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Abstract. In this paper, the aim is to find a complex interval
vector [z] such that satisfies the complex interval linear system
C[z] = [w]. For this, we present a new method by restricting the
general solution set via applying some parameters. The numerical
examples are given to show ability and reliability of the proposed
method.
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1. Introduction

In some problems, for instance the electrical circuits [9, 10], we have a
system of linear equations with uncertain complex parameters. Also,
if we represent this uncertainty by intervals, then we obtain a problem
that is called, “Complex interval linear system”.

Unluckily, little researchers have presented the numerical and ana-
lytical methods for solving complex interval linear systems. Complex
interval linear systems were studied in [8, 9, 10] and among others. In
2006, Djanybekov [6] have presented an outer estimation of solution set
of a complex interval linear system by interval Householder method. In
2010, Hladik [8] have proposed a method for obtaining a very accurate
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approximation of the interval hull of the solution set of a complex in-
terval linear system by a system of nonlinear inequalities. Also, in the
same year, Popova et al. [11] have used the advanced technology of
communication protocols for developing of new software, integrated be-
tween Mathematica and C-XSC, that solves complex-valued parametric
linear systems. Recently, the author [7] have introduced an algorithm
for presenting an inner estimation of the solution set of a complex inter-
val linear system. Also, he showed that under some certain conditions,
the obtained inner estimation is an algebraic solution.

In this paper, we focus on the complex interval linear systems that
their coefficient matrix are complex crisp-valued and the right-hand-side
columns are complex interval-valued. It can be easily investigated that,
if we use the usual Crout decomposition method for solving a complex
interval linear system, then we do not obtain an algebraic solution. In
other words, Crout’s solution vector does not satisfy all equations of
system as algebraically. For this reason, in this paper, we try to eliminate
this problem and obtain a solution vector such that satisfies all equations
of a complex linear system as algebraically.

In proposed method, we first solve a complex interval linear system by
a complex interval version of the classic Crout decomposition method.
By doing this work, we obtain a general solution set for a complex in-
terval linear system. In the next step, we restrict this general solution
set by some parameters. Finally, we prove that the obtained complex
interval vector is an algebraic solution, or in other words, it satisfies the
complex interval linear system.

The structure of this paper is as follows. In Section 2 we present some
basic definitions and concepts of complex interval theory. In Section 3,
we represent a complex interval version of the classic Crout decompo-
sition method. In Section 4, we propose a new method for obtaining
the algebraic solution of a complex interval linear system. In Section
5, we give two numerical examples to show ability and reliability of our
proposed method. Conclusion is drawn in Section 6.

2. Preliminaries

It is known that the real interval [a] is showed as [a, a] and also the
set of all real intervals is denoted by IR [1, 3]. However, in this section,
we focus on complex intervals and remind several basic concepts about
them.

Definition 2.1. [4, 2] A complex interval [z] is defined as

[z] = [a] + i[b]

= {a+ ib ∈ C | a 6 a 6 a, b 6 b 6 b},
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where [a] = [a, a] and [b] = [b, b] are two arbitrary real intervals, i.e.
[a], [b] ∈ IR.

Throughout the paper, we denote the set of all complex intervals by
IC. According to Definition 2.1 and similar to [6, 11], the complex
interval [z] = [a, a] + i[b, b] can be represented as

[z] = [z, z] = [a+ ib, a+ ib].

Therefore, we conclude

z = a+ ib, z = a+ ib.

Obviously, we can show IR ⊂ IC, because the real interval [a] can be
regarded as a complex interval [a] = [a] + i[0, 0] ∈ IC.

To presentation of the complex interval arithmetic, it should be noted
that most properties of the real interval arithmetic can be extended to
the complex case as well. Let us consider the complex crisp number c =
a+ ib and two complex intervals [z1] = [p1] + i[q1] and [z2] = [p2] + i[q2],
where [pj ] = [pj , pj ] and [qj ] = [qj , qj ], j = 1, 2. Then, we will have

[z1] + [z2] = ([p1] + [p2]) + i ([q1] + [q2])

= [p1 + p2, p1 + p2] + i [q1 + q2, q1 + q2],

and

c · [z̃1] = (a+ ib) · ([p1] + i [q1])

= (a[p1]− b[q1]) + i (a[q1] + b[p1]) .

