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ABSTRACT. We introduce the fundamental relation o on an (m, n)-
hyperring R and prove that it is the smallest strongly regular equiv-
alence relation on R, such that the quotient R/a™ is a commuta-
tive (m,n)-ring. We use a” to construct the fundamental func-
tor from category of (m,n)-hyperrings to category of commutative
(m, n)-rings, which assign to each (m,n)-hyperring its fundamental
(m,n)-ring. Finally, some necessary and sufficient conditions for
transitivity of « are given.
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1. INTRODUCTION

The first paper about n-ary groups was written by Dérnte ([12]) in
1928. This concept was extended to algebraic hyperstructures with n-ary
hypergroups, defined by Davvaz and Vougiouklis ([10]) as a generaliza-
tion of hypergroups (Marty [17]). (m,n)-hyperrings are other type of
n-ary algebraic hyperstructures, which are as an extension of (m,n)-
rings ([6], [7]) in the framework of hyperstructures. Some applications
of n-hypergroups and (m, n)-hyperrings can be seen in [3] (hyperideals),
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[11], [20] (fundamental relations), [15], [16], [19] (binary relations) and
also other concepts in [7].

On the other hands, one of the most important tools in algebraic
hyperstructures is represented by strongly regular relations, in particu-
lar fundamental relations, which connect an algebraic hyperstructure
to the associated algebraic structure. The fundamental relation I'*
were studied on hyperrings by Vougiouklis and Spartalis in [22], [23]
and [24]. After defining (m,n)-hyperrings by Mirvakili and Davvaz in
[20], they introduced the concept of strongly regular relations on (m,n)-
hyperrings and were able to obtain (m,n)-rings from (m, n)-hyperrings,
using the fundamental relation I'* defined on (m,n)-hyperrings. N. Ja-
farzadeh and R. Ameri introduced and studied the category of (m,n)-
hypermodules and shown this category is exact [1].

The a*-relation is another fundamental relation on hyperrings which
was introduced by Davvaz and Vougiouklis in [9] (for more details see
[8]). In [21], Pelea applied a*-relation for general hyperstructures and
arbitrary identities and also for (m,n)-hyperrings, in framework of mul-
tialgebras theory and universial algebras. Now, in this paper, we provide
a-relation for (m,n)-hyperrings, with its usual and conventional view in
n-ary hyperstructures, similar to what happens for I'*-relation on (m, n)-
hyperrings ([20]). Hence, we prove that a* as transitive closure of « is a
commutative fundamental relation which commutative (m,n)-rings can
be derived by it. Moreover, the connection between categories of (m, n)-
rings and (m,n)-hyperrings is investigated by using functors and the
fundamental relation o*. Finally, some necessary and sufficient condi-
tions for transitivity of the relation « are stated, and some results are
obtained regarding them.

2. PRELIMINARIES

In this section we give some definitions and results of n-ary hyper-
structures which we need in what follows.
A mapping f: H x---x H — P*(H) is called an n-ary hyperop-
—_—

n
eration, where P*(H) is the set of all the nonempty subsets of H. An
algebraic system (H, f), where f is an n-ary hyperoperation defined on
H, is called an n-ary hypergroupoid.
For abbreviation, we denote

f(xlv vy Ly Yit 1y -oey yja Zj—l-l? teey Z’n)

as f(a;ﬁ,yfﬂ, z7q). Also, if yip1 = -+ = y; =y, then it will be written
as f (:vli,y(j*i),zﬁl). Moreover, if f is an n-ary hyperoperation and
t =1(n—1)+1, for some [ > 0, then t-ary hyperoperation f(l) is given
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by

Fo (@) )= FO G PO a7 T, ) 20" )
!

and f)(z) = {z}. For nonempty subsets Ai,..., A, of H we define
f(AY) = U, ea, f(27) such that 1 <i <n. An n-ary hyperoperation f
is called associative if

f(ﬂci*l,f(x?”*l),xiﬁl) _ f(:n{*l,f(xglﬂfl),xiﬁ;l),
hold for every 1 < i < j < n and all 22! € H. An n-ary hy-
pergroupoid with the associative n-ary hyperoperation is called an n-
ary semihypergroup.

