Caspian Journal of Mathematical Sciences (CJMS) University of Mazandaran, Iran http://cjms.journals.umz.ac.ir ISSN: 2676-7260

CJMS. 9(1)(2020), 151-158

Starlike Functions Of order α With Respect To 2(j,k)-Symmetric Conjugate Points

E. Amini¹

¹ Department of Mathematics, Payme Noor University, P. O. Box 19395-4697 Tehran, IRAN.

ABSTRACT. In this paper, we introduced and investigated starlike and convex functions of order α with respect to 2(j, k)-symmetric conjugate points and coefficient inequality for function belonging to these classes are provided. Also, we obtain some convolution condition for functions belonging to this class.

Keywords: Univalent functions, 2(j, k)-Symmetric conjugate, Coefficient bound, Convolution.

2000 Mathematics subject classification: 30C45, 30C55; Secondary 30C80.

1. INTRODUCTION

Let \mathcal{A} be the class of functions of the form

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n.$$
 (1.1)

which are analytic in the open unit disc $\mathcal{U} = \{z \in \mathbb{C}; |z| < 1\}$. Let $\mathcal{S}, \mathcal{S}^*, \mathcal{S}^*(\alpha), \mathcal{CV}, \mathcal{CV}(\alpha)$ and $\mathcal{C}(\alpha)$ denote the familiar subclass of \mathcal{A} consisting of functions which are, respectively, univalent, starlike, α -starlike, convex, α -convex and close-to-convex functions of order α in \mathcal{U} (See, for details, [2, 3, 5, 10]).

¹Corresponding author: eb.amini.s@pnu.ac.ir Received: 04 September 2017 Accepted: 14 October 2019

Lemma 1.1. [4] Let $\alpha \in [0,1)$ and f given by (1.1) be a holomorphic function on \mathcal{U} . If

$$\sum_{n=2}^{\infty} \frac{n-\alpha}{1-\alpha} |a_n| < 1,$$

then $f \in \mathcal{S}^*(\alpha)$.

Let two function $f, g \in \mathcal{A}$, where f(z) is given by (1.1) and g(z) is defined by

$$g(z) = z + \sum_{n=2}^{\infty} b_n z^n,$$

the Hadamard product (or convolution) f * g is defined (as usual) by

$$f * g(z) = z + \sum_{n=2}^{\infty} a_n b_n z^n$$

H. Silverman, E. M. Silvia and D. Telage in [9] generated a great deal of intrinsic interest properties of convolution for α -starlike functions, α -convex functions and λ -spirallike functions.

The concept of dual set has proved to be very useful in the study of properties of analytic functions, (see for example [6, 7]).

Lemma 1.2. [6, 7] If $\phi \in CV$ and $f \in ST$, then for any analytic function F in D, the image of D under $\frac{\phi * Ff(z)}{\phi * f(z)}$ is a subset of the convex hull of F(D).

Sakaguchi [8] once introduce a class S_s^* of function starlike with respect to symmetric points, which consists of functions $f(z) \in S$ satisfying the inequality

$$Re\left\{\frac{zf'(z)}{f(z)-f(-z)}\right\} > 0 \quad (z \in \mathcal{U}).$$

Al-Amiri, Coman and Mocano [1] once introduce and investigate a class of functions starlike with respect to 2k-symmetric conjugate points which satisfy the inequality

$$Re\left\{\frac{zf'(z)}{f_{2k}(z)}\right\} > 0 \quad z \in \mathcal{U},$$

where $k \geq 2$ is a fixed positive integer and $f_{2k}(z)$ is defined by the following equality

$$f_{2k}(z) = \frac{1}{2k} \sum_{v=0}^{k-1} \left(\epsilon^{-v} f(\epsilon^{v} z) + \epsilon^{v} \overline{f(\epsilon^{v} \overline{z})} \right) \quad (\epsilon = \exp(2\pi i/k); \ z \in \mathcal{U}).$$
(1.2)

152

But until now, a new subclass of 2(j, k)-symmetric functions of order α is defined and some properties for this class are obtained such as coefficient bounds and convolution condition.