Definition 2.2. We define the center and width of the complex interval
[z] = [z, z], respectively as follows:

[z]c =
z + z

2
, [z]w = z − z.

Remark 2.3. Based on Definition 2.2, for the complex interval [z] =
[p] + i[q], it can be shown that

[z]c = [p]c + i[q]c, [z]w = [p]w + i[q]w.

In the next theorem, we present the center and width of a linear
combination of the complex intervals.

Theorem 2.4. [7] For the complex intervals [zj ] = [pj ] + i[qj ], and the
complex crisp numbers cj = aj + ibj, j = 1, 2, ..., n we have n∑

j=1

cj [zj ]

c

=

 n∑
j=1

(aj [pj ]
c − bj [qj ]

c)

+i

 n∑
j=1

(aj [qj ]
c + bj [pj ]

c)

 .
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j=1

cj [zj ]

w

=

 n∑
j=1

(|aj | [pj ]w + |bj | [qj ]w)

+ i

 n∑
j=1

(|aj | [qj ]w + |bj | [pj ]w)

 .

Obviously, the vector [z] = ([z1], [z2], . . . , [zn])
T where [zi], i = 1, 2, . . . , n,

are complex intervals, is called a complex interval vector. Now, we are
going to define the center and width vectors of a complex interval vector.

Definition 2.5. We define the center and width vectors of the complex
interval vector [z] = ([z1], [z2], . . . , [zn])

T respectively as follows:

[z]c = ([z1]
c, [z2]

c, . . . , [zn]
c)T .

[z]w = ([z1]
w, [z2]

w, . . . , [zn]
w)T .

In the continuation of these basic definitions, we state a generalized
definition of the completely nonsingular matrices that was presented in
[7].

Definition 2.6. Let C = (ckj)n×n be a complex crisp matrix, i.e. ckj =

akj + i bkj and also A = (akj)n×n and B = (bkj)n×n be the real and
imaginary parts of the matrix C, respectively. We say that the matrix
C is completely nonsingular, if all matrices C, |A| + |B| and |A| − |B|
are nonsingular, where |A| = (|akj |)n×n and |B| = (|bkj |)n×n are two
nonnegative real matrices.

Here, we define a complex interval linear system as follows.

Definition 2.7. The n× n linear system
c11 [z1] + c12 [z2] + · · ·+ c1n [zn] = [w1],
c21 [z1] + c22 [z2] + · · ·+ c2n [zn] = [w2],
...

cn1 [z1] + cn2 [z2] + · · ·+ cnn [zn] = [wn],

(2.1)

where the coefficient matrix C = (ckj)n×n, ckj = akj + ibkj , is an n× n
complex crisp matrix and [wj ] = [uj ] + i [vj ], 1 6 j 6 n are complex
intervals, is called a complex interval linear system.

We can denote the complex interval linear system (2.1) as

C[z] = [w], (2.2)

where

[z] = ([z1], [z2], . . . , [zn])
T , [w] = ([w1], [w2], . . . , [wn])

T ,

are two complex interval vectors. Also, if we set [zj ] = [pj ] + i [qj ] and
[wj ] = [uj ] + i [vj], 1 6 j 6 n, then we can write

C = A+ iB, [z] = [p] + i [q],
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and
[w] = [u] + i [v].

In most papers, a solution of (2.1) is defined as a solution to a system
Cz′ = w′ for some w′ ∈ [w]. Regarding to this note, the solution set of
complex interval linear system (2.1) is defined as a set of all solutions,
as follows.

Definition 2.8. The solution set of the complex interval linear system
(2.1) is defined traditionally as

Σ =
{
z′ ∈ Cn | (∃w′ ∈ [w])(Cz′ = w′)

}
.