An n-ary semihypergroup (H, f) is called an n-ary hypergroup, if
f(mzl_l,H, xi ) = H for all 27 € H and 1 < i < n. An n-ary hyper-
groupoid (H, f) is commutative if for all o € S,, and for every af' € H we
have f(at) = f(ag(1), -+ Go(n))- We denote (az(1y, .-, g(n)) Dy agg)) By
([19]) A non-empty subset B of an n-ary hypergroup (H, f) is called an
n-ary subhypergroup of H, if f(z}) C B for all 27 € B, and the equa-
tion b € f(b\ ", x;, b7 ) has a solution z; € B for all b ',b7, b € B
and 1 <17 <n.

Definition 2.1. ([19]) An (m,n)-hyperring is an algebraic hyperstruc-
ture (R, f, g) which satisfies the following axioms:
(1) (R, f) is an m-ary hypergroup;
(74) (R,g) is an n-ary semihypergroup;
(7i7) the n-ary hyperoperation g is distributive with respect to the
m-~ary hyperoperation f, i.e., for all a’fl,a&l,x{” €R,and 1 <
1 <n,
g(aiila f(ljln)a a’?—i—l) = f(g(aiila x1, a?—&—l)? e ag(ailila LT, a?—l—l))'

An (m,n)-hyperring (R, f, g) is said to be Krasner ([14],[19]), if (R, f)

is a canonical n-ary hypergroup, i.e.,

(1) fis commutative;

(2) there exists a unique e € H, such that f(z,e,---,e) = {z}, for
——
n—1

all z € H;
(3) for all 2 € H there exists a unique 2~! € H, such that e €

f(l',ﬂ:_l,@,"’ 76);

——
n—2

(4) if x € f(x), then for all 1 <i < n, we have

-1 -1 -1 -1
:L‘iEf(x,l' 7"'7x7;_17m2'+1a""$n )
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and (R, g) is an n-ary semigroup such that 0 is a zero element (absorbing
element) of the n-ary operation g, i.e. for all 25 € R we have
g(O, $5L) = g(x% vag) == g(xgv 0)
Example 2.2. Consider the set of all integers, Z, with the following
hyperoperations defined for z,y € Z,
x@y:{l‘,y,x“‘y}, and x®y:{:ﬂy},

where “4” and “” are ordinary addition and multiplication on Z. It
is routine to check that (Z,®,®) is a hyperring. For z7", y!" € Z, set

9(y1) = iy vi = {I1j=, y;} and
m
f(=1") = @% = {JUT, Tiy + Tigy vy Tig + Tig + +$im}
i=1

such that i1, 4o, ..., i,, are different natural numbers from 1 to m. Then,
(Z, f,g) is an (m,n)-hyperring, by [4]. Note that (Z, f, g) is not a Kras-
ner (m,n)-hyperring although (Z, g) is a trivial n-ary semihypergroup.

Example 2.3. ([19]) Suppose that (L,V,A) is a relatively comple-
mented distributive lattice and “f” and “g” are defined on L as follows:
flar,a2) ={c€ L|agNc=axsNc=ay Naz}, Yaj,as € L,

g(ay) = Vi_yai, Vai € L.
It follows that (L, f, g) is a Krasner (2,n)-hyperring.

An equivalence relation p on an m-ary hypergroup (H, f) is called
regular, if a1pbi, ..., anpby, for a,b} € R, then f(a])pf(b}), that is,
Vo € f(ay), Jy € f(b7); wpy and  Vu € f(b}), Fv € f(a}) ; upv.
Also, p is called strongly regular if a;pb; for all 1 < i < n, implies that
zpy for all x € f(a}) and for all y € f(b}), that is shown by f(a})pf(b}).

Let (R, f,g) be an (m,n)-hyperring, then we say that p is (strongly)
regular on R, if p is (strongly) regular with respect to both f and g.