2. Definitions and coefficient bounds

In this chapter we introduce subclass of functions with 2k-symmetric conjugate points and obtain some properties such as coefficient bounds.

Definition 2.1. Let $0 \leq \alpha < 1$. The class of α -starlike functions with 2(j,k)-symmetric conjugate points of the class of functions in \mathcal{ST} denoted by $\mathcal{ST}_{sc}^{(j,k)}(\alpha)$ satisfying the condition

$$Re\left\{\frac{zf'(z)}{f_{2(j,k)}(z)}\right\} > \alpha, \tag{2.1}$$

for all z in \mathcal{U} , where $f_{2(j,k)}(z)$ is given by

$$f_{2(j,k)}(z) = \frac{1}{2k} \sum_{v=0}^{k-1} \left(\epsilon^{-vj} f(\epsilon^v z) + \epsilon^{vj} \overline{f(\epsilon^v \bar{z})} \right).$$
(2.2)

The function $f(z) \in \mathcal{A}$ is in the $\mathcal{CV}_{sc}^{(j,k)}(\alpha)$, α -convex functions with respect to 2(j,k)-symmetric conjugate points, if and only if $zf'(z) \in \mathcal{ST}_{sc}^{(j,k)}(\alpha)$.

Remark 2.2. Since f is given by (1.1) and $f_{2(j,k)}$ is given by (2.2), we obtain

$$f_{2(j,k)}(z) = \frac{1}{2k} \sum_{v=0}^{k-1} \left(\epsilon^{-vj} f(\epsilon^{vj} z) + \epsilon^{vj} \overline{f(\epsilon^{v} \overline{z})} \right)$$
$$= \sum_{n=1}^{\infty} \left(\frac{1}{2k} \sum_{v=0}^{k-1} \left(\epsilon^{(n-j)v} a_n + \overline{\epsilon^{(n-j)v} a_n} \right) \right) z^n$$

Then

$$f_{2(j,k)}(z) = \sum_{n=1}^{\infty} \delta_{n,j} \frac{a_n + \bar{a}_n}{2} z^n,$$

where

$$\delta_{n,j} = \frac{1}{2k} \sum_{\nu=0}^{k-1} \left(\epsilon^{(n-j)\nu} a_n + \overline{\epsilon^{(n-j)\nu} a_n} \right) = \begin{cases} 1, & n = lk+j \\ 0, & n \neq nk+j. \end{cases}$$
(2.3)

Theorem 2.3. Let f given by (1.1) and $f \in \mathcal{S}_{sc}^{2(j,k)}(\alpha)$, then $f_{2(j,k)} \in \mathcal{ST}(\alpha)$ and $\mathcal{ST}_{sc}^{2(j,k)}(\alpha) \subset \mathcal{C}(\alpha) \subset \mathcal{S}$.

Proof. Since $f \in \mathcal{ST}_{sc}^{2(j,k)}(\alpha)$, Then we have

$$Re\left\{\frac{zf'(z)}{f_{2(j,k)}(z)}\right\} \ge \alpha$$

or equivalently

$$\mathfrak{T}\left\{\frac{\frac{\partial}{\partial\theta}f(re^{i\theta})}{f_{2(j,k)}(re^{i\theta})}\right\} \ge \alpha.$$
(2.4)

In the inequality (2.4) substituting $re^{i\theta}$ by $\epsilon^v re^{i\theta}$, we obtain

$$\mathfrak{T}\left\{\frac{\frac{\partial}{\partial\theta}f(\epsilon^{v}re^{i\theta})}{f_{2(j,k)}(\epsilon^{v}re^{i\theta})}\right\} \ge \alpha.$$
(2.5)