Remark 2.9. Suppose that the coefficient matrix C is nonsingular, that
means det(C) ̸= 0+i0. Therefore, if we considerC−1 [w] =

{
C−1w′| w′ ∈ [w]

}
,

then obviously we have
Σ = C−1 [w].

In the following, we want to define a complex interval vector as an
algebraic solution for the complex interval linear system (2.1).

Definition 2.10. A complex interval vector

[zA] = ([z1A], [z2A], . . . , [znA])
T ,

where [zjA] = [zjA, zjA], is an “algebraic solution” of the complex linear

system (2.1) if it satisfies all equations of system (2.1), or in other words
n∑

j=1

ckj

(
[zjA, zjA]

)
= [wk, wk], k = 1, 2, . . . , n.

It should be noted that for the complex interval linear system (2.1),
the algebraic solution may not exist. The following theorem, shows the
relation between the algebraic solution [zA] and the solution set Σ.

Theorem 2.11. [7] If the complex interval linear system (2.1) has the
algebraic solution [zA], then we have

[zA] ⊆ Σ.

In the next section, we want apply a complex interval version of the
usual Crout decomposition method to obtain a general solution set of
the complex interval linear system (2.1).

3. General solution set

The Crout complex interval decomposition method is obtained from
its real version (see [5]), replacing the real numbers by the complex
intervals and the real operations by the corresponding complex interval
operations. Also, in this section, we show that the solution set Σ and the
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algebraic solution [zA] (if it exists) are subsets of the obtained solution by
the Crout complex interval decomposition method. For this reason, we
call the obtained solution by the Crout complex interval decomposition
method a “general solution set”.

To this end, please consider the complex interval linear system (2.2).
In a similar manner of the usual Crout decomposition, the coefficient ma-
trixC = (ckj)n×n is decomposed into the product of the lower-triangular

complex matrix L = (lkj)n×n and the upper-triangular complex matrix

U = (ukj)n×n, where the main diagonal of U consists of all 1 + 0is. In
other words

C = LU, (3.1)

where

L =


l′11 + il′′11 0 · · · 0
l′21 + il′′21 l′22 + il′′22 · · · 0

...
...

. . .
...

l′n1 + il′′n1 l′n2 + il′′n2 · · · l′nn + il′′nn

 ,

and

U =


1 u′12 + iu′′12 · · · u′1n + iu′′1n
0 1 · · · u′2n + iu′′2n
...

...
. . .

...
0 0 · · · 1

 .

In the above decomposition, it should be noted that if all ones be on
the main diagonal of L, then the corresponding decomposition is called
“Doolittle decomposition”. From Eqs. (2.2) and (3.1), we conclude

LU[z] = [w]. (3.2)

If we suppose [y] = U[z], we obtain L[y] = [w]. Since L is a lower
triangular matrix, we can obtain [y] by forward substitution, as follows

[y1] = [w1], (3.3)

[yk] = [wk]−
k−1∑
j=1

lkj [yj ], k = 2, 3, . . . , n. (3.4)

In the next step, since U is upper triangular, we can find the desired
solution [z] from U[z] = [y] by backward substitution, as follows

[zn] =
1

unn
[yn], (3.5)

[zk] =
1

ukk

[yk]−
n∑

j=k+1

ukj [zj ]

 , k = n− 1, n− 2, . . . , 1. (3.6)
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We denote the obtained solution by the above process as

[zcr] = ([z1cr ], [z2cr ], . . . , [zncr ])
T ,

where [zjcr ] = [pj ] + i[qj ], j = 1, 2, . . . , n. Also, it should be noted that
the used arithmetic in the Eqs. (3.3)-(3.6) are the complex interval
arithmetic defined in this paper.

In the following theorem, we show that the solution set Σ is a subset
of the complex interval vector [zcr].

Theorem 3.1. If the coefficient matrix C of the system (2.1) be non-
singular, then we have

Σ ⊆ [zcr].