Theorem 2.4. ([20]) If (R, f,g) is an (m,n)-hyperring and the rela-
tion p is a strongly regular relation on both (R, f) and (R,g), then the
quotient R/p = {p(z) | * € R} with the following m-ary and n-ary
operations is an (m,n)-ring.

f/p(p(m), ,p(.l‘m)) = p(Z); Vz € f(an)’
9/p(p(y1), -, p(yn)) = p(d); Vd € g(y?).

Also, Mirvakili and Davvaz in [20] defined the relation I' on (m,n)-
hyperrings as follow:
Let (R, f,g) be an (m,n)-hyperring. For every k € N and I§ € N where
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s =k(m —1) + 1, define a relation I'ys, as follow:

x5y if and only if there exist xﬁl € R, where t; = [;(n — 1) + 1 and
i=1,...,s such that {z,y} C fy)(u1,...,us) where for every i = 1,...; s,
u; = g(li)(xﬁ"). Now, set I'y, = UlieN Lpys and I' = (Jpens Tk This
definition is a natural generalization of the relation I' on hyperrings
((2,2)-hyperrings) defined by Vougiouklis in [23]. In [20], it is shown
that the transitive closure of I', I'*, is a strongly regular relation on
(m,n)-hyperrings such that (R/I'*, f/I"*, g/I'*) is an (m, n)-ring. More-
over, it was shown that I'* is the smallest equivalence relation such that
(R/T*, f/T*,g/T'*) is an (m,n)-ring. Hence, (R/I'*, f/I'*, g/T"*) is said
to be fundamental (m,n)-ring obtained from I™*-relation.

3. a-RELATION ON (m,n)-HYPERRINGS

In this section, we introduce a-relation on (m,n)-hyperrings, as a
generalization of a-relation on hyperrings, to construct a commutative
fundamental (m,n)-ring.

Definition 3.1. Let (R, f, g) be an (m, n)-hyperring. For k € N*, [] € N
and z,y € R, define the relation oy, as follow:

T Y < Elzﬁl, ...,Z:ir ER, do€S,, do; € Sti§
1t .
RS f(k-) (g(ll)(zlll>7 "'7g(lr)(z77:§ )) and S f(k) (ua(l)7 "'7u0'(r))
where u; = g(l_)(zzjgf((?))), r="kim—-1)+1, ¢t = li(n—1)+1, and

1 <i<r. Now, set o = > <Ul{€N ak;p{).

It is easy to see that the relation « is reflexive and symmetric. Let
o be transitive closure of «.

Theorem 3.2. The relation o is a strongly reqular equivalence relation
on (R, f,9).

Proof. Since « is reflexive and symmetric, and «o* is transitive closure
of a, then a* is an equivalence relation. Hence, we show that a* is
strongly regular. In order to let ajaby, ..., amaby,, for all al*, b7 € R,
and let x € f(al’) and y € f(b]"). Thus, for i € {1,...,m} there exist

:L‘itfj, - xrﬁij € R, 0; €S;, and 0;; € Sy;; such that r; = ki(m—1)+1,

Ti

tijZZZ‘j(n—l)—i-l,lSjS?‘i and

1;t;
1;) (xlil 1)7 "'7g(z-

Titir,
a; € f(ki) (gu- Wi)(xril ))

(3

bi € f(ki) (uai(il)v ) uai(iri))a
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Lioij(ti)

. Hence, we have
1ioi;(1) ) ’

where u;; = 9a,. (z
ij

1 r1t1r
T € f(al ) f<f(k1) (g(lll)(l‘lﬁn)a "-ag(llrl)(mrill 1))7

Imtm mtm'rm
3 L T,y @™ )5 5 Gy (T ))>

_ 11211
- f(1+k1+“'+km) (gam( P11 )

1 tm nLt",LT'm
“9a, 1)($ - 1)7"'7g(zmrm)(m:m1 ))a

r1tirg
""’g(zlrl)(mml )a

similarly,

yE f(bgn) - f(1+k1+m+km) (ual(ll)v coy gy (Ir1)s -+ Ugp (ml)s +oo uam(me))'

