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Abstract. We defined new special curves in Euclidean 3-space
which refer to clad helices and found the geometric invariants of
clad helices [17]. These notions are generalizations of the notion of
cylindrical helices and slant helices. Using the geometric invariants
of clad helices in this article, we proposed approaches to construct
examples of clad helices in E3 and on S2. Moreover, we obtained
the classification of special developable surfaces under the condition
of the existence of clad helices as a geodesic and existence of slant
helices as a line of curvature.
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1. Introduction

In Euclidean 3-space, helices are characterized by their constant cur-
vature and torsion, resembling lines and circles. In other words, he-
lices can be thought as a curve that generalizes a straight line or a
circle. Curves that generalized helices are known as “Cylindrical he-
lices”,“Bertrand curves” and “Mannheim curves”. In this paper, we
only focused on the cylindrical helices. Cylindrical helices have a geo-
metric invariant that the ratio of curvature to torsion is constant and
have long been studied in the field of differential geometry. Cylindrical
helices are the subject of research, such as characterization of surfaces
including cylindrical helices, classification of surfaces and classification
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of singularities using invariants of cylindrical helices [3, 7, 10, 12, 13, 14].
M.I.Munteanu and A.I.Nistor classified the surface called “Constant an-
gle surfaces”, where the normal vector of the surface always makes a
constant angle with fixed line, that is, the surface whose Gauss map
describes as a part of circle. They found that the tangent surface of
cylindrical helices was one of constant angle surfaces [7].
Then, S.Izumiya and N.Takeuchi have defined “Slant helix” as the gen-
eralization of cylindrical helices. They found the geometric invariants
of slant helices and obtained the classification of developable surfaces
under the condition of the existence of slant helices as a geodesic [13].
Several studies have been conducted on slant helices such as studies on
characterization of surfaces including slant helices, classification of de-
velopable surfaces and classification of singularities using invariants of
slant helices [3, 9, 13]. L.Kula and Y.Yayli shows the examples on how
to construct slant helices in E3 using the notion of involute and evolute
of a space curve [5]. Many examples of slant helices on various surfaces
have been found [1, 2, 4, 6, 8, 9].
We defined the notion of “Clad helices” which is a generalization of
the notion of slant helices and found the geometric invariants of clad
helices. We also classified singularities of special developable surfaces
using the geometric invariants of clad helices [17]. Clad helices is the
topic that recently gain interest from many researchers [11, 15, 16]. Fur-
thermore, studies of curves further extending clad helices are also being
conducted. S.Kaya and Y.Yayli defined “X-slant helix,” which is an ex-
tension of clad helix, and performed a study of singularities of special
developable surfaces [16]. S.Izumiya, K.Saji and N.Takeuchi defined a
curve called “K-th order helices” which is an extension of clad helices,
and studied a relation with a surface called “K-th order slope” which is
an extension of constant angle surfaces [11].
The aims of this paper are to determine how to construct clad helices and
to adapt the surface classifications studied in cylindrical helices and slant
helices to clad helices. As resulted, we determined the way to construct
clad helices in E3 and on S2 (cf. Theorem 3.2 and 6.2). The theorems
are extension method of making slant helices shown in [5]. Furthermore,
we classified the ruled surfaces whose Gauss map describes as a part of
cylindrical helix and slant helix (cf. Theorem 4.1). Theorem 4.1 is an
extension of the results on the classification of constant angle surfaces
shown in [7]. Then, we also obtained the classification of developable
surfaces under the condition of the existence of clad helices as a geodesic
and existence of slant helices as a line of curvature (cf. Theorem 5.5 and
5.7). The theorems are extension of the classification of developable sur-
faces under the condition of the existence of slant helices as geodesics
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shown in [13].
In §2, we described basic notions and properties of space curves and
define clad helices. In §3, using the notions of evolute and involute,
we studied how to construct examples of clad helices in E3. In §4, we
studied the classification of ruled surfaces whose Gauss maps describe as
a part of slant helix. In §5, we studied the classification of developable
surfaces under the condition of the existence of clad helices as a geodesic
and existence of slant helices as a line of curvature. In §6, considering
that a great circle on S2 corresponds to a line in E3, we defined spherical
involute and spherical evolute. Using these notions, we studied how to
construct examples of cylindrical, slant, and clad helices on S2. In §7,
we give examples of clad helices in E3 and slant helices on S2.
All manifolds and maps considered here are of class C∞ unless otherwise
stated.

2. Basic Notions and Properties

In this section, we are reviewing some basic concepts on classical
differential geometry of space curves and the definition of clad helices.
Let γ : I −→ R3 be a curve in E3 and parameterized by its arc-length s.
Then, we called γ unit speed curve. Denote by {e1(s), e2(s), e3(s)} the
Frenet frame along γ(s), where e1(s) is the unit tangent vector field,
e2(s) the unit normal vector field and e3(s) the unit binormal vector
field of γ(s). Then, given the Frenet-Serret formulas as: e′1(s) = κ(s)e2(s)

e′2(s) = −κ(s)e1(s) + τ(s)e3(s)
e′3(s) = −τ(s)e2(s)