Proof. Based on Remark 2.9, since the matrix C is nonsingular, we can
write Σ = C−1[w]. Now, suppose that z′ ∈ Σ. Then, there exists a
w′ ∈ [w] such that Cz′ = w′. According to the Crout decomposition,
we obtain LUz′ = w′. If we set y′ = Uz′, then we conclude that
Ly′ = w′. At first, for the lower triangular system Ly′ = w′, by forward
substitution we have

y′1 = w′
1,

y′k = w′
k −

k−1∑
j=1

lkjy
′
j , k = 2, 3, . . . , n.

Since w′ = (w′
1, w

′
2, . . . , w

′
n)

T ∈ [w], then y′ = (y′1, y
′
2, . . . , y

′
n)

T ∈ [y],
where [y] is defined in the Eqs. (3.2)-(3.4).

On the other hand, for the upper triangular system y′ = Uz′, by
backward substitution we have

z′n =
1

unn
y′n,

z′k =
1

ukk

y′k −
n∑

j=k+1

ukjz
′
j

 , k = n− 1, n− 2, . . . , 1.

Now, since y′ = (y′1, y
′
2, . . . , y

′
n)

T ∈ [y], then z′ = (z′1, z
′
2, . . . , z

′
n)

T ∈
[zcr], where [zcr] is obtained by the Eqs. (3.5) and (3.6). Consequently
Σ ⊆ [zcr]. � �
Remark 3.2. From Theorems 3.3 and 2.11, we conclude that, if there ex-
ists an algebraic solution [zA] for the system (2.1) and also the coefficient
matrix C be nonsingular, then

[zA] ⊆ Σ ⊆ [zcr].

Therefore, in continuation of this paper, the complex interval vector [zcr]
is called as ”General solution set”.
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In the following theorem, we show that the general solution set satis-
fies the center of the system (2.1).

Theorem 3.3. If the coefficient matrix C be nonsingular, then

C [zcr]
c = [w]c.

Proof. According to the process of obtaining of the general solution set
[zcr], we have

[y1]
c = [w1]

c,

[yk]
c = [wk]

c −
k−1∑
j=1

lkj [yj ]
c, k = 2, 3, . . . , n.

Since the center of a complex interval is a complex crisp number, the
above equations can be written as its matrix form as follows

[y]c = L−1 [w]c. (3.7)

Similarly, we have

[zncr ]
c =

1

unn
[yn]

c,

[zkcr ]
c =

1

ukk

[yk]
c −

n∑
j=k+1

ukj [zjcr ]
c

 , k = n− 1, n− 2, . . . , 1.

and therefore
[zcr]

c = U−1 [y]c. (3.8)

From Eqs. (3.7) and (3.8) we conclude

[zcr]
c = U−1 L−1 [w]c = C−1[w]c,

and consequently

C[zcr]
c = [w]c. �

�
Remark 3.4. If [wk] = [uk, uk] + i [vk, vk], and [zkcr ] = [pk, pk] + i [qk, qk],
for k = 1, 2, . . . , n, from Theorem 3.3, we obtain

n∑
j=1

akj

(
pj + pj

)
−

n∑
j=1

bkj

(
qj + qj

)
= uk + uk,

n∑
j=1

akj

(
qj + qj

)
+

n∑
j=1

bkj

(
pj + pj

)
= vk + vk,

for k = 1, 2, . . . , n.

In the following theorem, we show that under certain conditions, the
center of the algebraic solution (if it exists), the solution set Σ and the
general solution set [zcr] are equal to each other.



A new idea for exact solving of the complex interval linear systems 47

Theorem 3.5. Suppose that the complex interval linear system (2.1)
has an algebraic solution and also the complex coefficient matrix C be
nonsingular. Then, we have

[zA]
c = Σc = [zcr]

c.

Proof. By Remark 2.9 and Theorem 3.3, it is obvious that [zA]
c = Σc =

C−1 [w]c = [zcr]
c. �

�

The following numerical example is presented to illustrate the above
theorems and remarks. All numerical results are obtained using MAT-
LAB software.