Note that $f_{2(j,k)}(\epsilon^v z) = \epsilon^{vj} f_{2(j,k)}(z)$, the inequality (2.5) can be written as

$$\mathfrak{T}\left\{\frac{\epsilon^{-vj}\frac{\partial}{\partial\theta}f(\epsilon^v r e^{i\theta})}{f_{2(j,k)}(r e^{i\theta})}\right\} \ge \alpha.$$
(2.6)

In the inequality (2.4) substituting $re^{i\theta}$ by $\epsilon^v re^{-i\theta}$, we obtain

$$\mathfrak{T}\Big\{\frac{\frac{\partial}{\partial \theta}f(\epsilon^v r e^{-i\theta})}{f_{2(j,k)}(\epsilon^v r e^{-i\theta})}\Big\} \geq \alpha.$$

the above equation is equivalent to

$$\mathfrak{T}\left\{\frac{\overline{\frac{\partial}{\partial\theta}f(\epsilon^{v}re^{-i\theta})}}{\overline{f_{2(j,k)}(\epsilon^{v}re^{-i\theta})}}\right\} \ge \alpha.$$
(2.7)

Note that $f_{2(j,k)}(\epsilon^v \bar{z}) = \epsilon^{-vj} f_{2(j,k)}(z)$, the inequality (2.7) can be written as

$$\mathfrak{T}\left\{\frac{\epsilon^{vj}\frac{\partial}{\partial\theta}f(\epsilon^{v}re^{i\theta})}{f_{2(j,k)}(re^{i\theta})}\right\} \ge \alpha.$$
(2.8)

Note that $\overline{\frac{\partial}{\partial \theta} f(\epsilon^v r e^{-i\theta})} = \frac{\partial}{\partial \theta} \overline{f(\epsilon^v r e^{-i\theta})}$, by applying the inequalities (2.8) and (2.6), we obtain

$$\mathfrak{T}\left\{\frac{\frac{1}{2k}\left(\sum_{v=0}^{k-1}\left(\epsilon^{-vj}\frac{\partial}{\partial\theta}f(\epsilon^{v}re^{i\theta})\right)+\epsilon^{vj}\frac{\partial}{\partial\theta}\overline{f(\epsilon^{v}\overline{z})}\right)\right)}{f_{2(j,k)}(z)}\right\}=\mathfrak{T}\left\{\frac{\frac{\partial}{\partial\theta}f_{2(j,k)}(z)}{f_{2(j,k)}(z)}\right\}\geq\alpha,$$
(2.9)

that is $f_{2(j,k)}(z) \in ST(\alpha)$. This means that $ST_{sc}^{2(j,k)}(\alpha) \subset C(\alpha) \subset S$ and the proof of theorem is complete.

Theorem 2.4. Let f(z) given by (1.1) and $f_{2(j,k)}(z)$ given by (2.2). Let

$$\sum_{n=2}^{\infty} \frac{nk+j-\alpha+1}{1-\alpha\delta_{1j}} |a_{nk+j}| + \sum_{n=1,n\neq lk+j}^{\infty} \frac{n+1}{1-\alpha\delta_{1j}} |a_n| \le 1, \qquad (2.10)$$

154

where $a_1 = 1, \ 0 \le \alpha < 1, \ k = 1, 2, 3, ..., \ j = 0, 1, ..., k - 1, \ l \in \mathbb{N}$ and δ_{nj} is defined by (2.3). Then f is starlike function of order α and $f \in \mathcal{ST}_{sc}^{2(j,k)}(\alpha).$