(2.1)

where κ(s) and τ(s) are the curvature and the torsion of γ at s. Here,
we used “dash” to denote the derivative with respect to s. It is pos-
sible in general, that e′1(s) = 0 for some s, however, we assumed that
this never happens. For any unit speed curve γ, we defined a vector
field D(s) = (τ/κ)(s)e1(s) + e3(s) along γ and called it the modified
Darboux vector field of γ. We also denoted the unit Darboux vec-
tor field by D̄(s) = ((τe1+κe3)/((κ

2+ τ2)1/2))(s), and defined Du(s) =

((−κe1+τe3)/(κ
2+τ2)1/2)(s) along γ. Then, an orthonormal frame can

be defined as {e2(s), Du(s), D̄(s)}. We called this frame as D-frame.
The following is the Frenet-Serret type formulas :

e′2(s) =
√

κ(s)2 + τ(s)2Du(s)

(Du)′(s) =
√

κ(s)2 + τ(s)2(−e2(s) + σ(s)D̄(s))

D̄′(s) = −
√
κ(s)2 + τ(s)2σ(s)Du(s)

(2.2)
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where σ(s) = (κ2(τ/κ)′
/
(κ2 + τ2)3/2)(s).

Let M be a regular surface and γ : I ⊂ R −→ M be a unit speed
curve on the surface. Then, the Darboux frame {T (s), B(s) = N(s)×
T (s), N(s)} is well-defined along γ, where T (s) is the unit tangent vector
of γ(s) and N(s) is the unit normal vector of M . Here, “×” is the cross
product in R3. Darboux equations of this frame are given by T ′(s) = κg(s)B(s) + κn(s)N(s)

B′(s) = −κg(s)T (s) + τg(s)N(s)
N ′(s) = −κn(s)T (s)− τg(s)B(s)

(2.3)

where κn(s), κg(s) and τg(s) are the normal curvature, the geodesic
curvature and the geodesic torsion of γ(s), respectively. It has been
known that if κg = 0, γ(s) is a geodesic on surface M and if τg = 0,
γ(s) is a line of curvature on surface M . With the above notations,
we denoted ϕ(s) as the angle between the surface normal N(s) and the
principal normal of γ(s). Then, given the following equations as:

κ2(s) = κ2n(s) + κ2g(s)
κg(s) = κ(s) sinϕ(s)
κn(s) = κ(s) cosϕ(s)
τg(s) = τ(s) + dϕ(s)/ds

(2.4)

and {
B(s) = sinϕ(s) · e2(s)− cosϕ(s) · e3(s)
N(s) = cosϕ(s) · e2(s) + sinϕ(s) · e3(s)

(2.5)

Let γ(s) be a spherical curve on S2. Then, Darboux frame along γ(s) is
given by {γ(s), T (s), B(s)}. This frame is called Sabban frame. Using
equations (2.3) and (2.5), the equations can be derived as follow: γ′(s) = T (s)

T ′(s) = −γ(s) + κg(s)B(s)
B′(s) = −κg(s)T (s)

(2.6)

and {
γ(s) = cosϕ(s)e2(s) + sinϕ(s)e3(s)
B(s) = sinϕ(s)e2(s)− cosϕ(s)e3(s)

(2.7)

Let γ : I −→ R3 be a curve in E3 and parameterized by its arc-length s.
Then, γ is called a cylindrical helix if e1(s) makes a constant angle with
a fixed direction. This condition is equivalent to the condition that e2(s)
is orthogonal to fixed direction. Furthermore, γ is called a slant helix
if e2(s) makes a constant angle with a fixed direction. This condition is
equivalent to the condition that e2(s) is a circle on S2 [13]. Recently,
we defined the notion of clad helix which is generalization of the notion
of slant helix. γ is called a clad helix if e2(s) is a cylindrical helix on S2
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[17]. It has been known that γ is a cylindrical helix when the ratio of
torsion, τ to curvature, κ is a constant. If both of κ and τ are constant,
γ is a circular helix. S.Izumiya and N.Takeuchi showed that γ is a slant
helix when

σ(s) =

(
κ2(

κ2 + τ2
)3/2 (τ

κ

)′
)
(s) (2.8)

is a constant [13]. Therefore, σ(s) is the invariant of slant helices. We
found that γ is a clad helix when

φ(s) =

(
σ′(

1 + σ2
)3/2 (

κ2 + τ2
)1/2

)
(s) (2.9)

is a constant [17]. Therefore, φ(s) is the invariant of clad helices.

3. Characterization of Clad Helices

In this section, we investigated how to construct examples of clad
helices in E3. Let γ(s) be a space curve. We defined a space curve
whose tangents are orthogonal to the family of tangents of γ(s) as an
involute of γ(s) and defined a space curve which have an involute as
γ(s) as an evolute of γ(s). L. Kula and Y. Yayli shows the examples
on how to construct slant helices in E3 using the notion of involute and
evolute of a space curve [5]. We obtained that a curve γ is a slant helix
if and only if its evolute is a clad helix (cf. Theorem 3.2). Using this
result, the examples of clad helices was constructed. It was shown in §7.

Lemma 3.1. [5] Let γ(s) be a space curve. Then,

(i) γ(s) is a cylindrical helix if and only if its evolute is a slant helix.

(ii) γ(s) is a slant helix if and only if its involute is a cylindrical helix.

We generalized Lemma 3.1 and obtained Theorem 3.2.

Theorem 3.2. Let γ(s) be a space curve. Then,

(i) γ(s) is a slant helix if and only if its evolute is a clad helix.

