تعداد نشریات | 30 |
تعداد شمارهها | 467 |
تعداد مقالات | 4,519 |
تعداد مشاهده مقاله | 7,144,836 |
تعداد دریافت فایل اصل مقاله | 5,334,658 |
بررسی و خوشهبندی مشتریان، بر اساس مدل RFM و طراحی الگویی برای ارائه خدمات به مشتریان کلیدی | ||
پژوهشنامه مدیریت اجرایی | ||
مقاله 5، دوره 10، شماره 20، اسفند 1397، صفحه 175-198 اصل مقاله (994.42 K) | ||
نوع مقاله: مدیریت استراتژیک (برنامهها، تحلیلهای استراتژیکی تولید، استراتژیهای بازاریابی و مدیریت بازار، کسبوکار، سرمایه گذاری، منابع انسانی، مالی، رقابت، . . . ) | ||
شناسه دیجیتال (DOI): 10.22080/jem.2019.15814.2834 | ||
نویسندگان | ||
امیر یوسفی زاد1؛ علی ثریایی* 2 | ||
1دانشجوی دکتری مدیریت بازاریابی، دانشگاه آزاد اسلامی واحد بابل، بابل، ایران | ||
2نویسنده مسئول، استادیار دانشکده علوم انسانی، دانشگاه آزاد اسلامی واحد بابل، بابل، ایران | ||
تاریخ دریافت: 06 اسفند 1397، تاریخ بازنگری: 05 تیر 1398، تاریخ پذیرش: 02 مهر 1398 | ||
چکیده | ||
این تحقیق بررسی و خوشهبندی مشتریان ،بر اساس مدل RFM و طراحی الگویی برای ارائه خدمات به مشتریان کلیدی میپردازد. جامعه آماری.گروه اول، جهت تعیین وزن شاخصهای R, F, M ، 18 نفر از خبرگان بانک ملت استان مازندران هستند وگروه دوم جهت خوشهبندی مشتریان بر اساس مدل RFM و با استفاده از دادههای اسنادی بانک مشتریان ،اصناف و فروشگاههایی که دارای POS))بانکی میباشند. روش تجزیه و تحلیل دادهها تکنیک تحلیل سلسله مراتبی فازی، تکنیک آنتروپی، روش کا- میانگین و روش DBSCAN میباشد. طبق نتایج، وزن هر کدام از شاخصهای آر.اف ام. با استفاده از فرایند تحلیل سلسله مراتبی و آنتروپی بدست آمد و در نهایت وزن شاخصها بصورت ترکیبی برآورد گردید. وزن شاخصها به ترتیب Mبرابر 5998/0، F برابر 2672/0 و R برابر 1330/0. همچنین در ادامه تجزیه و تحلیل دادهها، خوشهبندی مشتریان با دو روش K-Means و DBSCAN انجام شد. نتایج نشان داد روش K-means روش بهتری برای خوشهبندی مشتریان و ارائه خدمات میباشد. بعد از خوشه بندی و تشکیل هرم مشتریان با روش K-means، مشتریان بانک بر اساس اطلاعیههای ابلاغی در گروههای (مهان، شایان، پویان، تابان، رویان و بحران) دسته بندی شدند که شعب بانک ملت با استفاده از این اطلاعات میتوانند، خدمات و تسهیلات مخصوص برای هر خوشه یا گروه از مشتریان در نظر بگیرند. | ||
کلیدواژهها | ||
مشتریان کلیدی؛ مدل RFM؛ ارزش دوره عمر مشتری؛ روش K-Means؛ روش DBSCAN | ||
موضوعات | ||
فناوری | ||
عنوان مقاله [English] | ||
Inspecting the Effective Factors on Identification and Maintenance of Key Customers Based on RFM Model and Designing a Model for Providing Services | ||
نویسندگان [English] | ||
Amir Uosefy Zad1؛ Ali Sorayaei2 | ||
1Department of management, faculty of Humanities, Islamic Azad University, Babol Branch, Iran | ||
2Assistant proessor, Business Management Department, Faculty of Humanities, Islamic Azad University of Babol, Iran | ||
چکیده [English] | ||
The purpose of this research is to investigate and study the factors influencing the identification and preservation of key customers based on the RFM model and model design for the provision of services. The statistical population of the study consists of two different groups. In the first group, for determining the weight of the indicators (R F M) 18 experts from the Mellat Bank of Mazandaran province were randomly selected and for the second group in order to cluster customers based on the RFM model and using bank document data, those who were using the POS machine in 1396 were examined. The data analysis method is a fuzzy hierarchical analysis technique, entropy technique, K- Means method and DBSCAN method. According to the results, the weight of each of the RAF indexes were rated using the process of hierarchical analysis and entropy analysis and finally the weight of the indices was estimated as a combination. The weight of the indexes was M = 0.5998, F = 0.2672 and R = 0.1330. In addition, customer data clustering was conducted using K-Means and DBSCAN methods. Finally, the results showed that the K-means method is a better way to customer clustering and service delivery. | ||