Proof. Since

$$\sum_{n=2}^{\infty} \frac{n-\alpha}{1-\alpha} |a_n| \le \sum_{n=2}^{\infty} \frac{n+1-\alpha}{1-\alpha} |a_n| \le \sum_{n=2}^{\infty} \frac{n+(1-\alpha)\delta_{nj}}{1-\alpha\delta_{1j}} |a_n| = \sum_{n=2}^{\infty} \frac{nk+j-\alpha+1}{1-\alpha\delta_{1j}} |a_{nk+j}| + \sum_{n=1,n\neq,lk+j}^{\infty} \frac{n+1}{1-\alpha\delta_{1j}} |a_n| \le 1$$

where δ_{nj} defined in (2.3). Hence by applying Lemma 1.1, f is starlike function of order α . To prove $f \in \mathcal{ST}_{sc}^{2(j,k)}(\alpha)$, we need to show that

$$\mathfrak{T}\Big\{\frac{\frac{\partial}{\partial\theta}f(re^{i\theta})}{f_{2(j,k)}(re^{i\theta})}\Big\} = Re\Big\{\frac{zf'(z))}{f_{2(j,k)}(z))}\Big\} = Re\Big\{\frac{A(z)}{B(z)}\Big\} \ge \alpha,$$

where $z = re^{i\theta}$, $0 \le \theta < 2\pi$, $0 \le \alpha < 1$, k = 1, 2, 3, ..., j = 0, 1, ..., k - 1,

$$A(z) = zf'(z) = z + \sum_{n=1}^{\infty} na_n z^n,$$

and $B(z) = f_{2(i,k)}(z)$ is given by (2.2).

Using the fact that $Re\{w\} \ge \alpha$ if and only if $|1 - \alpha + w| \ge |1 + \alpha - w|$, it suffices to show that

$$|A(z) + (1 - \alpha)B(z)| - |A(z) - (1 + \alpha)B(z)| \ge 0$$

Hence, we have

$$\begin{split} \left| A(z) + (1-\alpha)B(z) \right| - \left| A(z) - (1+\alpha)B(z) \right| \\ &= \left| \left(1 + (1-\alpha)\delta_{1j} \right) z + \sum_{n=2}^{\infty} \left(n + \frac{1-\alpha}{2}\delta_{nj} \right) a_n z^n + \sum_{n=2}^{\infty} \left(\frac{1-\alpha}{2}\delta_{nj} \right) \bar{a}_n z^n \right| \\ &- \left| \left(1 - (1+\alpha)\delta_{1j} \right) z + \sum_{n=2}^{\infty} \left(n - \frac{1+\alpha}{2}\delta_{nj} \right) a_n z^n - \sum_{n=2}^{\infty} \left(\frac{1+\alpha}{2}\delta_{nj} \right) \bar{a}_n z^n \right| \\ &\geq \left(1 + (1-\alpha)\delta_{1j} \right) |z| - \sum_{n=2}^{\infty} \left(n + \frac{1-\alpha}{2}\delta_{nj} \right) |a_n| |z|^n - \sum_{n=2}^{\infty} \left(\frac{1-\alpha}{2}\delta_{nj} \right) |\bar{a}_n| |z|^n \\ &+ \left(1 - (1+\alpha)\delta_{1j} \right) |z| - \sum_{n=2}^{\infty} \left(n - \frac{1+\alpha}{2}\delta_{nj} \right) |a_n| |z|^n - \sum_{n=2}^{\infty} \left(\frac{1+\alpha}{2}\delta_{nj} \right) |\bar{a}_n| z^n \\ &= 2(1-\alpha\delta_{1j}) |z| - 2\sum_{n=2}^{\infty} (n-\alpha\delta_{nj}) |a_n| |z|^n - 2\sum_{n=2}^{\infty} |a_n| |z|^n \\ &= 2(1-\alpha\delta_{1j}) |z| \left\{ 1 - \sum_{n=2}^{\infty} \frac{n-\alpha\delta_{nj}}{1-\alpha\delta_{1j}} |a_n| |z|^{n-1} - \sum_{n=2}^{\infty} \frac{1}{1-\alpha\delta_{1j}} |a_n| |z|^{n-1} \right\} \ge 0 \end{split}$$

From the definition of δ_{nj} in (2.3), we get

$$\left| A(z) + (1 - \alpha)B(z) \right| - \left| A(z) - (1 - \alpha)B(z) \right|$$

= $2(1 - \alpha\delta_{1j})|z| \left\{ 1 - \sum_{n=2}^{\infty} \frac{nk + j + 1 - \alpha}{1 - \alpha\delta_{1j}} |a_{nk+j}| - \sum_{n=2, n \neq lk+j}^{\infty} \frac{n+1}{1 - \alpha\delta_{1j}} |a_n| \right\} \ge 0$

we note that in (2.10). This conclude the proof of the theorem.