(ii) γ(s) is a clad helix if and only if its involute is a slant helix.

Proof. First, we investigated (i). We defined α(s) as an evolute of
γ(s). Then, α(s) was defined as the following equation: α(s) = γ(s) +
((e2 + tan(ϕ + c)e3)/κ)(s), where s is the arc-length parameter of γ(s)
and c is a constant function and ϕ = −

∫
τ(s)ds and κ(s), τ(s) are the

curvature and the torsion of γ(s) at s. Let s̄ be the arc-length parameter
of α(s). Then, we got ds̄/ds = ε1

(
(1/κ)′ − (τ tan(ϕ+ c)/κ)

) /
cos(ϕ +

c), where ε1 = ±1 and ε1
((
(1/κ)′ − (τ tan(ϕ+ c)/κ)

) /
cos(ϕ+ c)

)
>
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0. We denoted κα(s) and τα(s) the curvature and the torsion of α(s),
respectively. Then,

κα(s) = ε2
κ cos2(ϕ+ c)(

1

κ

)′
− τ tan(ϕ+ c)

κ

, τα(s) =
κ sin(ϕ+ c) cos(ϕ+ c)(

1

κ

)′
− τ tan(ϕ+ c)

κ

(3.1)

where ε2 = ±1 and ε2((1/κ)
′− (τ tan(ϕ+ c)/κ)) > 0. From that, we got

σα(s) =

( κ2α
d

ds̄

(
τα
κα

)
(
κ2α + τ2α

)3/2)(s) = −ε1ε2
τ

κ
(3.2)

and

φα(s) =

( d

ds̄
σα(

1 + σ2
α

)3/2 (
κ2α + τ2α

)1/2)(s) = −ε1ε2σ(s) (3.3)

where σα and φα are invariants of slant helices and clad helices of α(s),
respectively. This completes the proof of (i).
After that, we investigated (ii). Let β(s) be involute of γ(s). Then,
β(s) was defined as the following equation: β(s) = γ(s) + (c − s)e1(s),
where c is a constant. We denoted σβ(s) the invariant of slant helices of
β(s). By the same method as in the proof of (i), we got σβ(s) = −εφ(s),
where ε = ±1 and ε(c− s) > 0. This completes the proof of (ii).

4. Classification of Ruled Surfaces with Gauss map

In this section, we give the classification of ruled surfaces in E3 with
Gauss map. A ruled surface in E3 is the map F(γ,δ) : I×R → R3 defined

by F(γ,δ)(s, v) = γ(s)+vδ(s), where γ : I → R3, δ :→ R3\{0} are smooth

mappings and I is an open interval or a unit circle S1. We called γ the
base curve and δ the director curve. The straight lines v → γ(s)+vδ(s)
are called rulings. Developable surfaces are ruled surfaces and have
the vanishing Gaussian curvature on the regular part. It has been
known that developable surfaces are classified in tangent developable,
cylindrical surfaces and conical surfaces.
Let M ⊂ R3 be an oriented surface and N be the unit normal vector of
M . The Gauss map is the map N : M → S2. The Gauss map has been
investigated in differential geometry and singularity theory. Surfaces
whose unit normal vector makes a constant angle with a fixed direction
at any point on the surfaces are defined [7]. These surfaces are called
constant angle surfaces, the Gauss map of constant angle surfaces de-
scribes as a part of circle on S2. Then, we remark that a cylindrical
helix on S2 is a generalization of the notion of a circle on S2 and that a
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slant helix is a generalization of the notion of a cylindrical helix on S2.
We studied the surfaces whose Gauss map describes as a part of a cylin-
drical helix and a slant helix on S2. As resulted, we found the classifi-
cation of ruled surfaces with Gauss map in Theorem 4.1.

Theorem 4.1. Let M be a ruled surface. Suppose that the Gauss map
of M is a slant helix on S2. Then,

(i) M is a part of a cylindrical surface.

(ii) M is a part of the tangent developable of a clad helix.

(iii) M is a part of a conical surface whose director curve is a slant
helix.

Proof. If the Gauss map of M describes as a curve on S2, the Gaussian
curvature of M becomes zero. It follows that M is a developable surface.
Therefore, we considered that M is classified in tangent developable,
cylindrical surfaces and conical surfaces.
If M is a part of a cylindrical surface, the Gauss map of M describes as
a part of a circle on S2. This proved that (i) consists.
If M is a part of the tangent developable, we defines M : F(γ,e1)(s, v) =
γ(s) + ve1(s), where e1(s) is the unit tangent vector of γ(s). Then, we
calculated the unit normal vector N(s) of M : N(s) = e3(s). We denoted
κe3(s) and τe3(s) as the curvature and the torsion of the unit binormal
vector e3(s) of γ(s), respectively. Using D-frame, we calculated κe3(s) =

ε((κ2 + τ2)1/2/τ)(s), τe3(s) = −(σ(κ2 + τ2)1/2/τ)(s), where ε = ±1 and
ετ(s) > 0. It follows that (τe3/κe3)(s) = σ(s). By straightforward
computation, we got

σe3(s) =

κ2e3

(
d
ds̄

(
τe3
κe3

))
(κ2e3 + τ2e3)

3/2

 (s) = −εφ(s) (4.1)

