Caspian Journal of Mathematical Sciences (CJMS) University of Mazandaran, Iran http://cjms.journals.umz.ac.ir ISSN: 1735-0611

CJMS. 8(2)(2019), 120-136

Controlled *-G-Frames and their *-G-Multipliers in Hilbert C^* -Modules

Zahra Ahmadi Moosavi¹ and Akbar Nazari² ¹ Department of Pure Mathematics, Faculty of Mathematics and Computer Shahid Bahonar University of Kerman, 76169-14111, Kerman, Iran.

² Department of Pure Mathematics, Faculty of Mathematics and Computer Shahid Bahonar University of Kerman, 76169-14111, Kerman, Iran.

ABSTRACT. In this paper we introduce controlled *-g-frame and *-g-multipliers in Hilbert C^* -modules and investigate their properties . We demonstrate that any controlled *-g-frame is equivalent to a *-g-frame and define multipliers for (C, C')-controlled *-g-frames.

Keywords: *-g-frame, *-g-multiplier, controlled *-g-frame, controlled *-g-Bessel sequence, (C, C')-controlled *-g-frame, (C, C')-controlled *-g-multiplier operator.

2000 Mathematics subject classification: 42C15; Secondary 46L08

1. INTRODUCTION

Frank and Larson [14] generalized the definition of frames in Hilbert spaces to Hilbert C^* -modules and then Khosravi and Khosravi [17] proposed a definition of g-frames in Hilbert C^* -modules. We note that due to the complexity of the C^* -algebras involved in the Hilbert C^* -modules and fact that some useful techniques available in Hilbert spaces are either absent or unknown in Hilbert C^* -modules, the generalizations of

¹Corresponding author: zmoosavi@uk.ac.ir Received: 02 July 2019 Revised: 6 August 2019 Accepted: 15 August 2019 frame theory from Hilbert spaces to Hilbert C^* -modules are not trivial. The properties of frames and g-frames in Hilbert C^* -modules were further studied in [2, 16].

Controlled frames improve the numerical efficiency of iterative algorithms for inverting the frame operator on abstract Hilbert spaces [4]; they have been also used earlier as a tool for spherical wavelets [5]. Gabor multipliers [10, 13], Gabor filters [19] and other applications of frames led Peter Balazs to introduce Bessel and frame multipliers for abstract Hilbert spaces H_1 and H_2 . A. Rahimi and A. Freydooni [21] defined the concept of controlled g-frames and showed that any controlled gframe is equivalent to a g-frame. In this paper we generalize the concept of controlled frames and Bessel sequences defined [3, 4, 21, 22, 23], to *-g-frames and *-g-Bessel sequences in Hilbert C^* -modules and extend the concepts of multipliers from g-frames to *-g-Bessel sequences and *-g-frames. Moreover we show that a C^2 -controlled *-g-frame is equivalent to a *-g-frame. Finally, we define the multiplier for C^2 -controlled *-g-frames in Hilbert C^* -modules.

2. Preliminaries

In the following we briefly recall some definitions and basic properties of Hilbert C^* -modules.

Throughout this paper J is a finite or countably index set and \mathcal{A} is a unital C^* -algebra with identity $1_{\mathcal{A}}$, and $|a|^2 = a^*a$ for any $a \in \mathcal{A}$. The spectrum sp(a) of $a \in \mathcal{A}$ is the set $\{\lambda \in \mathbb{C} : \lambda 1_{\mathcal{A}} - a \text{ is not invertible}\}$. An element a of \mathcal{A} is positive if a is Hermitian and $\sigma(a) \subseteq R^+$. We write $a \geq 0$ to mean that a is positive, and denote by \mathcal{A}^+ the set of positive elements of \mathcal{A} .

Definition 2.1. [18] Let H be a left \mathcal{A} -module such that the linear structures of \mathcal{A} and H are compatible, H is called a pre-Hilbert \mathcal{A} -module if H is equipped with an \mathcal{A} -valued inner product,

 $\langle \cdot, \cdot \rangle : H \times H \longrightarrow \mathcal{A}$ such that:

- (1) $\langle f, f \rangle \ge 0$ for all $f \in H$ and $\langle f, f \rangle = 0$ if and only if f = 0;
- (2) $\langle f, g \rangle = \langle g, f \rangle^*$ for all $f, g \in H$;
- (3) $\langle af + g, h \rangle = a \langle f, h \rangle + \langle g, h \rangle$ for all $a \in \mathcal{A}$ and $f, g, h \in H$.

For every $f \in H$, we define $||f||^2 = ||\langle f, f \rangle||$ and $|f|^2 = \langle f, f \rangle$. If H is complete with respect to the norm, it is called a Hilbert \mathcal{A} -module or a Hilbert \mathcal{C}^* -module over \mathcal{A} .

From now on, we assume that H and K are finitely or countably generated Hilbert \mathcal{A} -modules and $\{H_j\}_{j\in J}$ is a sequence of closed Hilbert submodules of H, For each $j \in J$, $\operatorname{End}^*_{\mathcal{A}}(H, H_j)$ is the collection of all adjointable \mathcal{A} -linear maps from H to H_j . Let gl(H) be the set of all bounded operators with a bounded inverse and $gl^+(H)$ be the set of positive operators in gl(H).

We also write

$$\bigoplus_{j\in J} H_j = \{g = \{g_j\}_{j\in J} : g_j \in H_j \text{ and } \sum_{j\in J} \langle g_j, g_j \rangle \quad \text{is norm convegent in } \mathcal{A}\}.$$

For any $f = \{f_j\}_{j \in J}$ and $g = \{g_j\}_{j \in J}$, if the \mathcal{A} -valued inner product is defined by $\langle f, g \rangle = \sum_{j \in J} \langle f_j, g_j \rangle$ and the norm is defined by $\|f\|^2 = \|\langle f, f \rangle\|$, then $\bigoplus_{j \in J} H_j$ is a Hilbert \mathcal{A} -module (see [18]).

A bounded operator $T: H \longrightarrow H$ is called positive, if $\langle Tf, f \rangle \geq 0$ for all $f \in H$. The nonzero element *a* is called strictly nonzero if zero does not belong to $\sigma(a)$, and *a* is said to be strictly positive if it is strictly nonzero and positive. The relation " \leq " given by:

 $a \leq b$ if and only if b - a is positive;

define a partial ordering on \mathcal{A} . Some elementary facts about " \leq " are given in the following statements for $a, b, c \in \mathcal{A}$;

- (1) $a \leq ||a||;$
- (2) $0 \le a \le b$ implies $||a|| \le ||b||$, $ab \ge 0$, $a + b \ge 0$, and $a^t \le b^t$ for $t \in (0, 1)$;
- (3) if $a \leq b$, then $cac^* \leq cbc^*$. Moreover, if c commutes with a and b, then $ca \leq cb$ for $c \geq 0$;
- (4) If a and b are positive invertible elements and $a \leq b$, then $0 \leq b^{-1} \leq a^{-1}$.

