ Stj

, r1 = k1(m−1)+1, r2 = k2(m−1)+1, ti = li(n−1)+1,
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tj = lj (n− 1) + 1, ui = g
(li)

(a
iσi(ti )

iσi(1)
), vj = g

(lj)
(b

jτi(tj )

jτj(1)
), and 1 ≤ i ≤ r1 ,

1 ≤ j ≤ r2 such that

x ∈ f
(k1 )

(
g
(l1)

(a1t111 ), ..., g(lr1 )
(a

r1tr1
r11

)
)

and y ∈ f
(k1)

(u
σ(r1 )

σ(1) ), and

y ∈ f
(k2 )

(
g
(l1)

(b1t111 ), ..., g(lr2 )
(b

r2tr2
r21

)
)

and z ∈ f
(k2)

(v
τ(r2 )

τ(1) ).

Since Jσ(x) = {y ∈ R | xαy} and α is reflexive, x ∈ Jσ(x) and so

x ∈ f
(k1 )

(
g
(l1)

(a1t111 ), ..., g(lr1 )
(a

r1tr1
r11

)
)
∩ Jσ(x).

Since Jσ(x) is α-part, we have

f
(k1)

(u
σ(r1 )

σ(1) ) ⊆ Jσ(x) =⇒ y ∈ Jσ(x)

=⇒ y ∈ f
(k2 )

(
g
(l1)

(b1t111 ), ..., g(lr2 )
(a

r2tr2
r21

)
)
∩ Jσ(x)

=⇒ f
(k2)

(v
τ(r2 )

τ(1) ) ⊆ Jσ(x)

=⇒ z ∈ Jσ(x)

=⇒ xαz (by Lemma 4.4)

Therefore, α is transitive. �

Corollary 4.7. Let (R, f, g) be an (m,n)-hyperring. Then α-relation is
transitive on R if and only if for every x ∈ R, α∗(x) = Jσ(x)if and only
if for every x ∈ R, Jσ(x) is a α-part of R.

Proof. It is proved by Theorem 4.4, Theorem 4.5 and Theorem 4.6. �

Example 4.8. Let R = {1, 2, 3, 4, 5, 6, 7}. For defining a noncommuta-
tive 3-ary hyperoperation f on R, we use the following code in Matlab
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software:

”clear

clc

nPop = 7;

empty-action.addition = [];

z = repmat(empty-action,nPop,nPop);

z(1, 1).addition = [1, 2]; z(1, 2).addition = [1, 2]; z(1, 3).addition = 3; z(1, 4).addition = 4;

z(1, 5).addition = 5; z(1, 6).addition = 6; z(1, 7).addition = 7;

z(2, 1).addition = [1, 2]; z(2, 2).addition = [1, 2]; z(2, 3).addition = 3; z(2, 4).addition = 4;

z(2, 5).addition = 5; z(2, 6).addition = 6; z(2, 7).addition = 7;

z(3, 1).addition = 3; z(3, 2).addition = 3; z(3, 3).addition = [1, 2]; z(3, 4).addition = 6;

z(3, 5).addition = 7; z(3, 6).addition = 4; z(3, 7).addition = 5;

z(4, 1).addition = 4; z(4, 2).addition = 4; z(4, 3).addition = 7; z(4, 4).addition = [1, 2];

z(4, 5).addition = 6; z(4, 6).addition = 5; z(4, 7).addition = 3;

z(5, 1).addition = 5; z(5, 2).addition = 5; z(5, 3).addition = 6; z(5, 4).addition = 7;

z(5, 5).addition = [1, 2]; z(5, 6).addition = 3; z(5, 7).addition = 4;

z(6, 1).addition = 6; z(6, 2).addition = 6; z(6, 3).addition = 5; z(6, 4).addition = 3;

z(6, 5).addition = 5; z(6, 6).addition = 7; z(6, 7).addition = [1, 2];

z(7, 1).addition = 7; z(7, 2).addition = 7; z(7, 3).addition = 4; z(7, 4).addition = 5;

z(7, 5).addition = 3; z(7, 6).addition = [1, 2]; z(7, 7).addition = 6;

disp(′Enter Your function q as a vector with three components :′)

q = input(′′);

s = z(q(1), q(2)).addition;

n = numel(s);

Sol = [];

for i = 1 : n

Sol = [Sol, z(s(i), q(3)).addition];

end

unique(Sol)”

In this algorithm [ a b ] means that {a, b} for a, b ∈ R. Also, consider
3-ary hyperoperation g as g(a, b, c) = {1, 2} for all a, b, c ∈ R. Then,
(R, f, g) is an (3, 3)-hyperring. Using this algorithm, it can be seen that

f(7, 4, 6) = {3}, f(4, 6, 7) = {4}, f(6, 4, 7) = {5}
f(7, 5, 4) = {6}, f(4, 7, 5) = {7}, f(5, 7, 4) = {1, 2}.
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Hence, we have α(1) = α(2) = α(6) = α(7) = {1, 2, 6, 7} and α(3) =
α(4) = α(5) = {3, 4, 5}. Therefore, α is transitive on R and so α∗ = α.
Moreover, Γ(1) = Γ(2) = {1, 2} and Γ(x) = {x} for all x ∈ {3, 4, 5, 6, 7}.
Thus, Γ 6= α.
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