In this case, we have r1 + -+ +rp = (L+ k1 + -+ kp)(m — 1) + 1.
Consider 7 € Sy 4...4p,, such that 7(ij) = 04(ij), then we have

11t ritir
HARS f(1+k1+-»-+km) (g(lll)( 111“)7 ..-7g(llrl>(x,,,11 1)a

Imtmi

mlmrm
R L RO R G D)

and y € f(1+k1+ +km)( T(11)5 =+ Ur(1ry)s -+ Ur(m1)s - uT(mrm))' Therefore
(, y) € 04,4 il and S0 xay. Hence f( ™) @ f(b"). Now, if
10*Y1, oy T Ym for all 21", y1" € R, then

Jx1 = wor, w11, ..., Wp1 = Y1 € R 1 = worawna- - 0wy = Y1

3 T = Wom, Wims - Wnm = Ym € B 5 Ty = WomQwima - - - 0Wnm = Y-
By strongly regularity of «, we have

@) = f(wm ) @ f(wn Ja--a flwpl") = fFy):

Therefore, for all u € f(z*) and v € f(y"), there exist 21 € f(wi),

y Zn—1 € f(w (Z 31 ) such that uazja - - az,—jov. Thus ua*v, and so

f(a?1 ) ar f(y7"). On the other hand, for 1 <i <mn, r; =kj(m—1)+ 1,
tij = lij(n H+1,1<j<r and xlltw’ ritij

oy Tpp” of R, there exists
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k' > 0 such that

11t T1itip 1nt Tninr
g(f(k,l)(g(lu)(zlilu)’""g(lul)(z”ll 1))""’f(kn)(g(ln1)(w1:1m)’""g(lnrn)(wf‘nl n))>

— 13t11 12t21 bn—1t(n—1)1 _lnty
_f<k:/)(g(1+111+“'+ln1)($111 $T1p1” T, g @),

13ty latay
,

g(1+l11+"'+I'(n71)1+ln2)(wlll ' T1p1

Tn—1t(n—1)1 _2ntno
sy Ty » T ),

n—11

(xlltll pl2t2n wlnflt(n—l)l Tntn'r‘n)
7g(1+111+"'+l(n—1)1‘HnTn) 111 F1p1 o1 g1 1 Tl s

11ty latoy In—1t(n-1)2 1lntpy
g(1+111+m+1(n_1>2+1n1)(5‘111 »T151" s Ty 1 »Tip1 )

11t11 _lotay 2n—1t(n—1)2 2ptna
g(1+111+...+[(n_1)2+1n2)(zlll »T151" s Ty g1 »Tap1 )

. (zlﬂu pl2tel Lo n=1)2 m"””"”n)
YTt gy 1yatlare,) V11T 2 T1p1T e T2, g1 ! ’

Ty —1t _
11t latoy = noltn=br, g l,lntnl)
s Tyl 3

g(1+l11+'“+1(n,—1)7‘n_1+ln1)(wlll 7151 s T

P 1t(n_1
g (zlltll pl2tel _ (n=1)r, 4 IQnth)
(1+l11+"'+l(n,1),. 1+ln2) 111 %11 2 e, g1 2l ’
n—

Thp—1t
g (mlltll l2tal = Pn=Dr,_y x"'"tﬂrn)
At ryp | Fne,) T TR0 ey » Tl ;

t
ritipy  T2targ m—1%(n—1)r _, Imtm«"))

g(1+l17‘1+L2r2+”'+l(n71)r7171 +ln7‘”)( ril el 0T, g1 »Prnl

Thus by a similar manner, it can be shown that

Vie{l,...n}; aia*b; => g(a}) o* g(b}).

*

Consequently, a* is a strongly regular relation on (R, f,g). (]

Theorem 3.3. If (R, f,g) is an (m, n)-hyperring, then (R/a*, f/a*, g/a*)

is an (m,n)-ring.