It implies that if the Gauss map of M describes as a part of a slant helix
on S2, the base curve γ(s) is a part of a clad helix. Then, M is a part of
the tangent developable of a clad helix. This proved that (ii) consists.
If M is a part of a conical surface, we defines M : F(p,α)(s, v) = p+vα(s),
where p is a constant vector, α(s) is a unit vector and s is arc-length
parameter of α(s). Then, we defined Sabban frame as {α(s), T (s), B(s)}
along α(s). Using equation (2.6), we calculated N(s) = B(s). Then, we
got N ′(s) = B′(s) = −κg(s)T (s), where κg(s) is the geodesic curva-
ture of M along α(s). If κg(s) = 0, the unit director curve is a part
of a great circle. Then M is a right circular cone. From this point for-
ward it is considered as κg(s) ̸= 0. Let s̄ be the arc-length parameter
of the spherical image of the unit vector B(s). Then we got ds̄/ds =
εκg(s), where ε = ±1 and εκg(s) > 0. We denoted κB(s) and τB(s)
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as the curvature and the torsion of B(s), respectively. By straightfor-

ward computation, we calculated κB(s) = (ε(1 + κ2g)
1/2/κg)(s), τB(s) =

−(κ′g/κg(1 + κ2g))(s). The equations κB(s) and τB(s) were written as
κ(s) and τ(s), where κ(s) and τ(s) is the curvature and torsion of
α(s). It consists that κn(s) = −1, τg(s) = 0 on S2. Then, using

equation (2.4), we got κ′g(s) = κ2(s)τ(s) and κg(s) = ε(κ2(s) − 1)1/2,

where ε = ±1 and ε(κ2(s) − 1)1/2 > 0. Therefore, we calculated

κB(s) = (κ/(κ2 − 1)1/2)(s), τB(s) = −(ετ/(κ2 − 1)1/2)(s). It follows
that (τB/κB)(s) = −ε(τ/κ)(s). By straightforward computation, we
got σB(s) = −εσ(s), where σB is the invariant of slant helices of B(s).
It implies that if the Gauss map of M is a part of a slant helix on S2,
α(s) is a part of a slant helix. This proved that (iii) consists. Therefore,
we completes the proof.

From the proof of Theorem 4.1, we have the following Corollary.

Corollary 4.2. Let M be a ruled surface. Suppose that the Gauss map
of M is a cylindrical helix on S2. Then,

(i) M is a part of a cylindrical surface.

(ii) M is a part of the tangent developable of a slant helix.

(iii) M is a part of a conical surface whose director curve is a cylindrical
helix.

5. Curves on Developable Surfaces

In this section, we studied clad helices from the view point of the
theory of curves on developable surfaces. Let γ be a unit speed space
curve with κ ̸= 0. A ruled surface F(γ,D)(s, v) = γ(s)+vD(s) is called the
rectifying developable of γ. It has been classically known that γ was
a geodesic of the rectifying developable of γ. S.Izumiya and N.Takeuchi
shows that the converse was also true (cf. Proposition 5.1)[13]. Further,
the result of Proposition 5.2 has been known for many years. As shown
in §2, we called D as modified Darboux vector field. Using modified
Darboux vector field, we proved Proposition 5.2 again.

Proposition 5.1. [13] Let M be a ruled surface and γ(s) a regular curve
on M with nonvanishing curvature. Then, the following conditions are
equivalent:

(i) M is the rectifying developable of γ(s).
(ii) γ(s) is a geodesic of M, which is transversal to rulings and M is a

developable surface.

Proposition 5.2. Let γ(s) be a regular curve with nonvanishing curva-
ture. Then, rectifying developable M of γ(s) is classified as follow:
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(i) M is a part of a cylindrical surface if (τ/κ)′(s) = 0.
(ii) M is a part of the tangent developable if (τ/κ)′(s) ̸= 0 and

(τ/κ)′′(s) ̸= 0.
(iii) M is a part of a conical surface if (τ/κ)′(s) ̸= 0 and (τ/κ)′′(s) = 0.

Proof. We defined M : F(γ,D)(s, v) = γ(s) + vD(s) and got D′(s) =
(τ/κ)′(s)e1(s). If (τ/κ)′(s) = 0, director curve is a constant vector.
Therefore, M is a cylindrical surface. This proved that (i) consists.
Moreover, we got (∂F/∂s× ∂F/∂v) = −(1 + v (τ/κ)′ (s))e2(s).
If (τ/κ)′ (s) ̸= 0, we assumed that v = −1/ (τ/κ)′ (s). Then, have a
space curve γ̄(s) on M :

γ̄(s) = γ(s)− 1

(τ/κ)′ (s)
D(s) (5.1)

where γ̄(s) is the locus of singular points of M . Then, the equation of
the surface M was rewritten to F(γ̄,D)(s, v) = γ̄(s)+(v+1/(τ/κ)′)D(s).

We have dγ̄/ds =
(
(τ/κ)′′

/
(τ/κ)′2

)
D(s). Therefore, if (τ/κ)′′ (s) ̸= 0,

we rewrote the equation of M to F(γ̄,γ̄′)(s, v̄) = γ̄(s)+ v̄γ̄′(s). Therefore,
M is the tangent developable of γ̄(s). This proved that (ii) consists.
If (τ/κ)′′(s) = 0, γ̄(s) is a constant vector. Therefore, we defined M :
F(p,D)(s, v̄) = p+ v̄D(s), where p is a constant vector. This proved that
(iii) consists. This completes the proof.