2.1. Some equivalencies of *-g-frames in Hilbert C^* -modules. In this section, we will study equivalencies of *-g-frames in Hilbert C^* -modules from several aspects.

Definition 2.2. A sequence $\Lambda = \{\Lambda_j \in End^*_{\mathcal{A}}(H, H_j) : j \in J\}$ is called a generalized *-frame, or simply, a *-g-frame, for H with respect to $\{H_j : j \in J\}$ if there exist two strictly nonzero elements A and B in \mathcal{A} such that

$$A\langle f, f \rangle A^* \le \sum_{j \in J} \langle \Lambda_j f, \Lambda_j f \rangle \le B \langle f, f \rangle B^*, \qquad (\forall f \in H).$$
(2.1)

The elements A and B are called the lower and upper *-g-frame bounds, respectively. If $\lambda = A = B$ then the *-g-frame $\{\Lambda_j\}_{j \in J}$ is said to be a λ -tight *-g-frame. In the special case $A = B = 1_A$, it is called a Parseval *-g-frame or normalized *-g-frame.

If $\{\Lambda_j\}_{j\in J}$ possesses an upper *-g-frame bound, but not necessarily a lower *-g-frame bound, we called it a *-g-Bessel sequence for H with *-g-Bessel bound B.

The bounded linear operator T_{Λ} defined by:

$$T_{\Lambda}: \bigoplus_{j \in J} H_j \to H, \qquad T_{\Lambda}(\{g_j\}_{j \in J}) = \sum_{j \in J} \Lambda_j^* g_j, \tag{2.2}$$

is called the pre-*-g-frame operator of $\{\Lambda_j\}_{j\in J}$. Also, the linear operator S_{Λ} defined by:

$$S_{\Lambda}: H \to H, \qquad S_{\Lambda}(f) = \sum_{j \in J} \Lambda_j^* \Lambda_j f,$$

is called *-g-frame operator of $\{\Lambda_j\}_{j\in J}$.

We mentioned that the set of all of g-frames in Hilbert \mathcal{A} -modules can be considered as a subset of the family of *-g-frames. To illustrate this, let $\{\Lambda_j \in End^*_{\mathcal{A}}(H, H_j) : j \in J\}$ be a g-frame for the Hilbert \mathcal{A} -module H with respect to $\{H_j : j \in J\}$ with real bounds A and B. Note that for $f \in H$,

$$(\sqrt{A})1_{\mathcal{A}}\langle f,f\rangle(\sqrt{A})1_{\mathcal{A}} \leq \sum_{j\in J} \langle \Lambda_j f,\Lambda_j f\rangle \leq (\sqrt{B})1_{\mathcal{A}}\langle f,f\rangle(\sqrt{B})1_{\mathcal{A}}.$$

Therefore, every g-frame for H with real bounds A and B is a *-g-frame for H with A-valued *-g-frame bounds $(\sqrt{A})1_{\mathcal{A}}$ and $(\sqrt{B})1_{\mathcal{A}}$.

Example 2.3 ([1]). Let $\mathcal{A} = \ell^{\infty}$ and let $H = C_0$, the Hilbert \mathcal{A} -module of the set of all null sequences equipped with the \mathcal{A} -inner product

$$\langle (x_i)_{i\in N}, (y_i)_{i\in N} \rangle = (x_i \overline{y_i})_{i\in N}$$

The action of each sequence $(a_i)_{i\in N} \in \mathcal{A}$ on a sequence $(x_i)_{i\in N} \in H$ is implemented as $(a_i)_{i\in N}(x_i)_{i\in N} = (a_ix_i)_{i\in N}$. Let $j \in J = N$ and $(1 + \frac{1}{i})_{i\in N} \in \ell^{\infty}$. Define $\Lambda_j \in End^*_{\mathcal{A}}(H)$ by

$$\Lambda_j(x_i)_{i \in N} = (\delta_{ij}a_jx_j)_{i \in N}, \qquad \forall (x_i)_{i \in N} \in H.$$

We observe that

$$\sum_{j \in N} \langle \Lambda_j x, \Lambda_j x \rangle = ((1 + \frac{1}{i})^2 x_i \overline{x_i})_{i \in N} = (1 + \frac{1}{i})_{i \in N} \langle x, x \rangle (1 + \frac{1}{i})_{i \in N},$$

for all $x = (x_i)_{i \in N} \in H$.

Thus $\{\Lambda_j\}_{j \in J}$ is a *-g-frame with bounds $(1 + \frac{1}{i})_{i \in N}$.

Lemma 2.4 ([2]). Let $T \in End^*_{\mathcal{A}}(H)$ and $T = T^*$. Then the following assertions are true.

(1) If T is injective and has a closed range, then T^*T is an invertible, self-adjoint operator satisfying,

$$||(T^*T)^{-1}||^{-1} \le T^*T \le ||T||^2;$$
(2.3)

(2) If T is surjective, then T^*T is an invertible, self-adjoint operator satisfying,

$$||(TT^*)^{-1}||^{-1} \le TT^* \le ||T||^2.$$
(2.4)

Theorem 2.5. Let \mathcal{A} be a unital C^* -algebra, $T \in End^*_{\mathcal{A}}(H)$ and $T = T^*$. Then the following are equivalent:

- (1) T is surjective;
- (2) T^* is bounded with respect to norm, i.e $\exists m \in \mathcal{A}^+$ such that $||T^*x|| \ge ||m|| ||x||;$
- (3) T^* is bounded with respect to inner product i.e $\exists m' \in \mathcal{A}^+$ such that $\langle T^*x, T^*x \rangle \geq (m') \langle x, x \rangle (m')^*$.

Proof. (1) \Longrightarrow (3) Let T be surjective, by Lemma 2.4, T^*T is an invertible and positive operator and

$$||(TT^*)^{-1}||^{-1} \le TT^* \le ||T||^2$$

Write,

$$||(TT^*)^{-1}||^{-1}1_{\mathcal{A}} = m'(m')^*.$$

Then by Lemma 4.1 [18], $TT^* - m'(m')^* \ge 0$. This is equivalent to

$$\langle (TT^* - m'(m')^*)x, x \rangle \ge 0.$$
 (2.5)

for all $x \in H$, i.e $\langle T^*x, T^*x \rangle \ge (m') \langle x, x \rangle (m')^*$ for all $x \in H$. The implication (3) \Longrightarrow (2) is trivial.

