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Abstract. This paper presents a successive approximation method
(SAM) for solving a large class of optimal control problems. The
proposed analytical-approximate method successively solves the Two-
Point Boundary Value Problem (TPBVP), obtained from the Pon-
tryagin’s Maximum Principle (PMP). The convergence of this method
is proved and a control design algorithm with low computational
complexity is presented. Through the finite number of algorithm
iterations, a suboptimal control law is obtained for the optimal con-
trol problem. An illustrative example is given to show the efficiency
of the proposed method.
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1. Introduction

In the control theory, a major importance is conferred to optimal con-
trol problems. This interest is justified by a great number of practical
applications in physics, economy, aerospace, chemical engineering, ro-
botics, etc. [5, 15, 14, 20, 7]. For the general optimal control problem
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(OCP), however, an analytical solution does not exist. This has inspired
researchers to propose approaches which obtain an approximate solution
for it.
It is well-known that the OCP leads to a TPBVP obtained from the
PMP. Many recent approaches have been devoted to solving this prob-
lem. One of these approaches is the Successive Approximation Approach
(SAA) which designs a suboptimal controller for a class of nonlinear sys-
tems with a quadratic performance index. In this approach, a sequence
of nonhomogeneous linear time-varying TPBVP’s is solved to produce
a finite-step iteration of the nonlinear compensation sequence obtaining
the suboptimal control law [19]. However, SAA needs to solve a linear
time-varying TPBVP which cannot be solved easily and thus, reduces
the efficiency of this method.
In [11], a novel method that implements Modal series to solve a class of
nonlinear OCP’s with quadratic performance index has been proposed.
This method which requires solving a sequence of linear time-invariant
TPBVP’s has less efficiency for large-scale problems.
Recently, a growing interest has been appeared toward the application of
approximate analytical techniques in solving the TPBVP obtained from
the PMP. In [22], the authors used He’s variational iteration method
(VIM) for linear quadratic OCP’s. They transfer the linear TPBVP
obtained from PMP to an initial value problem and then implement the
VIM to get a feedback controller. Although their proposed method is
important for its analytical approximation solutions, it is not applicable
for nonlinear OCP’s.
In [4], the authors give an analytical approximate solution for linear and
non-linear quadratic OCP’s using the homotopy perturbation method
(HPM). Applying the HPM, the associated TPBVP is solved recursively
and gets a suboptimal control law. Also, in [18], a basic and a modified
VIM are successfully applied to the TPBVP, obtained from nonlinear
quadratic OCP’s. The authors combined the basic ideas of the shooting
method to VIM and get the solutions consecutively. Though both of
these two methods give accurate results, they suffer from a root-finding
subroutine and then solving a system of algebraic equations which de-
creases the efficiency of the proposed methods.
Recently, in [1], a hybrid technique based on homotopy analysis and
parametrization methods is presented. The authors applied an appro-
priate parametrization of control and computed the states using the
homotopy analysis method (HAM). Other available methods are opti-
mal homotopy analysis method [12], modified homotopy perturbation
method [6], RBF collocation method [16], etc. Further computational
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methods for solving more general optimal control problems are also avail-
able at e.g. [8], [10].
In this paper, a novel SAM is proposed. We first derive the TPBVP
from the PMP and then apply a novel SAM to solve it. This method
could be applied to a large class of linear and nonlinear OCP’s. The
convergence of the proposed method is proved and a suboptimal con-
trol design algorithm with low computational complexity is presented.
The simplicity and the efficiency of the proposed SAM is demonstrated
through an illustrative example.
This paper is organized as follows. Section 2 describes the OCP and its
associated extreme conditions. The novel SAM for solving the TPBVP
is proposed in Section 3. The convergence of the proposed method is
proved in section 4. In section 5, an efficient control design algorithm is
presented. And finally, an illustrative example is given in section 6 to
demonstrates the effectiveness of the new SAM.

2. Statement of the OCP and optimality conditions

Consider the following affine in control dynamical system

ẋ(t) = f(t, x(t)) + g(t, x(t))u(t), t ∈ [t0, tf ]
x(t0) = x0.