S.Izumiya and N.Takeuchi have investigated the classification of special
developable surfaces under the condition that there exists a slant helix
as a geodesic on the surface(cf. Theorem 5.4)[13]. Now, we have the fol-
lowing classification of special developable surfaces under the condition
that there exists a clad helix as a geodesic on the surface (cf. Theorem
5.5). We found that Theorem 5.5 was the generalization of Theorem
5.4. However, before we denote Theorem 5.5, we denote Lemma 5.3.

Lemma 5.3. Let γ(s) be a unit speed space curve and D̄(s) be a unit
Darboux vector of γ(s). Then,

(i) γ(s) is a slant helix if and only if spherical images of D̄(s) is a
part of a circle on S2.

(ii) γ(s) is a clad helix if and only if spherical images of D̄(s) is a part
of a cylindrical helix on S2.

Proof. We denoted κD̄(s) and τD̄(s) as the curvature and the torsion
of the spherical image of the unit vector D̄(s), respectively. Using D-

frame, we calculated κD̄(s) = ε((1 + σ2)1/2/σ)(s), τD̄(s) = −(σ′/σ(κ2 +

τ2)1/2(1 + σ2))(s), where ε = ±1 and εσ(s) > 0. Therefore, the image
of D̄(s) is a part of a circle on S2 when σ(s) is a constant function. And
it follows that (τD̄/κD̄)(s) = −εφ(s). Therefore, the image of D̄(s) is a
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part of a cylindrical helix on S2 when φ(s) is a constant function. This
completes the proof.

Theorem 5.4. [13] Let M be a developable surface and γ(s) a regular
curve on M with non-vanishing curvature. Suppose that γ(s) is a slant
helix of M and geodesic, which is transversal to rulings. Then,

(i) M is a part of a cylindrical surface if (τ/κ)′(s) = 0.

(ii) M is a part of the tangent developable of a cylindrical helix if
σ′(s) = 0, (τ/κ)′(s) ̸= 0 and (τ/κ)′′(s) ̸= 0.

(iii) M is a part of a circular cone if σ′(s) = 0, (τ/κ)′(s) ̸= 0 and
(τ/κ)′′(s) = 0.

Using Proposition 5.2 and Lemma 5.3, we generalized Theorem 5.4.

Theorem 5.5. Let M be a developable surface and γ(s) a regular curve
on M with non-vanishing curvature. Suppose that γ(s) is a clad helix of
M and geodesic, which is transversal to rulings. Then,

(i) M is a part of a cylindrical surface if (τ/κ)′(s) = 0.

(ii) M is a part of the tangent developable of a cylindrical helix if
σ′(s) = 0, (τ/κ)′(s) ̸= 0 and (τ/κ)′′(s) ̸= 0.

(iii) M is a part of the tangent developable of a slant helix if φ′(s) = 0,
σ′(s) ̸= 0, (τ/κ)′(s) ̸= 0 and (τ/κ)′′(s) ̸= 0.

(iv) M is a part of a circular cone if σ′(s) = 0, (τ/κ)′(s) ̸= 0 and
(τ/κ)′′(s) = 0.

(v) M is a part of a cone whose unit director curve is a cylindrical
helix if φ′(s) = 0, σ′(s) ̸= 0, (τ/κ)′(s) ̸= 0 and (τ/κ)′′(s) = 0.

Proof. Using Proposition 5.1, M is the rectifying developable of γ(s).
Therefore, we defined M : F(γ,D)(s, v) = γ(s) + vD(s).
If (τ/κ)′(s) = 0, by Proposition 5.2, M was a cylindrical surface. This
proved that (i) consists.
If (τ/κ)′(s) ̸= 0 and (τ/κ)′′ (s) ̸= 0, by Proposition 5.2, M was a part
of the tangent developable. To prove the Proposition 5.2, we consid-
ered the locus of singular points of rectifying developable, which is
given by γ̄(s) = γ(s) − (1/ (τ/κ)′ (s))D(s). γ̄(s) is a base curve of
M . Let s̄ be the arc-length parameter of γ̄. Then, ds̄/ds = ∥γ̄′(s)∥ =

ε1((κ
2+τ2)1/2(τ/κ)′′

/
κ (τ/κ)′2)(s), where ε1 = ±1 and ε1(τ/κ)

′′(s) > 0.
We denoted κγ̄(s) and τγ̄(s) as the curvature and the torsion of γ̄, re-
spectively. By straightforward computation, we got

κγ̄(s) = ε2

(
σ
κ (τ/κ)′2

(τ/κ)′′

)
(s), τγ̄(s) =

(
κ (τ/κ)′2

(τ/κ)′′

)
(s) (5.2)
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where ε2 = ±1 and ε2(σ(τ/κ)
′′)(s) > 0. From (τ/κ)′(s) ̸= 0,thus,

σ(s) ̸= 0. Then, (τγ̄/κγ̄)(s) = (ε2/σ)(s). This means that the base
curve of M is a cylindrical helix when σ(s) is constant. Therefore, this
proved that (ii) consists. By straightforward computation, we got

σγ̄(s) =

(
κ2γ̄

(κ2γ̄ + τ2γ̄ )
3
2

(
d

ds̄

(
τγ̄
κγ̄

)))
(s) = −ε1ε2ε3φ(s) (5.3)

where ε3 = ±1 and ε3 (τ/κ)
′′ (s) > 0. This means that the base curve

of M is a slant helix when φ(s) is a constant. This proved that (iii)
consists.
If (τ/κ)′(s) ̸= 0 and (τ/κ)′′(s) = 0, by Proposition 5.2, M was a part
of a conical surface. If (τ/κ)′′(s) = 0, γ̄(s) is a fixed vector. Then, we
defined M : F(p,D̄)(s, v̄) = p+ v̄D̄(s), where p is a fixed vector and D̄ is

the unit Darboux vector. By Lemma 5.3, this proved that (iv) and (v)
consist. This completes the proof.