Example 3.6. Consider the following 4× 4 complex interval linear sys-
tem

(1 + i)[z1] + (2− i)[z2] + (i)[z3] + (3 + i)[z4] = [−1, 10] + i [7, 17],
(−1 + 2i)[z1] + (3− i)[z2] + (1 + 2i)[z3] + (−1− 2i)[z4] = [−8, 7] + i [−3, 11],
(i)[z1] + (−3 + i)[z2] + (−1− 2i)[z3] + (2 + i)[z4] = [−6, 7] + i [−6, 6],
(−2 + 2i)[z1] + (1− 3i)[z2] + (−1 + i)[z3] + (3− 3i)[z4] = [0, 17] + i [−3, 14],

with the unique algebraic solution

[zA] =


[z1A]
[z2A]
[z3A]
[z4A]

 =


[1, 2] + i [0, 1]

[−1, 0] + i [1, 2]
[0, 1] + i [−1, 1]
[1, 2] + i [1, 2]

 .

For the above system, by Remark 2.9, the solution set Σ can be obtained
as follows

Σ = C−1 [w] =


[−3.6740, 6.6740] + i [−4.7851, 5.7851]
[−7.5938, 6.5938] + i [−5.7062, 8.7062]

[−14.5243, 15.5243] + i [−15.0055, 15.0055]
[−4.0951, 7.0951] + i [−4.0887, 7.0887]

 .

Also, by using the Crout complex interval decomposition method , we
obtain

[zcr] =


[z1cr ]
[z2cr ]
[z3cr ]
[z4cr ]

 =


[−756.0690, 759.0690] + i [−756.8810, 757.8810]
[−254.4258, 253.4258] + i [−252.5729, 255.5729]
[−176.2212, 177.2212] + i [−176.5332, 176.5332]
[−21.0535, 24.0535] + i [−21.0126, 24.0126]

 .

From the above solutions, it is clear that

[zA] ⊆ Σ ⊆ [zcr],
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[zA]
c = Σc = [zcr]

c =


1.5 + 0.5i

−0.5 + 1.5i
0.5

1.5 + 1.5i

 ,

and

C [zG]
c = C [zA]

c = CΣc = [w]c =


4.5 + 12i

−0.5 + 4i
0.5

8.5 + 5.5

 .

In the next section, we are going to extend the previous our work [?]
on the Crout decomposition method and present a simple approach for
obtaining the algebraic solution of a complex interval linear system.

4. Exact solving

In this section, we present an exact solving approach to obtain a
complex interval vector such that it satisfies the complex linear system
(2.1). In the proposed method, we firstly use the Crout complex in-
terval decomposition method for obtaining the general solution set of
the system (2.1). In the next step, we restrict the general solution set
[zcr] = ([z1cr ], [z2cr ], . . . , [zncr ])

T by the limiting parameters. In Final,
we obtain a complex interval vector as an algebraic solution. The main
idea is based on Theorems 3.5. In the proposed method, we define

[zA] =


[z1A ]
[z2A ]
...

[znA ]

 =


[z1cr + θ1 , z1cr − θ1]

[z2cr + θ2 , z2cr − θ2]
...

[zncr + θn , zncr − θn]

 , (4.1)

where θi, i = 1, 2, . . . , n are the complex crisp numbers such that satisy
the following conditions

0 6 Real(θj) 6
1

2
Real

(
[zjD]

∆
)
, i = 1, 2, . . . , n, (4.2)

0 6 Imag(θj) 6
1

2
Imag

(
[zjD]

∆
)
, i = 1, 2, . . . , n. (4.3)

It should be noted that the above conditions guarantee that the Eq.
(4.1) be a complex interval vector. When, we set θj = αj + iβj and
[zjcr ] = [pj ] + i[qj ] for j = 1, 2, . . . , n, then zjcr = pj + iqj , zjcr = pj + iqj
and the Eqs. (4.1)-(4.3) can be rewritten as
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[zA] =


[p1 + α1, p1 − α1] + i [q1 + β1, q1 − β1]
[p2 + α2, p2 − α2] + i [q2 + β2, q2 − β2]
...
[pn + αn, pn − αn] + i [qn + βn, qn − βn]