(2.1)

where x(t) ∈ Rn is denoting the state variable, u(t) ∈ Rm the control
variable and x0 the given initial state at t0. Moreover, f(t, x(t)) ∈ Rn

and g(t, x(t)) ∈ Rn×m are two continuously differentiable functions in
all arguments. Our aim is to minimize the objective functional

J [x, u] =
1

2

∫ tf

t0

(Q(x(t)) + uT (t)Ru(t))dt (2.2)

subject to the dynamical system (2.1), for Q(x(t)) a positive semi-
definite real function and R ∈ Rm×m a positive definite matrix. Since
the performance index (2.2) is convex, the following extreme necessary
conditions are also sufficient for optimality:

ẋ = f(t, x) + g(t, x)u∗

λ̇ = −Hx(x, u
∗, λ)

u∗ = argminuH(x, u, λ)
x(t0) = x0, λ(tf ) = 0.

(2.3)

where H(x, u, λ) = 1
2 [Q(x) + uTRu] + λT [f(t, x) + g(t, x)u] is referred

to as the Hamiltonian. Equivalently, (2.3) can be written in the form of
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([4, 18]):

ẋ = f(t, x) + g(t, x)[−R−1gT (t, x)λ]

λ̇ = −
(
1
2∇Q(x) + (∂f(t,x)∂x )Tλ+

∑n
i=1 λi[−R−1gT (t, x)λ]T ∂gi(t,x)

∂x

)
x(t0) = x0, λ(tf ) = 0.

(2.4)
where λ(t) ∈ Rn is the co-state vector with the ith component λi(t),
i = 1, ..., n and g(t, x) = [g1(t, x), ..., gn(t, x)]

T with gi(t, x) ∈ Rm, i =
1, ..., n. Also the optimal control law is obtained by

u∗ = −R−1gT (t, x)λ. (2.5)

For convenience, let us define the right hand sides of (2.4) as,

Ψ1(t, x, λ) := f(t, x) + g(t, x)[−R−1gT (t, x)λ],

Ψ2(t, x, λ) := −
(
1
2∇Q(x) + (∂f(t,x)∂x )Tλ+

∑n
i=1 λi[−R−1gT (t, x)λ]T ∂gi(t,x)

∂x

)
.

(2.6)
Thus the TPBVP in (2.4) changes to the operator form ([9, 21]) as
follows:

Ẋ(t)−Ψ(t,X(t)) = L[X(t)] +N [X(t)] = 0,
x(t0) = x0, λ(tf ) = 0,

(2.7)

where

X(t) =

[
x(t)
λ(t)

]
, Ψ(t,X(t)) =

[
Ψ1(t,X(t))
Ψ2(t,X(t))

]
,

and the linear and nonlinear operators L and N are defined as:

L[X(t)] = Ẋ(t) + p(t)X(t),

N [X(t)] = −p(t)X(t)−Ψ(t,X(t)) =

[
N1[X(t)]
N2[X(t)]

]
,

(2.8)

where p(t) is a real (2n) by (2n) matrix as follows:

p(t) =

[
p1(t) O
O p2(t)

]
, p1(t), p2(t) ∈ Rn×n.

Unfortunately, there is no analytical solution to this nonlinear TPBVP,
in general. So, it is of high importance to calculate analytical approx-
imation or numerical solutions for that. In recent decades, some new
numerical and analytical approximation methods have been proposed
for solving such a difficult problem in the context of ordinary differen-
tial equations. In the next section, we propose a new SAM, for this
end.
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3. A New SAM for Solving the TPBVP

In this section, we propose a new SAM to solve the TPBVP in (2.7),
analytically. Construct a sequence of solutions for solving (2.7), as fol-
lows:

L[Xk+1(t)] = −N [Xk(t)], (3.1)
with xk+1(t0) = x0, λk+1(tf ) = 0 and k ≥ 0. This linear ODE could be
solved for xk+1(t) analytically (See e.g. [3, 17]).