 $(2) \Longrightarrow (1)$ Suppose that T^* is bounded below with respect to the norm then T^* is clearly injective. Since $T = T^*$ therefore T is injective, and Ker $T = \{0\}$. We now show ImgT is closed. Let $\{u_n\} \subseteq H$ be a sequence in ImgT such that $u_n \longrightarrow u$ as $n \longrightarrow \infty$.

Then we can find $\{v_n\} \subseteq H$ such that $T(v_n) = u_n$. By (2), we have $||(v_n - v_m)|| ||m|| \leq ||T(v_n - v_m)||$. Since $T(v_n)$ is a Cauchy sequence, $||T(v_n - v_m)|| \longrightarrow 0$ as $m, n \longrightarrow \infty$. Therefore the sequence $\{v_n\}$ is a Cauchy sequence in H and hence there exists $v \in H$ such that $v_n \longrightarrow v$ as $n \longrightarrow \infty$ implies that $u_n = T(v_n) \longrightarrow Tv = u$. It concludes that ImgT is closed. By Theorem 3.2 of [18], $\text{Img}T^*$ is closed and $H = \text{Ker}T^* \bigoplus \text{Img} = \text{Img}T$.

Lemma 2.6 ([20]). For self-adjoint $f \in C(X)$, the following are equivalent:

- (1) $f \ge 0;$
- (2) For all $t \ge ||f||$, we have $||f t|| \le t$;
- (3) For at least one $t \ge ||f||$, we have $||f t|| \le t$.

It is immediate from Lemma 2.6 that \mathcal{A}^+ is closed in \mathcal{A} .

Proposition 2.7 ([18]). Let $T \in End^*_{\mathcal{A}}(H, H_j)$, then for all $x \in H$ we have:

$$\langle Tx, Tx \rangle \le ||T||^2 \langle x, x \rangle.$$
 (2.6)

Theorem 2.8. Let $\{\Lambda_j\}_{j\in J} \in End^*_{\mathcal{A}}(H, H_j)$, and $\sum_{j\in J} \langle \Lambda_j f, \Lambda_j f \rangle$ converge in norm \mathcal{A} . Then $\{\Lambda_j\}_{j\in J}$ is a *-g-frame for H with respect to $\{H_j\}_{j\in J}$ if and only if

$$\|A^{-1}\|^{-2}\|\langle f,f\rangle\| \le \|\sum_{j\in J} \langle \Lambda_j f, \Lambda_j f\rangle\| \le \|B\|^2 \|\langle f,f\rangle\|$$
(2.7)

for all $f \in H$ and strictly nonzero elements $A, B \in A$.

Proof. By the definition of *-g-frame we have $\langle f, f \rangle \leq A^{-1} \langle Sf, f \rangle (A^*)^{-1}$ and $\langle Sf, f \rangle \leq B \langle f, f \rangle B^*$. Hence

$$|| A^{-1} ||^{-2} || \langle f, f \rangle || \le || \sum_{j \in J} \langle \Lambda_j f, \Lambda_j f \rangle || \le || B ||^2 || \langle f, f \rangle ||, \forall f \in H.$$
(2.8)

For the converse, assume that (2.7) holds. For any $f \in H$, we define $Tf := \sum_{j \in J} \Lambda_j^* \Lambda_j f$ then

$$\begin{split} |Tf||^4 &= \|\langle Tf, Tf \rangle\|^2 = \|\langle Tf, \sum_{j \in J} \Lambda_j^* \Lambda_j f \rangle\|^2 \\ &= \|\sum_{J \in j} \langle \Lambda_j Tf, \Lambda_j f \rangle\|^2 \\ &\leq \|\sum_{j \in J} \langle \Lambda_j Tf, \Lambda_j Tf \rangle\|\|\sum_{j \in J} \langle \Lambda_j f, \Lambda_j f \rangle\| \\ &\leq \|B\|^2 \|Tf\|^2 \|B\|^2 \|f\|^2. \end{split}$$

Hence $||Tf||^2 \le ||B||^4 ||f||^2$.

It is easy to check that $\langle Tf,g\rangle = \langle f,Tg\rangle$ for all $f,g \in H$, so T is bounded and $T = T^*$. From $\langle Tf,f\rangle = \sum_{j\in J} \langle \Lambda_j f, \Lambda_j f\rangle \geq 0$ for all $f \in H$, it follows that $T \geq 0$. Now $\langle T^{\frac{1}{2}}f, T^{\frac{1}{2}}f\rangle \leq ||T^{\frac{1}{2}}||^2 \langle f,f\rangle$. On the other hand we have, $||(T^{\frac{1}{2}})^*(T^{\frac{1}{2}})||\langle f,f\rangle = ||T|| \langle f,f\rangle$, therefore we get $\langle T^{\frac{1}{2}}f, T^{\frac{1}{2}}f\rangle \leq ||T|| \langle f,f\rangle \leq ||B||^2 \mathbf{1}_{\mathcal{A}} \langle f,f\rangle$. Therefore

$$\langle Tf, f \rangle = \langle T^{\frac{1}{2}}f, T^{\frac{1}{2}}f \rangle \le (||B||1_{\mathcal{A}})\langle f, f \rangle (||B||1_{\mathcal{A}})^*.$$
(2.9)

However $\|\langle Tf, f \rangle\| = \|\langle T^{\frac{1}{2}}f, T^{\frac{1}{2}} \rangle\| = \|T^{\frac{1}{2}}f\|^2$ and by inequality (2.7), $\|A^{-1}\|^{-2}\|\langle f, f \rangle\| \le \|T^{\frac{1}{2}}\|^2$. We conclude that

$$||A^{-1}||^{-1}||f|| \le ||T^{\frac{1}{2}}f||.$$

So by Theorem 2.5, we obtain lower bound for $\{\Lambda_j\}_{j\in J}$. This shows that $\{\Lambda_j\}_{j\in J}$ is *-g-frame for H with respect to $\{H_j\}_{j\in J}$.

2.2. Multipliers of *-g-Bessel sequences. In the following, the concept of multipliers for g-Bessel sequences will be extended to *-g-Bessel sequences and some of their properties will be shown.