Proof. Since o* is strongly regular relation, by Theorem 2.4 ;| the quo-
tients (R/a*, f/a*) and (R/a*, g/a*) are m-ary group and n-ary semi-
group, respectively, under the following m-ary and n-ary operations:

fla* (e (1), ....,a*(zm)) = a’(2); Vze f(z]"),
g/a” (@ (1), ..., o (yn)) = @™ (d); Vd € g(y7),
such that =", y{' € R. Therefore, it is enough to show that n-ary opera-
tion g/a* is distributive respect to f/a*. For all 21", y} € R, A; C a*(x;)
and Bj C a*(y;) such that 1 <i <m and 1 < j < n, we can write
flar(@(@1), ..., o™ (zm)) = " (f(27")) = " (f(AT")) and
9/ (@ (y1); - 0 (yn)) = " (g(y1')) = " (9(BY))
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where a*(A) = J,c4 @*(a). Hence, we have
gfa ("l fla (@ i) 0l ) = gfa* (@l et (F(at). e, )
= o* (g™ @), yi))
and

fla(g/a* (@ a* (@), a* i) g /0t (@0 (), 0”12, ))
= f/a* (a* (9t 21, y2))s o 0 (g(yifl,wm,y?ﬂ)))
=a* (f(g(yi‘l,xl,y?ﬂ), 9T T, y%h)))

(for abbreviation, a*(x1),...,a*(z;) denoted by «o*[7i). Since g is dis-
tributive with respect to f in R, the distributivity law is valid in R/a*.
O

Corollary 3.4. The quotient (R/o*, f/a*, g/a™) is a commutative (m,n)-
Ting.

Proof. Let g/a*(a*[Zr) = a*(c) and g/ (a*|xjg’f)) a*(d) such that

2 € Rand o € S,. If ¢c € g(z}) and d € g(x U(n)) Then for T €8Sy,
a(n

we have ¢ € f (g(l)(m’f)) and d € f (9(7(1))( ()))) Hence cag,1d
and so ca*d. Then a*(c) = a*(d) and so g/a* is a commutative n-ary

operation. Also, if ¢ & g(z') and d & g(xi?f))), then there exist p € g(z7)

and q € g(z En))) such that a*(¢) = a*(p) and a*(d) = a*(¢), and also
a*(p) = a*(q). Similarly, for other cases, it can be seen that g/a* is
commutative. Moreover, we can show that f/a* is a commutative m-
ary operation. Therefore, (R/a*, f/a*, g/a*) is a commutative (m,n)-
ring. U

Let R be an (m,n)-hyperring. The mapping ¢ : R — R/a*, defined
by p(z) = o*(z) for all z € R, is called canonical projection with respect
to commutative fundamental relation a*.

Theorem 3.5. The relation o* is the smallest strongly reqular equiva-
lence such that the quotient R/a* is a commutative (m,n)-rings.

Proof. By Theorem 3.2 and Corollary 4.6, we know that a* is a strongly
regular equivalence relation on R, and the quotient R/a* is a commu-
tative (m,n)-rings. Hence, we show that a* is the smallest. Let p
be a strongly regular relation on R such that R/p is a commutative
(m,n)-rings and let ¢ : R — R/p be the canonical projection. If
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zay then there exist zﬂl, wn2t € R oo €S, and 0; € Sy, such that

» “rl

r=k(m—-1)+1,t=Ln—-1)+1,1<i<rand

1 r
z € fu <9<11>(zl?) 9 (201 )) and

0(1)%(1)(%(1))
S f(k) (gu (1))( o(L)og(1y(1) ),

Hence, by Theorem 4.5, we have

pl) = o, (a/p, (I20), g/p, (o)) and
_ Fe(Wog(1)(te(1)) o (94 (r) (o(r)
p(y) = f/p(k) (g/p(l (p|20<1 U<;<1) ' ) Q/P(ZU(T)) (p’ZU(T)%(T)u) ))

Since f/p and g/p are commutative, p(z) = p(y) and so a C p. Now,
let xa*y, then by transitivity of p we have xpy. Therefore, a* C p and
thus o* is the smallest strongly regular relation such that R/a* is a
commutative (m,n)-ring.. O

o (r)os () (to(r))
(2717 <>>>_

29 (1) (1)

0(7))

By Corollary 4.6 and Theorem 3.5, we conclude that o* is the smallest
strongly regular relation such that R/a* is a commutative (m,n)-ring.
Hence, the relation o* is called commutative fundamental relation on
(m,n)-hyperring R, and the quotient R/a* is said to be the fundamental
commutative (m,n)-ring.