In view of (2.8), solving (3.1) leads to:

Xk+1(t) = −
∫ t

t0

Φ(t, s)N [Xk(s)]ds+Φ(t, t0)C, (3.2)

where Φ(t, s) = e−
∫ t
s p(τ)dτ is the transfer matrix and C ∈ R2n is con-

stant. (3.2) can be equivalently written as:

xk+1(t) = −
∫ t
t0
Φ1(t, s)N1[Xk(s)]ds+Φ1(t, t0)C1,

λk+1(t) = −
∫ t
t0
Φ2(t, s)N2[Xk(s)]ds+Φ2(t, t0)C2.

(3.3)

where the transfer matrix is decomposed as follows:

Φ(t, s) =

[
Φ1(t, s) O

O Φ2(t, s)

]
, ∀s ∈ [t0, t] and t ∈ [t0, tf ],

and Φi(t, s) = e−
∫ t
s pi(τ)dτ , i = 1, 2. Also Φi(t, s) ·Φi(s, w) = Φi(t, w), for

all t, s, w ∈ [t0, tf ] and i = 1, 2. Imposing the initial and final conditions,
xk+1(t0) = x0 and λk+1(tf ) = 0, for all k ≥ 0, C1 and C2 can be readily
calculated as:

C1 = x0,

C2 = Φ−1
2 (tf , t0)

∫ tf
t0

Φ2(tf , s)N2[Xk(s)]ds

=
∫ tf
t0

Φ2(t0, tf )Φ2(tf , s)N2[Xk(s)]ds

=
∫ tf
t0

Φ2(t0, s)N2[Xk(s)]ds.

Therefore, the SAM formula becomes,

xk+1(t) = −
∫ t

t0

Φ1(t, s)N1[Xk(s)] + Φ1(t, t0)x
0, (3.4)

λk+1(t) =

∫ tf

t
Φ2(t, s)N2[Xk(s)]ds. (3.5)

Remark 3.1. The SAM formula (3.4)-(3.5) is directly dependent on the
integration. In our optimal control problem, N1 and N2 are two non-
linear operators which might cause the right-hand-side integration of
(3.4)-(3.5) to be very time consuming and complicated, even at the first
few iterations of SAM. To overcome this undesirable case, the following



A Novel Successive Approximation Method for Solving a Class of OCPs 129

correction, which omits the time consuming calculations from SAM can
be applied:

xk+1(t) = −
∫ t
t0
Tk(t, s)ds+Φ1(t, t0)x

0,

λk+1(t) =
∫ tf
t T̃k(t, s)ds.

(3.6)

where Tk(t, s) and T̃k(t, s) are the kth order of Taylor interpolating poly-
nomial at s = t0 of the integrands of (3.4) and (3.5), respectively.

4. Convergence Analysis

Now, we state and prove the convergence of the foregoing SAM se-
quence.

Definition 4.1. ([2]) Let V be a Banach space. For an operator T : K ⊆
V → V , we say it is contractive with contractivity constant α ∈ [0, 1), if

∥T (v)− T (w)∥V ≤ α∥v − w∥V , ∀v, w ∈ K.

Theorem 4.2. Assume that {xk(t)} and {λk(t)} are two SAM sequences
produced by (3.4)-(3.5). Furthermore, assume N [v(t)] is continuous for
any v(t) ∈ R2n, t ∈ [t0, tf ], and

|N [v(t)]−N [w(t)]| ≤ M1|v(t)− w(t)|, ∀v, w ∈ C[t0, tf ],

for some constant M1. Then {xk(t)} and {λk(t)} converge to the exact
solutions of (2.7), for any initial continuous functions x0(t) and λ0(t),
if the contractivity constant M1M2(tf − t0) ∈ [0, 1), where

M2 = sup
{
e−

∫ t
s p(τ)dτ , s ∈ [t0, t], t ∈ [t0, tf ]

}
.