 , (4.4)

also, the conditions (4.2) and (4.3) can be replaced by

0 6 αj 6
1

2
[pj ]

∆, j = 1, 2, . . . , n, (4.5)

0 6 βj 6
1

2
[qj ]

∆, j = 1, 2, . . . , n. (4.6)

Based on our method, we must determine the values of parameters
αj and βj such that the complex interval vector (4.4) be an algebraic
solution for the complex interval linear system (2.1). To this end, we
assume that

n∑
j=1

ckj

(
[pj + αj , pj − αj ] + i [qj + βj , qj − βj ]

)
= [wk],

for k = 1, 2, . . . , n. Supposing that [wk] = [uk, uk] + i [vk, vk] and ckj =
akj + i bkj , we conclude

uk =
∑
akj>0

akj

(
pj + αj

)
+

∑
akj<0

akj (pj − αj)

−
∑
bkj<0

bkj

(
qj + βj

)
−

∑
bkj>0

bkj (qj − βj) ,

uk =
∑
akj>0

akj (pj − αj) +
∑
akj<0

akj

(
pj + αj

)
−

∑
bkj<0

bkj (qj − βj)−
∑
bkj>0

bkj

(
qj + βj

)
,

vk =
∑
akj>0

akj

(
qj + βj

)
+

∑
akj<0

akj (qj − βj)

+
∑
bkj>0

bkj

(
pj + αj

)
+

∑
bkj<0

bkj (pj − αj) ,

vk =
∑
akj>0

akj (qj − βj) +
∑
akj<0

akj

(
qj + βj

)
+

∑
bkj>0

bkj (pj − αj) +
∑
bkj<0

bkj

(
pj + αj

)
.
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From the above equations, we have

uk − uk =

n∑
j=1

|akj | (pj − αj)−
n∑

j=1

|akj |
(
pj + αj

)
+

n∑
j=1

|bkj | (qj − βj)−
n∑

j=1

|bkj |
(
qj + βj

)
,

vk − vk =
n∑

j=1

|akj | (qj − βj)−
n∑

j=1

|akj |
(
qj + βj

)
+

n∑
j=1

|bkj | (pj − αj)−
n∑

j=1

|bkj |
(
pj + αj

)
.

In other words

[uk]
∆ =

n∑
j=1

|akj |
(
pj − pj

)
− 2

n∑
j=1

|akj |αj

+

n∑
j=1

|bkj |
(
qj − qj

)
− 2

n∑
j=1

|bkj |βj ,

[vk]
∆ =

n∑
j=1

|akj |
(
qj − qj

)
− 2

n∑
j=1

|akj |βj

+
n∑

j=1

|bkj |
(
pj − pj

)
− 2

n∑
j=1

|bkj |αj ,

for k = 1, 2, . . . , n. Therefore, in the matrix form, we have{
[u]∆ = |A| · [p]∆ − 2|A| · α+ |B| · [q]∆ − 2|B| · β,
[v]∆ = |A| · [q]∆ − 2|A| · β + |B| · [p]∆ − 2|B| · α, (4.7)

where

|A| = (|akj |)n×n, |B| = (|bkj |)n×n,

α = (α1, α2, . . . , αn)
T ,

and

β = (β1, β2, . . . , βn)
T .

From Eq. (4.7) we conclude{
|A|α+ |B|β = 1

2

(
|A| [p]∆ + |B| [q]∆ − [u]∆

)
,

|B|α+ |A|β = 1
2

(
|A| [q]∆ + |B| [p]∆ − [v]∆

)
.

(4.8)
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By solving the above 2n × 2n real linear system (4.8) we estimate the
values of parameters αj and βj . If the obtained values of αj and βj
satisfy the conditions (4.5) and (4.6), then the Eq. (4.4) give an algebraic
solution for the complex interval linear system (2.1). Otherwise, the
complex interval linear system (2.1) does not have any algebraic solution,
because the Eq. (4.4) does not construct a complex interval vector. On
the other hand, the real linear system (4.8) has an unique solution if
and only if its coefficient matrix be nonsingular.