In certain case, for 27", yi' € R if m-ary and n-ary hyperoperations f
and g defined by

far) =Y x, and g =[]y, .
i=1 =

then forr=k(m—-1)+1,¢t, =l (n—1)4+land 1 <i<r

14 r
Ty (8 (A, 29, (2100))

means that »_;_; (H?’zl ;;), which is a finite sums of finite products of
elements of R. Also, for o € S, and 0; € Sy,,
(= (o (r) ))

(1o, (1) (te(1))
f(k) (g(la(l))( o(L)og)(1) ) " 9a Zo(r)ae(r (1)

is equal to 37| Ay 0] such that A; = H (j)- Therefore, by reduc-
tion of the relation a* to general hyperrmgs (R +,-) ((2,2)-hyperrings),
we will obtain the a*-relation defined on hyperrings by Davvaz and Vou-
giouklis in [9].

o('r

Remark 3.6. Let (m,n) — HRg and (m,n) — C'Rg denote the categories
of (m,n)-hyperrings and commutative (m,n)-rings, respectively. Also,
let h : R — R’ be a homomorphism of (m,n)-hyperrings. Consider
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the commutative fundamental relation a* on R and R’. Then the map
h* : R/a* — R'/a* given by h*(a*(r)) = a*(h(r)) for all r € R, is
a homomorphism of (m,n)-rings. Moreover, the following diagram is
commutative

R I, R

1 b

Rja* —“ R'Ja*
and hence we have the next result.
Theorem 3.7. The mapping ® :(m, n)—HRg —(m, n)—CRyg, defined
by R+— R/a*, is a functor.
Proof. The proof is similar to corresponding result in [2]. O
Consider the fundamental relation I'* on (m,n)-hyperrings was de-

fined and studied by Mirvakili and Davvaz in [20]. Then, we have the
following corollary:

Corollary 3.8. If (R, f,g) is a commutative (m,n)-hyperring, then o*
coincide with I'*.

Proof. It is an immediate consequence from definition of o*. O

Let R be an (m,n)-hyperring and ¢ be a relation on R such that
o C . Set

¢/ = {(a*(a),a”(b)) € R/a® x R/a” | (a,b) € ¢}.
Then we have the following result:

Theorem 3.9. If ¢ is a strongly regular relation on (m,n)-hyperring

(R, f,q) such that a* C ¢, then ¢/a* is a strongly regular relation on

R/a*.

Proo Let (a*(a;),a*(b;)) € ¢/a* for 1 < ¢ < m, then (a,,b,) €
¢, ..., (a,,b ) € ¢. Since ¢ is a strongly regular relation, we have

f(a] ) ¢ f(b7). Tt implies that (x,y) € ¢ for every z € f(af*) and

y € f(bg”) Thus (a*(z),a*(y)) € ¢/a*, for

a(x) = f/a*(a|gm) and a*(y) = f/a* (a”;").
Then f/a*(a*(a,), ...,a*(a,,)) ¢/a* f/a*(a*(b,),...,a*(b,,)). Similarly,

we can show that ¢/a* is strongly regular with respect to g/a*. This
completes the proof. O
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4. TRANSITIVITY OF a-RELATION

Transitivity of a-relation on hyperrings was investigated in [18], by a-
parts on hyperrings. The concept of complete parts of n-ary hypergroups
was studied by Leoreanu-Fotea and Davvaz in [16] as a generalization
of this concept in hypergroups. In this section, the notion of complete
parts of (m,n)-hyperings is defined, and some necessary and sufficient
conditions are determined such that the relation « is transitive.