Proposition 2.9. Let

$$\Lambda = \{\Lambda_j \in End^*_{\mathcal{A}}(H, H_j) : j \in J\}$$

and

$$\Theta = \{\Theta_j \in End^*_{\mathcal{A}}(H, H_j) : j \in J\}$$

be *-g-Bessel sequences with bounds B_{Λ}, B_{Θ} and $m = \{m_j\}_{j \in J} \in \ell^{\infty}(R)$ then the operator

$$M_{m,\Lambda,\Theta}: H \longrightarrow H, \qquad M_{m,\Lambda,\Theta}f := \sum_{j \in J} m_j \Lambda_j^* \Theta_j f,$$
 (2.10)

for all $f \in H$ is a well-defined bounded operator.

Proof. Let Λ and Θ be *-g-Bessel sequences for H with bounds B_{Λ}, B_{Θ} , respectively. For any $f, g \in H$ and finite subset $I \subseteq J$,

$$\begin{split} \|\sum_{j\in I} m_j \Lambda_j^* \Theta_j f\|^2 &= \sup_{g\in H, \|g\|=1} \|\langle \sum_{j\in I} m_j \Lambda_j^* \Theta_j f, g \rangle \|^2 \\ &= \sup_{g\in H, \|g\|=1} \|\sum_{j\in I} \langle m_j \Theta_j f, \Lambda_j g \rangle \|^2 \\ &\leq \sup_{g\in H, \|g\|=1} \|\sum_{j\in I} \langle m_j \Theta_j f, m_j \Theta_j f \rangle \|\|\sum_{j\in I} \langle \Lambda_j g, \Lambda_j g \rangle \|, \end{split}$$

since

$$\sum_{j \in I} \langle m_j \Theta_j f, m_j \Theta_j f \rangle = \sum_{j \in I} |m_j|^2 \langle \Theta_j f, \Theta_j f \rangle$$
$$\leq ||m||_{\infty}^2 \sum_{j \in I} \langle \Theta_j f, \Theta_j f \rangle \leq ||m||_{\infty}^2 B_{\Theta} \langle f, f \rangle B_{\Theta}^*.$$

Hence

$$\begin{aligned} \|\sum_{j\in I} m_j \Lambda_j^* \Theta_j f\|^2 &\leq \sup_{g\in H, \|g\|=1} \|m\|_{\infty}^2 \|B_{\Theta}\|^2 \|f\|^2 \|B_{\Lambda}\|^2 \|g\|^2 \\ &= \|m\|_{\infty}^2 \|B_{\Theta}\|^2 \|f\|^2 \|B_{\Lambda}\|^2. \end{aligned}$$

This shows that $M_{m,\Lambda,\Theta}$ is well-defined and

$$\|M_{m,\Lambda,\Theta}\| \le \|m\|_{\infty} \|B_{\Lambda}\| \|B_{\Theta}\|.$$

Now, the map M in the above proposition is called a *-g-multiplier of Λ, Θ and m.

Lemma 2.10. Let

$$\Lambda = \{\Lambda_j \in End^*_A(H, H_j) : j \in J\}$$

and

$$\theta = \{\Theta_j \in End^*_A(H, H_j) : j \in J\}$$

be *-g-Bessel sequences with respect to $\{H_j : j \in J\}$ with bounds B_{Λ}, B_{Θ} respectively. Let $m = \{m_j\}_{j \in J} \in \ell^{\infty}(R)$ then the operator, $M = M_{m,\Lambda,\Theta} : H \longrightarrow H$ defined by $\langle Mf, g \rangle = \sum_{j \in J} m_j \langle \Theta_j f, \Lambda_j g \rangle$, is well-defined and $(M_{m,\Lambda,\Theta})^* = M_{\overline{m},\Theta,\Lambda}$.

Proof. By Proposition 2.9, M is well-defined. We claim that

$$(M_{m,\Lambda,\Theta})^* = M_{\overline{m},\Theta,\Lambda}$$

Let $f, g \in H$, then

$$\begin{split} \langle f, (M_{m,\Lambda,\Theta})^*g \rangle &= \langle (M_{m,\Lambda,\Theta}f), g \rangle \\ &= \sum_{j \in J} m_j \langle \Theta_j f, \Lambda_j g \rangle \\ &= \sum_{j \in J} \langle \Theta_j f, \overline{m_j} \Lambda_j g \rangle \\ &= \sum_{j \in J} \langle f, \Theta_j^* \overline{m_j} \Lambda_j g \rangle \\ &= \sum_{j \in J} \langle f, \overline{m_j} \Theta_j^* \Lambda_j g \rangle \\ &= \langle f, M_{\overline{m},\Theta,\Lambda} \rangle. \end{split}$$

3. Controlled *-G-frames

Weighted and controlled frames have been introduced recently to improve the numerical efficiency of iterative algorithms for inverting the frame operator. In [4], it was shown that controlled frames are equivalent to standard frames. In this section, the concepts of controlled g-frames and controlled g-Bessel sequences will be extended to controlled *-gframes and we will show that controlled *-g-frames are equivalent to *-g-frames.

Definition 3.1. [21] Let $C, C' \in gl^+(H)$. The family

$$\Lambda = \{\Lambda_j \in End^*_A(H, H_j) : j \in J\},\$$

will be called a (C, C')-controlled g-frame for H with respect to $\{H_j\}_{j \in J}$, if $\Lambda = \{\Lambda_j\}_{j \in J}$ is a g-Bessel sequence and there exist constants A > 0and $B < \infty$ such that

$$A||f||^{2} \leq \sum_{j \in J} \langle \Lambda_{j}Cf, \Lambda_{j}C'f \rangle \leq B||f||^{2}, \quad \forall f \in H.$$

$$(3.1)$$

A and B will be called (C, C')-controlled g-frame bounds. If C' = I, (or, C = C'), we call $\Lambda = {\Lambda_i}_{i \in J}$ a C-controlled g-frame. (respectively, C^2 - controlled g-frame) for H with bounds A, B. If the second part of the above inequality holds, it will be called (C, C')-controlled g-Bessel sequence with bound B.

Definition 3.2. Let $C, C' \in gl^+(H)$. The family

$$\Lambda = \{\Lambda_j \in End^*_A(H, H_j) : j \in J\}$$

will be called a (C, C')-controlled *-g-frame for H with respect to $\{H_j\}_{j \in J}$, if $\Lambda = {\Lambda_i}_{j \in J}$ is a *-g-Bessel sequence and

$$A\langle f, f \rangle A^* \le \sum_{j \in J} \langle \Lambda_j C f, \Lambda_j C' f \rangle \le B \langle f, f \rangle B^*$$
(3.2)

for all $f \in H$ and strictly nonzero elements $A, B \in \mathcal{A}$.