کلیدواژهها [English] | ||
Key Customers, RFM Model, Life Cycle Value, K-Means Method, DBSCAN Method | ||
مراجع | ||
Asna Ashari, H. (2014). Customer clustering based on RFM model and data mining approach to increase customer loyalty, Master thesis, Tehran Teacher Training University (In Persian). Emani,A & Abasi, M. (2017). Clustering of Customers Based on RFM Model Using Fuzzy C-Measure Algorithm (Case Study: Zahedan Welfare Chain Store), Journal of Public Management Research, 37, 251-276 (In Persian). Firuzi F. (2014). Customer Capital Management by Analyzing Customers' Behavior in Acquisition, Maintenance and Development, Master Thesis, Khaje Nasir Al-Din Tusi University of Technology (In Persian). Hajihasan, H. & Tajzade,A. (2015). Investigating the effect of transaction convenience and social interaction on customer experience, 5th National Conference and 3rd International Accounting and Management Conference, 9-1 (In Persian). Kafashpur A.,Tavakoli, A. & Alizadezavarem, A. (2012). Customer segmentation based on their lifetime value using data mining using RAF model, Journal of Public Management Research, Vol. 5, No. 15, 63-84 (In Persian). Ker- Chang Chang, H., Lin, H. & Patankar, N. (2017). effective CRM enhancement strategies for indlan retail market, International Journal of Research – granthaalayah, 12- 23. Maleki, A. & Darabi, M. (2016). Different methods for measuring customer satisfaction, automotive engineering and related industries, 3 (1), 27-32 (In Persian). Molani Aghdam, H. (2013). Determining the value of customer life cycle and customer ranking based on RAFF model, Master's Thesis, Babol Islamic Azad University (In Persian). Noori, B. (2015). An analysis of mobile banking customers for a bank Strategy and policy planning. International Journal of Management and Applied Science, 1(9). Noorizadeh, A, Rashidi,K & Peltokorpi,A (2017).Categorizing suppliers for development investments in construction: application of DEA and RFM concept, Construction Management and Economics. Ozer, M. (2015). Fuzzy c-means clustering and internet portals: a case study, European Journal of Operational Research, 164, 696-714. Safari, F., Safari, N. & Gholam, A. (2016).Customer lifetime value determination based on RFM model, Marketing Intelligence & Planning, 34 Iss 4, 446 – 461. Songa,Y, M., Luo,Y & Hua,Z (2018).On the extent analysis method for fuzzy AHP and its applications, European Journal of Operational Research, 186, 735-747. Vali, M. (2016). Investigating the Effect of Internet Banking Services on Satisfaction Increasing in the Bank of Commerce Management of Southwestern Branches of Tehran, Master's Thesis, Tehran Islamic Azad University (In Persian). Wang,T, C & Chen,Y, H. (2018).Applying fuzzy linguistic preference relations to the improvement of consistency of fuzzy AHP. Information Sciences, 178, 3755-3765. Ya-Han Hu, H & Tzu,Wei Yeh (2014). Discovering valuable frequent patterns based on RFM analysis without customer identification information, Journal of Business Research , 67(1), 2751–2758. Zeynolabedini, S, F. (2012). Segmentation and identification of e-banking services customers based on data mining techniques and RFM model (case study of financial and credit institution of development), Master thesis, Lahijan Islamic Azad University (In Persian). | ||
آمار تعداد مشاهده مقاله: 2,067 تعداد دریافت فایل اصل مقاله: 1,370 |