Proof. It is clear that the SAM sequences (3.4)-(3.5) are equivalent to
(3.1) or (3.2). In the light of (3.2), define the operator T as:

T [v(t)] := −
∫ t

t0

e−
∫ t
s p(τ)dτN [v(s)]ds+ e

−
∫ t
t0

p(τ)dτ
C, C ∈ R2n. (4.1)

Then for any continuous functions v(t) and w(t), we have:

|T [v(t)]− T [w(t)]| =

∣∣∣∣∫ t

t0

e−
∫ t
s p(τ)dτ (N [v(s)]−N [w(s)])ds

∣∣∣∣
≤ M2

∣∣∣∣∫ t

t0

(N [v(s)]−N [w(s)])

∣∣∣∣ ds
≤ M1M2

∫ t

t0

|v(s)− w(s)|ds

≤ M1M2(t− t0)∥v − w∥∞
≤ M1M2(tf − t0)∥v − w∥∞.
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Thus by Banach fixed-point theorem (page 133 of [2]), {xk(t)} and
{λk(t)} converge to some x̂(t) and λ̂(t). By taking limits from both
sides of (3.1), we have:

lim
k→∞

L[Xk+1] = − lim
k→∞

N [Xk],

which the continuity of N , gives
L[ lim

k→∞
Xk+1] = −N [ lim

k→∞
Xk],

or L[X̂] = −N [X̂]. Moreover, by (3.4)-(3.5), one can easily check that
for all k ≥ 0, xk+1(t0) = x0 and λk+1(tf ) = 0. Hence, x̂(t0) = x0 and
λ̂(tf ) = 0. That is, x̂(t) and λ̂(t) are the exact solutions of (2.7) which
completes the proof. □
Remark 4.3. The choice of p(t) should be performed such that the con-
dition M1M2(tf − t0) ∈ [0, 1) in Theorem 4.1 holds. Some easy choices
could be zero matrix, the linear parts at each equation of (2.4) or some
linear term that we add to the both sides of equations in (2.4).
Theorem 4.4. Under the assumptions of Theorem 4.2, the sequences
{uk(t)} and {Jk} defined by

uk(t) = −R−1gT (t, xk(t))λk(t), (4.2)

Jk =
1

2

∫ tf

t0

(Q(xk(t)) + uTk (t)Ruk(t))dt, (4.3)

converge to the optimal control law and optimal objective value, respec-
tively.
Proof. Theorem 4.2 states that {xk(t)} and {λk(t)} converge to the op-
timal state and costate vectors, say x̂(t) and λ̂(t), respectively. Taking
limits from (4.2), the continuity assumption of g(t, x) gives

û(t) := lim
k→∞

uk(t) = −R−1gT (t, lim
k→∞

xk(t)) lim
k→∞

λk(t)

= −R−1gT (t, x̂(t))λ̂(t),

which is the optimal control law, since x̂(t) and λ̂(t) are the optimal
state and costate vectors. Also by the continuity assumption of Q(x(t)),
taking limits from (4.3) yields:

Ĵ := lim
k→∞

Jk =
1

2
lim
k→∞

∫ tf

t0

(Q(xk(t)) + uTk (t)Ruk(t))dt

=
1

2

∫ tf

t0

(Q( lim
k→∞

xk(t)) + lim
k→∞

uTk (t)R lim
k→∞

uk(t))dt

=
1

2

∫ tf

t0

(Q(x̂(t)) + ûT (t)Rû(t))dt.
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Therefore Ĵ is the optimal objective value. □

5. Suboptimal control design algorithm

The solution guidelines for TPBVP (2.7) has been discussed in previ-
ous section. In this section, we give a more reliable way for finding the
desired optimal control and the optimal state and then we present an
algorithm for this end.

From Theorem 4.4, we conclude that for large number of iterations,
N , suboptimal control law is derived by

u∗(t) ∼= uN (t) = −R−1gT (t, x)λN (t), (5.1)

and the approximate suboptimal state is x∗(t) ∼= xN (t). Applying this
pair of suboptimal control and state to the objective functional (2.2),
results in the suboptimal objective value of the problem, i.e.