A and B will be called (C, C')-controlled *-g-frame bounds. If C' = I, (or, C = C'), we call $\Lambda = {\Lambda_i}_{i \in J}$ a C-controlled *-g-frame. (respectively, C^2 - controlled *-g-frame) for H with bounds A, B. If the second part of the above inequality holds, it will be called (C, C')-controlled *-g-Bessel sequence with bound B.

The proof of the following lemmas is straightforward.

Lemma 3.3. Let $C \in gl^+(H)$. The *-g-Bessel sequence and $\Lambda = \{\Lambda_i \in End^*_{\mathcal{A}}(H, H_i) : i \in J\}.$

$$\Lambda = \{\Lambda_j \in End^*_{\mathcal{A}}(H, H_j) : j \in J\},\$$

is a C^2 -controlled *-g-Bessel sequence (or, C^2 -controlled *-g-frame) if and only if

$$\sum_{j \in J} \langle \Lambda_j Cf, \Lambda_j Cf \rangle \le B \langle f, f \rangle B^*, \qquad \forall f \in H$$
(3.3)

(or
$$A\langle f, f \rangle A^* \leq \sum_{j \in J} \langle \Lambda_j C f, \Lambda_j C f \rangle \leq B \langle f, f \rangle B^*$$
, $\forall f \in H$).

Example 3.4. Let $\mathcal{A} = \ell^{\infty}$ and let $H = C_0$, the Hilbert \mathcal{A} -module of the set of all null sequences equipped with the \mathcal{A} -inner product

$$\langle (x_i)_{i \in N}, (y_i)_{i \in N} \rangle = (x_i \overline{y_i})_{i \in N}$$

The action of each sequence $(a_i)_{i\in N} \in \mathcal{A}$ on a sequence $(x_i)_{i\in N} \in H$ is implemented as $(a_i)_{i \in N}(x_i)_{i \in N} = (a_i x_i)_{i \in N}$. Let $j \in J = N$ and $(1+\frac{1}{i})_{i\in N} \in \ell^{\infty}$. Define $\Lambda_j \in End^*_{\mathcal{A}}(H)$ by

$$\Lambda_j(x_i)_{i\in N} = (\delta_{ij}a_jx_j)_{i\in N}, \qquad \forall (x_i)_{i\in N} \in H.$$

Now define Cx = 2x and $C'x = \frac{1}{2}x$. Then for any $x \in H$, we can estimate

$$\sum_{j \in N} \langle \Lambda_j C x, \Lambda_j C' x \rangle = ((1 + \frac{1}{i})^2 x_i \overline{x_i})_{i \in N} = (1 + \frac{1}{i})_{i \in N} \langle x, x \rangle (1 + \frac{1}{i})_{i \in N},$$

for all $x = (x_i)_{i \in N} \in H$. This shows that $\Lambda = \{\Lambda_j \in End^*_{\mathcal{A}}(H) : j \in N\}$ is a (C, C')-controlled tight *-g-frame for H.

Suppose that $\{\Lambda_j \in End^*_{\mathcal{A}}(H, H_j) : j \in J\}$ be a (C, C')-controlled *-gframe for the Hilbert C^* -module H with respect $\{H_j\}_{j \in J}$. The bounded linear operator $T_{(C,C')} : \bigoplus_{j \in J} H_j \to H$ defined by:

$$T_{(C,C')}(\{g_j\}_{j\in J}) = \sum_{j\in J} (CC')^{\frac{1}{2}\Lambda_j^*g_j, \forall \{g_j\}_{j\in J}\in \bigoplus_{j\in J} H_j(3.4)}$$

is called the synthesis operator for the (C, C')-controlled *-g-frame $\{\Lambda_j\}_{j \in J}$.

The adjoint operator $T^*_{(C,C')}: H \to \bigoplus_{j \in J} H_j$ given by

$$T^*_{(C,C')}(f) = \{\Lambda_j(C'C)^{\frac{1}{2}f\}_{j\in J}}(3.5)$$

is called the analysis operator for the (C, C')-controlled *-g-frame $\{\Lambda_j\}_{j \in J}$. When C and C' commute with each other, and also commute with the operator $\Lambda_j^*\Lambda_j$ for each j, then the (C, C')-controlled *-g-frame operator $S_{(C,C')}: H \to H$ is defined as:

$$S_{(C,C')}f = T_{(C,C')}T^*_{(C,C')}f = \sum_{j \in j} C'\Lambda^*_j\Lambda_j Cf.$$
 (3.6)

For the above result one is referred to Hua and Huang [15]. From now on we assume that C and C' commute with each other, and commute with the operator $\Lambda_i^* \Lambda_j$ for all j.

Proposition 3.5. Let $\{\Lambda_j : j \in J\}$ be a (C, C')-controlled *-g-frame for the Hilbert C^* -module H with respect to $\{H_j\}_{j\in J}$. Then the (C, C')controlled *-g-frame operator $S_{(C,C')}$ is positive, self adjoint and invertible.

Proof. The frame operator $S_{(C,C')}$ for the (C,C')-controlled *-g-frame is $S_{(C,C')}f = \sum_{j \in j} C' \Lambda_j^* \Lambda_j C f$. As $\{\Lambda_j : j \in J\}$ is a (C,C')-controlled *-g-frame, from the identity,

$$\sum_{j \in J} \langle \Lambda_j Cf, \Lambda_j C'f \rangle = \langle \sum_{j \in J} C' \Lambda_j^* \Lambda_j Cf \rangle = \langle S_{(C,C')}f, f \rangle,$$

we clearly see that $S_{(C,C')}$ is a positive operator. It is clearly bounded and linear.

$$\begin{split} \langle S_{(C,C')}f,g\rangle &= \langle \sum_{j\in J} C'\Lambda_j^*\Lambda_j Cf,g\rangle \\ &= \sum_{j\in J} \langle C'\Lambda_j^*\Lambda_j Cf,g\rangle \\ &= \sum_{j\in J} \langle f,C\Lambda_j^*\Lambda_j C'g\rangle \\ &= \sum_{i\in J} \langle f,S_{(C',C)}g\rangle. \end{split}$$

Hence $S^*_{(C,C')} = S_{(C',C)}$ is positive and hence self adjoint. Also as C and C' commute with each other and commute with $\Lambda^*_j \Lambda_j$, we have $S_{(C,C')} = S_{(C',C)}$. From the controlled *-g-frame identity we have

$$A\langle f, f \rangle A^* \le \langle S_{(C,C')}f, f \rangle \le B\langle f, f \rangle B^*.$$

 So

$$A \ Id_H \ A^* \le \langle S_{(C,C')}f,f \rangle \le B \ Id_H \ B^*,$$

where Id_H is the identity operator in H. Thus the controlled *-g-frame operator $S_{(C,C')}$ is invertible.