In §5, we have considered about geodesics. Then, we focused on a line
of curvature. The problem of classifying surfaces under the condition
of the existence of a curve as a line of curvature has long been studied.
For instance, the surface that all curvature lines is a circle was called
“ Cycloid of Dupin” and these surfaces have been investigated in the
past. Similarly, the surface that all curvature lines is a plane curve
with regard to minimal surfaces were “Enneper surfaces” and “Shark
surfaces” and others. However, surfaces that have cylindrical helices or
slant helices as a line of curvature was not well known. In this section,
we studied the classifications of surfaces that have cylindrical helices or
slant helices as a line of curvature. First, we denoted Lemma 5.6.

Lemma 5.6. Let M be a surface and γ(s) a regular curve on M. Suppose
that γ(s) is a slant helix and a line of curvature on M . The Gauss map
of M along γ(s) is a slant helix.

Proof. If γ(s) is a line of curvature on M , the following formulas consist
along γ(s).

τg(s) = 0, κg(s) = κ(s) sinϕ(s), κn(s) = cosϕ(s), τ(s) = −ϕ′(s) (5.4)

We defined the unit normal of M along γ(s) as N(s). Then, using
equation (2.3), we got N ′(s) = −κn(s)T (s). Let s̄ the arc-length pa-
rameter of N(s). Then, ds̄/ds = ε1κn(s) ,where ε1 = ±1 and ε1κn(s) >
0. We denoted κN (s) and τN (s) as the curvature and the torsion of
N(s), respectively. By straightforward computation, we got κN (s) =

ε1((κ
2
g + κ2n)

1/2/κn)(s), τN (s) =
(
(κ′gκn − κgκ

′
n)/(κn(κ

2
g + κ2n))

)
(s). Us-

ing equation (2.4) and (5.4), we rewrote equations of κN (s) and τN (s)
to κN (s) = ε1(κ/κn)(s) and τN (s) = −(τ/κn)(s). Therefore, we got
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(τN/κN )(s) = −ε1(τ/κ)(s) and σN (s) = −ε1σ(s), where σN (s) is the in-
variant of slant helices of N(s). Therefore, this completes the proof.

By Lemma 5.6 and Theorem 4.1, we have the following Theorem.

Theorem 5.7. Let M be a developable surface and γ(s) a regular curve
on M with non-vanishing curvature. Suppose that γ(s) is a slant helix
and a line of curvature on M which is transversal to rulings. Then,

(i) M is a part of a cylindrical surface.

(ii) M is a part of the tangent developable of a clad helix.

(iii) M is a part of a conical surface whose director curve is a slant
helix.

Proof. The normal vector of developable surfaces M is constant along
rulings. Therefore, the Gauss map of M is a slant helix by Lemma 5.6.
By Theorem 4.1, this completes the proof.

From the proof of Lemma 5.6 and Corollary 4.2, we have Corollary 5.8.

Corollary 5.8. Let M be a developable surface and γ(s) a regular curve
on M with non-vanishing curvature. Suppose that γ(s) is a cylindrical
helix and a line of curvature on M which is transversal to rulings. Then,

(i) M is a part of a cylindrical surface.

(ii) M is a part of the tangent developable of a slant helix.

(iii) M is a part of a conical surface whose director curve is a cylindrical
helix.

6. Clad Helices as Spherical Curves

In §3, we shows the examples on how to construct clad helices in E3

using the notion of involute and evolute of a space curve. In this section,
we investigated how to construct cylindrical, slant, and clad helices on
S2. A great circle on S2 corresponds to a line in E3 from the point
of view of a geodesic line. Then, we defined spherical involute and
spherical evolute of a spherical curve on S2 and found how to construct
cylindrical, slant, and clad helices on S2.

Definition 6.1. Let γ(s) be a spherical curve on S2. We can make great
circles such as contact with a curve γ(s) at each point. We can define
a curve on S2, which is perpendicular to each great circle as spherical
involute of γ(s).

First, we investigated the equation of a spherical involute. Let γ(s)
be a spherical curve on S2. We defined Sabban frame as {γ(s), T (s), B(s)}.
Then, defined a spherical curve α(s) on S2 as follow:

α(s) = cos θ(s)γ(s) + sin θ(s)T (s) (6.1)
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Using equations (2.6), we got

α′(s) = (θ′(s) + 1)(cos θ(s)T − sin θ(s)γ) + κg(s) sin θ(s)B (6.2)

Then, defined the points on great circles as follow:

g(θ) = cos θγ + sin θT (6.3)

From this equation, we got the unit tangent vector of great circles :
(dg/dθ)(θ) = − sin θγ + cos θT . If α(s) is a spherical involute of γ(s),
the tangent vector of great circles are perpendicular to α′(s). Therefore,
it consists that < α′(s), (dg/dθ)(θ) >= 0. By straightforward computa-
tion, we got θ(s) = −s+ c, where c is a constant function. Substituting
this equation in α(s), the equation of a spherical involute of γ(s) is

α(s) = cos(−s+ c)γ(s) + sin(−s+ c)T (s) (6.4)

Using this equation, we have Theorem 6.2.