Theorem 4.1. [7]The coefficient matrix of the real linear system (4.8)
is nonsingular if and only if the matrices |A| + |B| and |A| − |B| are
both nonsingular.

According to the above mentioned discussions, the proof of the fol-
lowing theorem is obvious.

Theorem 4.2. If the complex interval linear system (2.1) has an alge-
braic solution, then its coefficient matrix is completely nonsingular.

.

5. Numerical examples

In continuation, we apply the presented method in the previous sec-
tion to obtain the algebraic solution of a complex interval linear system.
All numerical solutions are obtained via MATLAB software.

Example 5.1. Consider the complex interval linear system of Example
3.6. It can be easily verified that det(C) = 66.00 − 116.00 i, det(|A| +
|B|) = −16.00 and det(|A| − |B|) = 4.00, where C is the coefficient
matrix of the system and A and B are the real and imaginary parts of
C, respectively. Therefore, according to Definition 2.6, the matrix C is
completely nonsingular. Now, by the proposed method, we must obtain
the general solution set [zcr] for the system of Example 3.6. According
to the Crout complex interval decomposition method, we decompose the
matrix C as follows:

C = LU,

where

L =


1 + 1i 0 0 0

−1 + 2i 0.5− 3.5i 0 0
i −4.5 + 0.5i −1.56 + 1.08i 0

−2 + 2i −1− 7i −4.64− 0.48i −13.8− 2.7333i

 ,
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and

U =


1 0.5− 1.5i 0.5 + 0.5i 2− i
0 1 −0.32 + 0.76i 1.92− 0.56i
0 0 1 −5.4− 0.8667i
0 0 0 1

 .

By solving the system L [y] = [w] by forward substitution and Eqs.(3.3)
and (3.4) we have

[y] =


[y1]
[y2]
[y3]
[y4]

 =


[3.0000, 13.5000] + i [−1.5000, 9.0000]

[−4.2400, 10.3600] + i [−3.5000, 11.3400]
[−41.7213, 29.1213]− i [44.8187, 26.0187]
[−21.0535, 24.0535]− i [21.0126, 24.0126]

 .

Now, by solving U [z] = [y] via backward substitution and Eqs. (3.5)
and (3.6) we obtain the general solution set as follows:

[zcr] =


[z1cr ]
[z2cr ]
[z3cr ]
[z4cr ]

 =


[−756.0690, 759.0690] + i [−756.8810, 757.8810]
[−254.4258, 253.4258]− i [252.5729, 255.5729]
[−176.2212, 177.2212]− i [176.5332, 176.5332]
[−21.0535, 24.0535]− i [21.0126, 24.0126]

 .

In the next step, by solving the real linear system (4.8), we obtain the
real and imaginary parts of the complex limiting factors θj = αj + i βj ,
j = 1, 2, 3, 4, respectively as follows:

α =


α1

α2

α3

α4

 =


757.0690
253.4258
176.2212
22.0535

 ,

and

β =


β1
β2
β3
β4

 =


756.8810
253.5729
175.5332
22.0126

 .

It can be easily investigated that the above obtained vectors α and β
satisfy the conditions (4.5) and (4.6), respectively. Consequently, based
on the proposed algorithm, by using the Eqs. (4.1) or (4.4) we obtain
the unique algebraic solution of the complex interval linear system of
Example 3.6 as follows

[zA] =


[z1A]
[z2A]
[z3A]
[z4A]

 =


[1, 2] + i [0, 1]

[−1, 0] + i [1, 2]
[0, 1] + i [−1, 1]
[1, 2] + i [1, 2]

 .
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Example 5.2. Consider the following 5× 5 complex interval linear sys-
tem