Theorem 3.6. Let $\{\Lambda_j\}_{j\in J} \in End^*_{\mathcal{A}}(H, H_j)$, and $\sum_{j\in J} \langle \Lambda_j Cf, \Lambda_j C'f \rangle$ converge in norm \mathcal{A} . Then $\{\Lambda_j\}_{j\in J}$ is a (C, C')-controlled *-g-frame for H with respect to $\{H_j\}_{j\in J}$ if and only if

$$\|A^{-1}\|^{-2}\|\langle f,f\rangle\| \le \|\sum_{j\in J} \langle \Lambda_j Cf, \Lambda_j C'f\rangle\| \le \|B\|^2 \|\langle f,f\rangle\|$$
(3.7)

for all $f \in H$ and strictly nonzero elements $A, B \in A$.

Proof. By the definition of (C, C')-controlled*-g-frame we conclude that

$$\langle f, f \rangle \le A^{-1} \langle S_{(C,C')}f, f \rangle (A^*)^{-1} \text{ and } \langle S_{(C,C')}f, f \rangle \le B \langle f, f \rangle B^*.$$

Hence

$$\|A^{-1}\|^{-2}\|\langle f,f\rangle\| \le \|\sum_{j\in J} \langle \Lambda_j Cf, \Lambda_j C'f\rangle\| \le \|B\|^2 \|\langle f,f\rangle\| \qquad (3.8)$$

for all $f \in H$. Conversely, suppose that

$$|| A^{-1} ||^{-2} || \langle f, f \rangle || \le || \sum_{j \in J} \langle \Lambda_j Cf, \Lambda_j C'f \rangle || \le || B ||^2 || \langle f, f \rangle ||, \quad (3.9)$$

From Proposition 3.5, the (C, C')-controlled *-g-frame operator is positive, self adjoint and invertible. Hence

$$\langle (S_{(C,C')})^{\frac{1}{2}f,(S_{(C,C')})}^{\frac{1}{2}f\rangle = \langle S_{(C,C')}f,f\rangle = \sum_{j \in j} \langle \Lambda_j Cf, \Lambda_j C'f\rangle. (3.10)$$

Using inequality (3.10) in inequality (3.9), we get

$$\|A^{-1}\|\|f\| \le \|(S_{(C,C')})^{\frac{1}{2}}\| \le \|B\|\|f\|, (3.11)$$

According to Theorem 2.5 and inequality (3.11), $\{\Lambda_j : j \in J\}$ is a (C, C')-controlled *-g-frame for H with respect to $\{H_j\}_{j \in J}$.

The following theorem shows that any *-g-frame is a C^2 -controlled *-g-frame and vice versa.

Theorem 3.7. Let $C \in gl^+(H)$. The family $\{\Lambda_j\}_{j \in J} \in End^*_{\mathcal{A}}(H, H_j)$, is a *-g-frame if and only if $\Lambda = \{\Lambda_j\}_{j \in J}$ is a C²-controlled *-g-frame.

Proof. Let Λ is a C^2 -controlled *-g-frame with bounds A, B. Then

$$\sum_{j \in J} \langle \Lambda_j Cf, \Lambda_j Cf \rangle \le B \langle f, f \rangle B^*, \qquad \forall f \in H.$$

For $f \in H$ we have

$$\begin{aligned} A\langle f, f \rangle A^* &= A \langle CC^{-1}f, CC^{-1}f \rangle A^* \leq A \|C\|^2 \langle C^{-1}f, C^{-1}f \rangle A^* \\ &\leq \|C\|^2 \sum_{j \in J} \langle \Lambda_j CC^{-1}f, \Lambda_j CC^{-1}f \rangle = \|C\|^2 \sum_{j \in J} \langle \Lambda_j f, \Lambda_j f \rangle. \end{aligned}$$

Hence

$$A\|C\|^{-1}\langle f, f\rangle A^*\|C\|^{-1} \le \sum_{j\in J} \langle \Lambda_j f, \Lambda_j f\rangle.$$

On the other hand for every $f \in H$,

$$\sum_{j \in J} \langle \Lambda_j f, \Lambda_j f \rangle = \sum_{j \in J} \langle \Lambda_j C C^{-1} f, \Lambda_j C C^{-1} f \rangle \le B \langle C^{-1} f, C^{-1} f \rangle B^*$$
$$\le B \| C^{-1} \|^2 \langle f, f \rangle B^* = B \| C^{-1} \| \langle f, f \rangle B^* \| C^{-1} \|.$$

These inequalities yield that Λ is a *-g-frame with bounds $A \|C\|^{-1}$, $B \|C\|^{-1}$. For the converse, assume that Λ is a *-g-frame with bounds A', B'. Then for all $f \in H$,

$$A'\langle f, f \rangle (A')^* \le \sum_{j \in J} \langle \Lambda_j f, \Lambda_j f \rangle \le B' \langle f, f \rangle (B')^*.$$

So for all $f \in H$,

$$\sum_{j \in J} \langle \Lambda_j Cf, \Lambda_j Cf \rangle \le B' \|C\|^2 \langle f, f \rangle (B')^*.$$

For lower bound, since Λ is a *-g-frame for any $f \in H$,

$$A'\langle f, f\rangle (A')^* = A'\langle C^{-1}Cf, C^{-1}Cf\rangle (A')^* \le \|C^{-1}\|^2 \sum_{j\in J} \langle \Lambda_j Cf, \Lambda_j Cf\rangle.$$

Therefore Λ is a C^2 -controlled *-g-frame with bounds $A' \| C^{-1} \|^{-1}, B' \| C \|$.

Proposition 3.8. Assume that $\{\Lambda_j : j \in J\}$ is a *-g-frame for the Hilbert C*-module H with respect to $\{H_j\}_{j\in J}$. Let S_{Λ} be the *-g-frame operator with the *-g-frame $\{\Lambda_j : j \in J\}$. Let $C, C' \in gl^+(H)$. Then $\{\Lambda_j : j \in J\}$ is a (C, C')-controlled *-g-frame.