Theorem 6.2. Let γ(s) be a spherical curve on S2 and α(s) be a spher-
ical involute of γ(s). Then,

(i) If γ(s) is a circle, α(s) is a cylindrical helix.

(ii) If γ(s) is a cylindrical helix, α(s) is a slant helix.

(iii) If γ(s) is a slant helix, α(s) is a clad helix.

Proof. We denoted κα(s) and τα(s) as the curvature and the torsion
of α(s), respectively. By straightforward computation, we got κα(s) =
ε1/ sin(−s + c) and τα(s) = 1/κg(s) sin(−s + c), where ε1 = ±1 and
ε1 sin(−s + c) > 0. Therefore, (τα/κα)(s) = (ε1/κg)(s). If γ(s) is a
circle, κg(s) is a constant. It proved that (i) consists. For (ii), we

got σα(s) = −ε1(κ
′
g/(1 + κ2g)

3/2)(s), where σα is the invariant of slant
helices of α(s). Then, as seen in the proof of Theorem 4.1, it consists

that κ′g(s) = κ2(s)τ(s) and κg(s) = ε(κ2(s)− 1)1/2. Therefore, σα(s) =
−ε1(τ/κ)(s). It proved that (ii) consists. For (iii), we got φα(s) =
−ε1σ(s), where φα is the invariant of clad helices of α(s). It proved that
(iii) consists. This completes the proof.

Then, we defined spherical evolute of a curve on S2.

Definition 6.3. Let γ(s) be a spherical curve on S2. We can make
great circles such as contact with a curve γ(s). We can define a curve
on S2, which is contact with such great circles as spherical evolute.

First, we investigated the equation of a spherical involute. Let γ(s)
be a spherical curve on S2 and s be arc-length parameter of γ(s). We
defined Sabban frame as {γ(s), T (s), B(s)}. Then, defined a curve β(s)
on S2 as follow:

β(s) = cos θ(s)γ(s) + sin θ(s)B(s) (6.5)
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Using equation (2.6), we got

β′ = θ′(s)(cos θ(s)B − sin θ(s)γ) + (−κg(s) sin θ(s) + cos θ(s))T (6.6)

Then, the points on great circles were represented by the following equa-
tion: g(θ) = cos θγ + sin θB. The unit tangent vector of great circles
at these points were represented by the following formula: (dg/dθ)(θ) =
− sin θγ+cos θB. If β(s) is a spherical evolute of γ(s), by definition, we
considered the condition that the tangent vector of great circles was the
same direction as the tangent vector of β(s). Therefore,

−κg(s) sin θ(s) + cos θ(s) = 0 (6.7)

Differentiating this equation with respect to s, we got

κ′g(s) = −(θ′/ sin2 θ)(s) (6.8)

We denoted κ(s) and τ(s) as the curvature and the torsion of γ(s), re-
spectively. Using equation (2.4) and (6.7), we got κ′g(s) = κ2(s)τ(s),

τ(s) + ϕ′(s) = 0 and sin2 θ(s) = 1/(1 + κ2g(s)) = 1/κ2(s). Then, sub-
stituting these equations in equation (6.8), θ′(s) = ϕ′(s). Therefore,
θ(s) = ϕ(s) + c, where c is a constant function and ϕ(s) denote the
angle between B(s) and e2(s). We rewrote the equation of β(s) to
β(s) = cos(ϕ(s) + c)γ(s) + sin(ϕ(s) + c)B(s). Then, using equation
(2.7), we got β(s) = cos c e2(s) − sin c e3(s), β

′(s) = −κ(s) cos c T (s) +
τ(s) sin c e2(s)+ τ(s) cos c e3(s) and (dg/dθ)(θ) = − sin c e2− cos c e3. If
β(s) is a spherical evolute of γ(s), the direction of β′(s) and the tangent
of great circles at each point should coincide. By straightforward com-
putation, we got c = π/2 + nπ. Therefore, the equation of a spherical
evolute of γ(s) is

β(s) = ±e3(s) (6.9)

From this equation, we have Theorem 6.4.

Theorem 6.4. Let γ(s) be a spherical curve on S2 and β(s) be a spher-
ical evolute of γ(s). Then,

(i) If γ(s) is a cylindrical helix, β(s) is a circle.

(ii) If γ(s) is a slant helix, β(s) is a cylindrical helix.

(iii) If γ(s) is a clad helix, β(s) is a slant helix.