(1 + i)[z1] + (1− i)[z2] + (2 + i)[z3] + (3− i)[z4] + (2 + i)[z5] = [−6, 17] + i[−5, 13],
(−3− 2i)[z1] + (−1− i)[z2] + (1 + i)[z3] + (−1 + i)[z4] + (3− i)[z5] = [−5, 16] + i[−9, 10],
(2− i)[z1] + (3 + i)[z2] + (2− 3i)[z3] + (4− i)[z4] + (1 + 2i)[z5] = [−13, 16] + i[−4, 25],
(2 + 2i)[z1] + (3− 2i)[z2] + (2− i)[z3] + (−2 + i)[z4] + (1− i)[z5] = [−14, 10] + i[−12, 9],
(3− i)[z1] + (1− 3i)[z2] + (2 + 2i)[z3] + (1 + i)[z4] + (3− 3i)[z5] = [−10, 18] + i[−7, 21],

It can be easily computed that det(C) = 2304.00−690.00 i, det(|A|+
|B|) = 198 and det(|A| − |B|) = 42. Therefore, we conclude that the
matrix C is completely nonsingular. Now, based on our method, we
decompose the matrix C into

C = LU,

where

L =


1 + i 0 0 0 0

−3− 2i 1− 4i 0 0 0
2− 1i 4 + 3i 5.3529− 6.5882i 0 0
2 + 2i 1 −1.7941− 4.6765i −7.9743 + 4.7514i 0
3− i 2 −1.5882 + 1.6471i −1.0914 + 4.5029i 0.5459− 5.2061i

 ,

and

U =


1 −i 11.5− 0.5i 1− 2i 1.5− 0.5i
0 1 −0.2059 + 1.6765i 1.0588 + 1.2353i 0.3824 + 2.0294i
0 0 1 0.6343 + 0.0114i 0.6629− 0.0743i
0 0 0 1 0.0571 + 0.2927i
0 0 0 0 1

 .

By solving the system L [y] = [w] by forward substitution and also Eqs.
(3.3) and (3.4), we obtain

[y] =


[y1]
[y2]
[y3]
[y4]
[y5]

 =


[−5.5000, 15.0000] + i [−11.0000, 9.5000]
[−18.5000, 17.3529] + i [−12.6471, 23.5588]
[−27.2429, 29.5514] + i [−27.5998, 29.1884],
[−36.6842, 38.3916] + i [−35.9602, 39.0173]
[−82.4912, 82.4912] + i [−81.9026, 82.9026]

 .

Now, by solving U [z] = [y] via backward substitution and Eqs. (3.5)
and (3.6), we can find the general solution set [zcr] as follows

[zcr] =


[z1cr ]
[z2cr ]
[z3cr ]
[z4cr ]
[z5cr ]

 =


[−1257.5676, 1254.5676] + i[−1255.0001, 1256.0001]
[−616.8486, 617.8486] + i[−616.2830, 619.2830]
−131.5498, 132.5498] + i[−132.4770, 131.4770]
[−65.3633, 67.3633] + i[−64.8350, 67.8350]
[−82.4912, 82.4912] + i[−81.9026, 82.9026]

 .
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In the next step, by solving the real linear system (4.8), we obtain the
real parts αj and the imaginary parts βj of the complex limiting factors
θj = αj + i βj , j = 1, 2, . . . , n, as follows

α =


α1

α2

α3

α4

α5

 =


1255.5676
0616.8486
0130.5498
0065.3633
0081.4912

 ,

and

β =


β1
β2
β3
β4
β5

 =


1255.0001
617.2830
131.4770
65.8350
81.9026

 .

It can be easily investigated that the above obtained vectors α and β
satisfy the conditions (4.5) and (4.6), respectively. Consequently, based
on the proposed algorithm, by using the Eqs. (4.1) or (4.4), we obtain
the unique algebraic solution as follows

[zA] =


[z1A]
[z2A]
[z3A]
[z4A]
[z5A]

 =


[−2,−1] + i [0, 1]

[0, 1] + i [1, 2]
[−1, 2] + i [−1, 0]
[0, 2] + i [1, 2]

[−1, 1] + i [0, 1]

 .

6. Conclusion

In this paper, we have introduced a new approach for exact solving
a complex interval linear system. In the proposed method, we restricted
the general solution set by some complex parameters. It is proved that
the obtained solution vector is an algebraic solution for the system. For
future work, we can extend our idea for other numerical or analytical
methods.
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