The Starlike function of order α with respect to 2(j,k)-symmetric conjugate points

$$f(z) = z + \sum_{n=2}^{\infty} \frac{1 - \alpha \delta_{1,j}}{nk + j - \alpha + 1} x_{nk+j} z^{nk+j} + \sum_{n=1, n \neq lk+j}^{\infty} \frac{1 - \alpha \delta_{1,j}}{n+1} x_n z^n$$

where $\sum_{m=2}^{\infty} |x_m| = 1$, shows that the coefficient bounds in (2.10) is sharp.

3. Convolution Condition

Theorem 3.1. Let $\phi \in CV$ and $f(z) \in ST_{sc}^{(j,k)}(\alpha)$. Then $(\phi * f)(z) \in ST_{sc}^{(j,k)}(\alpha)$.

Proof. Let Ω_{α} is a convex domain and $f_{2(j,k)}(z)$ is given by (2.2). Since $f(z) \in S\mathcal{T}_{sc}^{(j,k)}(\alpha)$ by Theorem 2.4, we conclude that $f_{2(j,k)}(z) \in S\mathcal{T}$. Hence by applying Lemma 1.2, we obtain

$$\frac{z(\phi * f)'(z)}{\phi * f_{2(j,k)}(z)} = \frac{(\phi * zf')(z)}{\phi * f_{2(j,k)}(z)} = \frac{\phi * \frac{zf'(z)}{f_{2(j,k)}(z)}f_{2(j,k)}(z)}{\phi * f_{2(j,k)}} \subseteq \overline{co}\Big(\frac{zf'(z)}{f_{2(j,k)}(z)}\Big) \subseteq \Omega_{\alpha}$$

Since Ω_{α} is a convex domain and $f \in \mathcal{ST}^{j,k}_{sc}(\alpha)$. This prove that $(\phi * f)(z) \in \mathcal{ST}^{(j,k)}_{sc}(\alpha)$.

Theorem 3.2. Let $0 \le \alpha < 1$, k = 1, 2, 3, ..., j = 0, 1, ..., k - 1 and $f(z) \in \mathcal{A}$. Then the function $f(z) \in \mathcal{ST}_{sc}^{(j,k)}(\alpha)$ if and only if

$$\frac{1}{z} \left[f * \left(\frac{z}{(1-z)^2} - \frac{x+2\alpha-1}{2(x+1)} h(z) \right) - \frac{x+2\alpha-1}{2(x+1)} \overline{f * h(\overline{z})} \right] \neq 0, \quad (3.1)$$

for all $z \in \mathcal{U}$ and |x| = 1 where h(z) is given by

$$h(z) = \frac{1}{k} \sum_{v=0}^{k-1} \frac{\epsilon^{v(1-j)} z}{1 - \epsilon^{v} z}. \quad (\epsilon = \exp(2\pi i/k)).$$
(3.2)