Proof. $\{\Lambda_j : j \in J\}$ is a *-g-frame for the Hilbert C^* -module H with respect to $\{H_j\}_{j\in J}$ with bounds A and B. By inequality (2.7), we have:

$$|| A^{-1} ||^{-2} || \langle f, f \rangle || \le || \sum_{j \in J} \langle \Lambda_j f, \Lambda_j f \rangle || \le || B ||^2 || \langle f, f \rangle ||, \qquad (3.12)$$

Again we have

$$\|\sum_{j\in J} \langle \Lambda_j Cf, \Lambda_j C'f \rangle \| = \| \langle S_{(C,C')}f, f \rangle \|$$

and

$$\|\sum_{j\in J} \langle \Lambda_j Cf, \Lambda_j C'f \rangle \| = \|C\| \|C'\| \|\langle S_\Lambda f, f \rangle \|.$$
(3.13)

From (3.12) and (3.13), we have

$$|| A^{-1} ||^{-2} || C || || C' || || f ||^{2} \leq \sum_{j \in J} \langle \Lambda_{j} C f, \Lambda_{j} C' f \rangle ||$$
$$\leq || B ||^{2} || C || || C' || || f ||^{2},$$

for all $f \in H$. So $\{\Lambda_j : j \in J\}$ is a (C, C')-controlled *-g-frame with bounds $|| A^{-1} ||^{-1} || C || || C' ||, || B || || C || || C' ||.$

Theorem 3.9. Suppose that $C, C' \in gl^+(H)$, $\{\Lambda_j : j \in J\} \subset End^*(H, H_j)$ and C, C' commute with each other and commute with $\Lambda_j^*\Lambda_j$ for all $j \in J$. If the operator $T : \bigoplus_{j \in J} H_j \to H$ given by

$$T_{(C,C')}(\{g_j\}_{j\in J}) = \sum_{j\in J} (CC')^{\frac{1}{2}\Lambda_j^*g_j, \forall \{g_j\}_{j\in J}\in \bigoplus_{j\in J} H_j(3.14)}$$

is well defined and bounded operator with $|| T_{(C,C')} || \leq || B ||$, then the sequence $\{\Lambda_j : j \in J\}$ is a (C,C')-controlled *-g-Bessel sequence for H with respect to $\{H_j\}_{j\in J}$ with bound || B ||.

132

Proof. Let $\{\Lambda_j : j \in J\}$ be a (C, C')-controlled *-g-Bessel sequence for H with respect to $\{H_j\}_{j \in J}$ with bound B. As a result of Theorem 3.6,

$$\|\sum_{j\in J} \langle \Lambda_j Cf, \Lambda_j C'f \rangle \| \le \|B\|^2 \| \langle f, f \rangle \|.$$
(3.15)

For any sequence $\{g_j\}_{j\in J} \in \bigoplus_{j\in J} H_j$,

$$\begin{split} \| T_{(C,C')}(\{g_j\}_{j \in J}) \|^2 &= \sup_{f \in H, \|f\|=1} \| \langle T_{(C,C')}(\{g_j\}_{j \in J}), f \rangle \|^2 \\ &= \sup_{f \in H, \|f\|=1} \| \langle \sum_{j \in J} (CC')^{\frac{1}{2} \Lambda_j^* g_j, f \rangle \|^2} \\ &= \sup_{f \in H, \|f\|=1} \| \sum_{j \in J} \langle (CC')^{\frac{1}{2} \Lambda_j^* g_j, f \rangle \|^2} \\ &= \sup_{f \in H, \|f\|=1} \| \sum_{j \in J} \langle g_j, A_j(CC')^{\frac{1}{2} f \rangle \|^2} \\ &\leq \sup_{f \in H, \|f\|=1} \| \sum_{j \in J} \langle g_j, g_j \rangle \| \\ &\| \sum_{j \in J} \langle \Lambda_j(CC')^{\frac{1}{2} f, \Lambda_j(CC')^{\frac{1}{2} f \rangle \|}} \\ &= \sup_{f \in H, \|f\|=1} \| \sum_{j \in J} \langle g_j, g_j \rangle \| \\ &\| \sum_{j \in J} \langle \Lambda_jCf, \Lambda_jC'f \rangle \| \\ &\leq \sup_{f \in H, \|f\|=1} \| \sum_{j \in J} \langle g_j, g_j \rangle \| \| B \|^2 \| f \|^2 \\ &= \| B \|^2 \| \{g_j\} \|^2 \end{split}$$

Therefore, the sum $\sum_{j \in J} (CC') \overline{2}^{\Lambda_j g_j}$ is convergent and we have

$$|| T_{(C,C')}(\{g_j\}_{j\in J}) ||^2 \le || B ||^2 || \{g_j\} ||^2.$$

 So

$$\parallel T_{(C,C')} \parallel^2 \leq \parallel B \parallel^2.$$

Hence the operator $T_{(C,C')}$ is well defined, bounded and

 $\parallel T_{(C,C')} \parallel \leq \parallel B \parallel.$

4. Multipliers of Controlled *-G-frames

In this section, we define the multiplier of a controlled *-g-frame for Ccontrolled *-g-frames in Hilbert C^* - modules. The definition of general
case (C, C')-controlled *-g-frames is similar.

Lemma 4.1. Let $C, C' \in gl^+(H)$ and

$$\Lambda = \{\Lambda_j \in End^*_A(H, H_j) : j \in J\}, \Theta = \{\Theta_j \in End^*_A(H, H_j) : j \in J\}$$

be C'^2 and C^2 -controlled *-g-Bessel sequences for H, respectively. Let $m = \{m_j\}_{j \in J} \in \ell^{\infty}(R)$. The operator

$$M_{m,C,\Theta,\Lambda,C'}: H \longrightarrow H,$$

defined by

$$M_{m,C,\Theta,\Lambda,C'}f := \sum_{j \in J} m_j C\Theta_j^* \Lambda_j C' f,$$

is a well-defined bounded operator.