Definition 4.1. A non-empty subset B of an (m, n)-hyperring (R, f, g)

. t
is called a o — part of R, whenever for zzf ER, 0€S,, o € Sti and
1<i<r

foo (g(zl)(zﬁl)7 -'-79(17")(2:;7')) NB#0 = f(k)(ua(l)’ "'7u0(r)) cB
such that u; = ga,)(zgffﬁ)), r=k(m—-1)+1landt,=1(n—1)+1.
Lemma 4.2. If B is a non-empty subset of (m,n)-hyperring (R, f,g),
then the following conditions are equivalent:
(i) B is a a-part of R;

(ii) x € B and xay implies that y € B;
(1i1) = € B and xa™*y implies that y € B.

Proof. (i) = (ii) Let B be a a-part of R and z,y € R such that z € B

. t, ‘
and xzay. Hence, there exist zz-f €ER, 0€5,0i€5 ,and1l <i<r
such that

€ S (80 G110, GHO) =T and € fp (Z)

ZZZZ((iZ)))a r=k(m—1)+1andt, =1,(n—1)+ 1. Therefore,

z €T'NB, and so f,, (uzgg) C B, since B is a-part. Thus y € B.
(74) = (i7i) Assume that x € B and za*y for x,y € R. Then there exist

T =w,,w,,....,w, =y of Rsuch that

for u; = g, (2

T = w,aw, o Qw,, =Y.

Since x € B, by applying (ii) m times, we obtain that y € B.
(i4i) = (i) Suppose that TN B # @ and x € TN B. Let y € f, (ugg;),
then we have xay and so xa*y. By (iii), it implies that y € B and thus

foo (uggg) C B. Therefore, B is a a-part of R. O

In the following we introduce some notions which will be used in the
next results:
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For x,zﬁ" €ER, 0€S,,0 €8, r=km-1)+1,t =l(n-1)+1,

u, = 9(1->(Z::((?))) and 1 <7 < r, define

C.(z) = U {f(k) (uggg) |0 €Sy, 0: €8y, € [, (g(h)(zﬁl), _..,gar)(z?’:ir

T (@) =JC ().

r>1
Then, we have:
Lemma 4.3. For allx,y € R, y € J,(x) if and only if zay.

Proof. For every (x,7y) € R? we have

1t
ray <= 3 21, . it e R3s €S, Jo; € Sti;

20y
2 € fu (9<11)(Zﬁl)’ ""gan(z:?)) and y € fu«)(“Zgg)
<~ 3Jr;yel.(x)
—yeJ ().
U

Theorem 4.4. If « is transitive on (R, f,g), then o*(x) = J_(z), for
allz € R.

Proof. Let a be transitive, then by Lemma 4.4, we have
y € a’(z) <= za'y <= zay <=y € J, ().
O

Theorem 4.5. Let (R, f,qg) be an (m,n)-hyperring. For every x € R,
if o*(x) = J,(x), then J, (x) is a a-part of R.

Proof. Suppose that f,, (g(m(zlhil), ...,g<lT)(z:iT)> NJ,(z) #0 and y €

fo (UZEB) Hence, there exists t € Rsuch thatt € f (9(11) (21, ..., 9,y (21

and t € J_ (z). Then tay. Moreover, by Lemma 4.4, we have
y € J,(t)=a’(t) = a’(x) = T, (2).

Then f,, (uggg) C J. (z) and so J, () is a a-part of R. O

Theorem 4.6. Let (R, f,g) be an (m,n)-hyperring. If for every x € R,
J_(x) is a a-part of R, then « is transitive on R.

it gt
Proof. Let zay and yaz, then there exist a;tf , b;lj €ER,0c€S,,, TES,,,
0i €5y, 5 €5,y = k,(m—1)+1,r, =k,(m—1)+1,t, = 1. (n—1)+1,

)}

)
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ioi(t,) jTi(t;) .
t]. = l](n - ].) + 1, u, = g(li)(aiffi(l) ), Uj = g(lj)(bjTj(lj) ), and 1 <1< T,

1 <j <r, such that

1t ity a(ry)
x € f<k1) (9(11)(a111)v ...,g(lﬁ)(ar11 1)) and y € f(kl)(ua(ﬁ ), and
7'2t7‘2 )