Proof. Let $f(z) \in \mathcal{ST}_{sc}^{(j,k)}(\alpha)$, from the definition 2.1, f satisfies the inequality (2.1). Since $\frac{zf'(z)}{f(z)} = 1$ at z = 0, the inequality (2.1) is equivalent to

$$\frac{\frac{zf'(z)}{f_{2(j,k)}(z)} - \alpha}{1 - \alpha} \neq \frac{x - 1}{x + 1}$$

for all |z| < R < 1, |x| = 1 and $x \neq 1$. Which simplifies to

$$\frac{zf'(z) - \alpha f_{2(j,k)}(z)}{(1-\alpha)f_{2(j,k)}(z)} \neq \frac{x-1}{x+1},$$
(3.3)

for all |z| < R < 1, |x| = 1 and $x \neq 1$. By condition on the inequality (3.3), we obtain

$$\frac{1}{z} \left[zf'(z) - \frac{x + 2\alpha - 1}{x + 1} f_{2(j,k)}(z) \right] \neq 0.$$
(3.4)

On the other hand, it is well known that

$$zf'(z) = f(x) * \frac{z}{(1-z)^2}.$$
 (3.5)

By the definition of $f_{2(j,k)}(z)$, we know

$$f_{2(j,k)}(z) = \frac{1}{2} \left[f * h(z) + \overline{f * h(\overline{z})} \right], \qquad (3.6)$$

where h(z) is given by (3.2). Substituting (3.5) and (3.6) in (3.4), we can get (3.1). This complete the proof of theorem.

Corollary 3.3. Let $0 \le \alpha < 1$ and $f(z) \in \mathcal{A}$. Then the function $f(z) \in \mathcal{C}_{sc}^{(j,k)}(\alpha)$ if and only if

$$\frac{1}{z} \Big[f * \Big(\frac{2z}{(1-z)^3} - \frac{x+2\alpha-1}{2(x+1)} \big(h(z) + zh'(z) \big) \Big) - \frac{x+2\alpha-1}{2(x+1)} \overline{f * h'(\overline{z})} \Big] \neq 0,$$

for all $z \in \mathcal{U}$ and |x| = 1 where h(z) is given by

$$h(z) = \frac{1}{k} \sum_{v=0}^{k-1} \frac{\epsilon^{v(1-j)} z}{1 - \epsilon^{v} z}. \quad (\epsilon = \exp(2\pi i/k)),$$

Proof. By definition 2.1 we have, $f \in \mathcal{A}$ is in the $\mathcal{CV}_{sc}^{(j,k)}(\alpha)$ if and only if $zf'(z) \in \mathcal{ST}_{sc}^{(j,k)}(\alpha)$. Now applying Theorem 3.2. This complete the proof of corollary.

References

- H. AL-Amiri, D. Coman and P. T. Mocanu, Some properties of starlike functions with respect to symmetric conjugate points, *Internat. J. Math.* Sci. 18(1995), 469-474.
- [2] P.L. Duren, Univalent Functions, Grundelheren der Mathematischen Wissenchaften 259, Springer-Verlag, New York (1983).
- [3] I. Graham and G. Kohr, Geometric Function Theory in one and Higher Dimensions, Marcel Dekker, Inc, NewYork, 2003.
- [4] E. P. Merkes, M. S. Robertson and W. T. Scott, On products of starlike functions, Proc. Amer. Math. Soc., 13(1962), 960-964.
- [5] S. Owa, M. Nunokawa, H. Satoh and H. M. Srivastava, Close-to-convity, starlikeness and convexity of certain analytic function, *Appl. Math. Lett.* 15(2002), 63-69.
- [6] S. T. Ruscheweyh, Duality for hadmarad product with applications to extremal problems, Trans. Am. 210, 63-74 (1975).
- [7] S. T. Ruscheweyh and T. Sheil-Small, Hadamard products of schlicht functions and the Polya-Schoenberg Con- jecture, *Comment. Math. Helv.*, 48 (1973), 119–135.
- [8] K. Sakaguchi, On certain univalent mapping, J, Math. Soc. Japan 11(1959)72-75.
- [9] H. Silverman, E. M. Silvia and D. Telage, Convolution conditions for convexity starlikeness and spiral-likenes, Math. Z, 162 (1978)125-130.
- [10] H. M. Srivastava and S. Owa, Current topics in Analytic Function Theory, World scientific, Singapore, (1992).