Proof. Let β(s) be a spherical evolute of γ(s). Then, we defined β(s)
as e3(s). We denoted κβ(s) and τβ(s) as the curvature and the torsion
of β(s), respectively. By straightforward computation, we got κβ(s) =

(ε(κ2 + τ2)1/2/τ)(s), τβ(s) = −(σ(κ2 + τ2)1/2/τ)(s), where ε = ±1 and
ετ(s) > 0. Therefore, (τβ/κβ)(s) = −εσ(s) and σβ(s) = −εφ(s), where
σβ(s) is the invariant of slant helices of β(s). This completes the proof
of Theorem 6.4.
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Remark. By Theorem 3.2, Theorem 6.2 and Theorem 6.4, spherical
evolute and spherical involute are inverse interpolation with evolute
and involute in E3 from view point of the generalization of helices.

7. Examples

In this section, we shows the examples of clad helices in E3 and slant
helices on S2. By using Mathematica, we have drawn the examples.
Example 5.1. By Theorem 3.2, we constructed the example of a clad
helix in E3. We considered a space curve called constant precession.
This curve is known as slant helix on circular hyperboloid of one sheet
[8]. We denoted γ(s) as constant precession.

γ(s) =
(
−m

(√
1 +m2

(
1 + 2m2) cos(us) cos(√

1 +m2us

m

)
+ 2

(
m+m3) sin(us) sin(√

1 +m2us

m

))/(
1 +m2)u,

m

(
2m
(
1 +m2) cos(√

1 +m2us

m

)
sin(us)

−
√

1 +m2
(
1 + 2m2) cos(us) sin(√

1 +m2us

m

))/(
1 +m2)u,− cos(us)√

1 +m2u

)
(7.1)

where s is arc-length parameter of γ(s) and m( ̸= 0), u are constant
functions. Let σ(s) be the invariant of slant helix of γ(s). We got
σ(s) = m. Therefore, γ(s) is a slant helix. Then, denoted α(s) as
evolute of γ(s). By straightforward computation, we got

α(s) =

(
−m

(
(1 + 2m2) cos(us) cos(

√
1 +m2us

m
) + cos(

√
1 +m2us

m
)(− sec(us)

+m tan(c+
cos(us)

m
)) +

√
1 +m2 sin(

√
1 +m2us

m
)(2m sin(us)

+ tan(us) tan(c+
cos(us)

m
))
)/√

1 +m2u,

m
(
− sin(

√
1 +m2us

m
)((1 + 2m2) cos(us)− sec(us) +m tan(c+

cos(us)

m
))

+
√

1 +m2 cos(

√
1 +m2us

m
)(2m sin(us) + tan(us) tan(c+

cos(us)

m
))
)/√

1 +m2u,

(
− cos(us) +m(m sec(us) + tan(c+

cos(us)

m
))
)/√

1 +m2u

)
(7.2)

where c is a constant function. Let us denote φα as the invariant of
clad helix of α(s). By straight computation, we found that φα = m.
Therefore, α(s) is an example of a clad helix. Then, we draw γ(s)
(m = 1, u = 1) as shown in Figure 1 and α(s) (m = 1, u = 1, c = 0) in
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Figure 2.

FIGURE 1.
Slant helix in E3

FIGURE 2. Clad
helix in E3

Example 5.2. By Theorem 6.2, we constructed the examples of a
cylindrical helix and a slant helix on S2. We considered a circle on
S2 and defined γ(s) =

(
cos 2s, sin 2s,

√
3
)
/2. Then, denoted γ̄(s) as

spherical involute of γ(s). By straightforward computation, γ̄(s) =(
(3 cos s− cos 3s)/4, sin3 s, (

√
3 cos s)/2

)
, where integration constant c =

0. We denoted κ̄ and τ̄ as the curvature and the torsion of γ̄(s), respec-

tively. Then, we got (τ̄ /κ̄)(s) = −
√
1/3. Therefore, γ̄(s) is a cylindrical

helix on S2. After that, we denoted t as arc-length parameter of γ̄(s).
We got t = −

√
3 cos s(0 < s < π), t =

√
3 cos s(π < s < 2π). Therefore,

γ̄(s) is represented by following equations:

γ̄1(t) =

(
t
(
−9 + 2t2

)
6
√
3

,

(
1− t2

3

)3/2

,− t

2

)
, γ̄2(t) =

(
t
(
9− 2t2

)
6
√
3

,−
(
1− t2

3

)3/2

,
t

2

)
(7.3)

We denoted β1(t) and β2(t) as the spherical involute of γ̄1(t) and γ̄2(t).
Then, we got

β1(t) =

(
t
(
−9 + 2t2

)
cos t+ 3

(
3− 2t2

)
sin t

6
√
3

,

(
1− t2

3

)3/2

cos t+ t

√
1− t2

3
sin t,

1

2
(−t cos t+ sin t)

)
(7.4)

β2(t) =

(
t
(
−9 + 2t2

)
cos t+ 3

(
3− 2t2

)
sin t

6
√
3

,−
(
1− t2

3

)3/2

cos t− t

√
1− t2

3
sin t,

1

2
(−t cos t+ sin t)

)
(7.5)

where integration constant c = 0. By straight computation, we got
σβ1(t) = σβ2(t) =

√
1/3, where σβ1(t) and σβ2(t) are invariants of slant

helices of β1(t) and β2(t). Therefore, β1(t) and β2(t) are examples of
slant helices on S2. Then, we draw γ̄(s) as shown in Figure 3 and β1(t),
β2(t) in Figure 4.
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FIGURE 3. Cylin-
drical helix on S2

FIGURE 4.
Slant helix on S2
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