Proof. Let Λ, Θ be C'^2 and C^2 -controlled *-g-Bessel sequences with bounds B, B', respectively. For any $f, g \in H$ and finite subset $I \subseteq J$,

$$\begin{split} \left\| \sum_{j \in I} m_j C \Theta_j^* \Lambda_j C' f \right\|^2 &= \sup_{g \in H, \|g\|=1} \| \sum_{j \in I} \langle m_j \Lambda_j C' f, \Theta_j C g \rangle \|^2 \\ &\leq \sup_{g \in H, \|g\|=1} \| \sum_{j \in I} \langle m_j \Lambda_j C' f, m_j \Lambda_j C' f \rangle \| \| \sum_{j \in I} \langle \Theta_j C g, \Theta_j C g \rangle \|, \end{split}$$

since

$$\sum_{j \in I} \langle m_j \Lambda_j C'f, m_j \Lambda_j C'f \rangle = \sum_{j \in I} |m_j|^2 \langle \Lambda_j C'f, \Lambda_j C'f \rangle$$
$$\leq \|m\|_{\infty}^2 \sum_{j \in I} \langle \Lambda_j C'f, \Lambda_j C'f \rangle \leq \|m\|_{\infty}^2 B \langle f, f \rangle B^*.$$

Hence

Definition 4.2.

$$\begin{split} \|\sum_{j\in I} m_j C\Theta_j^* \Lambda_j C' f\|^2 &\leq \sup_{g\in H, \|g\|=1} \|m\|_{\infty}^2 \|B\|^2 \|f\|^2 \|B'\|^2 \|g\|^2 \\ &\leq \|m\|_{\infty}^2 \|B\|^2 \|f\|^2 \|B'\|^2. \end{split}$$

This shows that $M_{m,C,\Theta,\Lambda,C'}$ is well-defined and

$$\|M_{m,C,\Theta,\Lambda,C'}\| \le \|m\|_{\infty} \|B\| \|B'\|.$$

Let $C, C' \in gl^+(H)$ and

J

$$\Lambda = \{\Lambda_j \in End^*_A(H, H_j) : j \in$$

and

$$\Theta = \{\Theta_j \in End^*_A(H, H_j) : j \in J\}$$

be $C^{\prime 2}$ and C^2 -controlled *-g-Bessel sequences for H, respectively. Let $m = \{m_j\}_{j \in J} \in \ell^{\infty}(R)$. The operator

$$M_{m,C,\Theta,\Lambda,C'}: H \longrightarrow H,$$

defined by

$$M_{m,C,\Theta,\Lambda,C'}f := \sum_{j\in J} m_j C\Theta_j^* \Lambda_j C'f,$$

is called the (C, C')-controlled multiplier operator with symbol m.

5. Conclusions

In this article, the concept of multipliers from g-frames to *-g-Bessel sequences and *-g-frames is extended. Controlled frames and controlled Bessel sequences are extended to controlled *-g-frames and controlled *-g-Bessel sequences. At the end of this paper, the concept of a multiplier for C^2 - controlled and C'^2 -controlled *-g-Bessel sequences is defined.

References

- A. Alijani, Generalized Frames with C*-Valued Bounds and their Operator Duals, Published by Faculty of Sciences and Mathematics. University of Nis. Sebria. (2015), 1469-1479.
- [2] A. Alijani, M. A. Dehghan, G-Frames And Their Duals For Hilbert C^{*}-Modules, Bull. Iran. Math. Soc. 38 (3) (2012), 567-580.
- [3] P. Balazs, D. Bayer, A. Rahimi, Multipliers for continuos frames in Hilbert spaces, J. Phys. A:Math. Theor. 45 (2012), 1-24.
- [4] P. Balazs, J. P. Antoine, A. Grybos, Weighted and Controlled Frames, Int. J. Wavelets Multiresolut. Inf. Process. 8 (1) (2010), 109-132.
- [5] I. Bogdanova, P. Vandergheynst, J. P. Antoine, L. Jacques, M. Morvidone, Stereographic wavelet frames on the sphere, *Applied Comput. Harmon. Anal.* 19 (2005), 223-252.
- [6] H. Bolcskei, F. Hlawatsch, H.G Feichtinger, Frame-theoretic analysis of over sampled filter banks, *IEEE Trans Signal Process.* 46(12) (1998), 3256-3268.
- [7] E. J Candes, D. L Donoho, New tight frames of curvelets and optimal representations of objects with piecewise C² singularities, Commun. Pure Appl. Math. 57(2) (2004), 219-266.
- [8] O. Christensen, An Introduction to Frames and Riesz bases, Birkhauser, Boston (2003).
- [9] I. Daubechiesuffin, A. Grossmann, A. Meyer, Painless nonorthogonal expansions, J. Math. Phys. 72(5) (1986), 1271-1283.
- [10] M. Dorfler, Gabor analysis for a class of singels called music, Phd. Thesis, University of Vienna, (2003).

- [11] R. Duffin, A. Schaeffer, A class of non-harmonic Fourier series, Trans. Amer. Math. Soc. 72 (1952), 341-366.
- [12] M. H. Faroughi and M. Rahmani, Bochner p-g-frames, J. Inequal. Appl. 5 (2012), 1-16.
- [13] H. G. Feichtinger and K. Nowak, A first survey of Gabor multipliers, Advances in Gabor Analysis, Appl. Numer. Harmon. Anal, Birkhauser, Boston, MA. (2003), 99-128.
- [14] M. Frank and D. R. Larson, Frames in Hilbert C^{*}-modules and C^{*}algebras, J Operator Theory. 48 (2002), 273-314.
- [15] D. Hua and Y. Huang, Controlled K-g-frames, *Results in Math.* 72(3) (2017),1227-1238.
- [16] W. Jing , Frames in Hilbert C^* -modules , Phd. University of Central Florida. Orlando. FL. USA. (2006).
- [17] A. Khosravi and B. Khosravi, Fusion frames and g-frames in Hilbert C*modules, Int J Wavelets Multiresolut Inf Process. 6 (2008), 433-446.
- [18] E. C. Lance, Hilbert C^{*}-modules, A Toolkit for operator Algebraists, London Mathematical Society Lecture Note Series, 210, Combridge University Press, Cambridge, 1995.
- [19] G. Mats and F. Hlawatsch, Linear Time-Frequency Filters, One-line Algorithms and Applications, eds. A. Papandredreou-Suppappola, Boca Raton (FL):CRC Press, Ch. 6 (2002) 205-271.
- [20] G. J. Murphy, C^{*}-algebra and Operator Theory, Academic Press. 1990.
- [21] A. Rahimi and A. Freydooni, Controlled G-Frames and Their G-Multipliers in Hilbert spaces, An. St. Ovidius. 21 (2013), 223-236.
- [22] A. Rahimi, Multipliers of Generalized frames in Hilbert spaces, Bull. Iranian Math. Soc. 37(1) (2011), 63-88.
- [23] A. Rahimi, P. Balazs, Multipliers of P-Bessel sequences in Banach spaces, Integr. Equ. Oper. Theory, 68(2) (2010), 193-205.
- [24] W. Sun, g-frame and g-Riesz bases, J. Math. Anal. Appl. 322 (2006), 437-452.
- [25] N. E. Wegge-Olsen, K-Theory and C*-Algebra, A Friendly Approch, Oxford University Press, Oxford, England, 1993.