7(r
Y€ f(k-2) (9(11)(51?); '-"g(lrz)(brzl )) and z € f(kQ)(UT(1§ ).
Since J,(x) = {y € R | zay} and « is reflexive, x € J_ (x) and so

1t1 Tltrl

7€ iy (900 @1): 90, (ams™)) N T, (@):

Since J, (x) is a-part, we have

fup (wt)) € T, (5) = y € 7, ()
rot,
= Yy = f(kQ) (g(ll) (b%§1)7 st g(lrz)(arzl 2 )) N ja (f]j)

— fup(r1}) € 7, (@)
= ze J (x)

o

= zroz (by Lemma 4.4)

Therefore, « is transitive. O

Corollary 4.7. Let (R, f,g) be an (m,n)-hyperring. Then a-relation is
transitive on R if and only if for every x € R, o*(x) = J,(z)if and only
if for every x € R, J_(x) is a a-part of R.

Proof. Tt is proved by Theorem 4.4, Theorem 4.5 and Theorem 4.6. [

Example 4.8. Let R = {1,2,3,4,5,6,7}. For defining a noncommuta-
tive 3-ary hyperoperation f on R, we use the following code in Matlab
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software:

7clear

cle

nPop =T,
empty-action.addition = [];

z = repmat(empty-action,nPop,nPop);

z(1,1).addition = [1,2]; (1, 2).addition = [1,2]; (1, 3).addition = 3; z(1,4).addition = 4;

z(1,5).addition = 5; z(1, 6).addition = 6; z(1, 7).addition = 7;

z(2,1).addition = [1,2]; 2(2, 2).addition = [1,2]; (2, 3).addition = 3;z(2,4).addition = 4;

2(2,5).addition = 5; 2(2, 6).addition = 6; z(2,7).addition = 7;

z(3,1).addition = 3; z(3, 2).addition = 3; z(3, 3).addition = [1,2]; 2(3,4).addition = 6;

z(3,5).addition = 7; z(3, 6).addition = 4; (3, 7).addition = 5;

z(4,1).addition = 4; z(4, 2).addition = 4; z(4, 3).addition = 7; z(4,4).addition = [1, 2];

z(4,5).addition = 6; z(4, 6).addition = 5; z(4, 7).addition = 3;

z(5,1).addition = 5; z(5, 2).addition = 5; z(5, 3).addition = 6; z(5,4).addition = T,

z(5,5).addition = [1, 2]; 2(5, 6).addition = 3; z(5, 7).addition = 4;

z(6,1).addition = 6; 2(6, 2).addition = 6; z(6, 3).addition = 5; 2(6,4).addition = 3;

2(6,5).addition = 5; z(6, 6).addition = 7; (6, 7).addition = [1, 2];

z(7,1).addition = 7; 2(7,2).addition = 7; z(7, 3).addition = 4; z(7,4).addition = 5;
z(7,5).addition = 3; 2(7,6).addition = [1,2]; 2(7,7).addition = 6;

/

disp('Enter Your function q as a vector with three components :’)

q = input(");

s =2z(q(1),q(2)).addition;

n = numel(s);

Sol = [J;

fori=1:n

Sol = [Sol, z(s(i), q(3)).addition];

end

unique(Sol)”

In this algorithm [ @ b | means that {a,b} for a,b € R. Also, consider

3-ary hyperoperation g as g(a,b,c) = {1,2} for all a,b,c € R. Then,

(R, f,g) is an (3, 3)-hyperring. Using this algorithm, it can be seen that
F7.46) = (31, F(4,6,7) = {4}, 7(6,4.7) = {5)
f(7,5,4) ={6}, f(4,7.5)={7}, f(5,7,4) ={1,2}.
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Hence, we have a(l) = a(2) = a(6) = a(7) = {1,2,6,7} and a(3) =
a(4) = a(b) = {3,4,5}. Therefore, « is transitive on R and so a* = a.
Moreover, I'(1) = T'(2) = {1,2} and I'(z) = {z} for all z € {3,4,5,6, 7}.
Thus, I' # «.
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