J∗ ∼= JN =
1

2

∫ tf

t0

(Q(xN (t)) + uTN (t)RuN (t))dt. (5.2)

For the accuracy analysis, we consider the following criterion. The sub-
optimal control (5.1) has the desirable accuracy, if for given ϵ > 0, the
following condition holds, ∣∣∣∣JN − JN−1

JN

∣∣∣∣ < ϵ. (5.3)

If the tolerance limit ϵ is sufficiently small, according to Theorem 4.4,
the suboptimal value is very close to the optimal value J∗. Now, we
present an algorithm of the proposed method with low computational
complexity, in order to maintain the accuracy of solutions.

Algorithm:
Step 1. Let N = 1, x0(t) = x0, λ0(t) = 0 and ϵ > 0 be any given
sufficiently small tolerance.
Step 2. Update state and costate functions implementing the SAM
(3.4)-(3.5) or (3.6), to find xN (t) and λN (t).
Step 3. Determine the suboptimal control uN (t) and the suboptimal
objective value JN by (5.1)-(5.2).
Step 4. If criterion (5.3) holds, go to Step 5, otherwise let N = N + 1
and go to Step 2.
Step 5. Stop the algorithm. uN (t) is the desirable suboptimal control
law.
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6. Illustrative example

The following example is given to illustrate the simplicity and effi-
ciency of the proposed method. The codes are developed using com-
putation softwares MAPLE 15 and MATLAB, and the calculations are
implemented on a machine with Intel Core 2 Due Processor 2.53 Ghz
and 4 GB RAM.

Example 6.1. Consider the nonlinear system described by
ẋ1 = x2 + x1x2
ẋ2 = −x1 + x2 + x22 + u
x1(0) = −0.8, x2(0) = 0

(6.1)

and the cost functional

J =
1

2

∫ 1
2

0
(x21 + x22 + u2)dt. (6.2)

The extreme conditions are
ẋ1 = x2 + x1x2
ẋ2 = −x1 + x2 + x22 − λ2

λ̇1 = −(x1 + λ1x2 − λ2)

λ̇2 = −(x2 + λ1(1 + x1) + λ2(1 + 2x2))
x1(0) = −0.8, x2(0) = 0, λ1(

1
2) = 0, λ2(

1
2) = 0,

and the optimal control is u = −λ2. In view of (2.8), the linear and the
nonlinear operators of the above TPBVP can be defined in several ways
as follows:

L[X] = Ẋ(t) + p(t)X(t),

where X = [x1, x2, λ1, λ2]
T and

(a)

p(t) = O4×4, N [X] =


−x2 − x1x2

x1 − x2 − x22 + λ2

x1 + λ1x2 − λ2

x2 + λ1(1 + x1) + λ2(1 + 2x2)

 , α = 0.4016

(b)

p(t) =


0 −1 0 0
1 −1 0 0
0 0 0 −1
0 0 1 1

 , N [X] =


−x1x2

−x22 + λ2

x1 + λ1x2
x2 + λ1x1 + 2λ2x2

 , α = 0.6554

where α = M1M2(tf − t0) is the contractivity constant used in Theorem
4.2. In case (a), we first set the p(t) as a zero matrix and other terms as
nonlinear terms. This implies a contraction constant as α < 1. In case
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Table 1. Simulation results of SAM in case (a) and (b),
based on the relative errors of objective value, Example
1.

N (Itr.) Case (a) Case (b)
5 4.82861×10−3 9.30044×10−3

10 9.64918×10−5 1.36117×10−4

15 1.58638×10−6 1.24144×10−6

20 4.89518×10−8 1.08149×10−8

25 2.23602×10−10 7.22779×10−11

(b), p(t) is linear terms of each equation in extreme conditions. i.e. the
extreme conditions are written as:

ẋ1 = x2 + x1x2 (6.3)
ẋ2 − x2 = −x1 + x22 − λ2 (6.4)
λ̇1 = − (x1 + λ1x2 − λ2) (6.5)
λ̇2 + λ2 = − (x2 + λ1x1 + 2λ2x2) (6.6)

The left hand sides of the above equation are the linear parts and the
right hand sides are nonlinear terms. Of course, other choices are avail-
able as discussed in Remark 4.3. It is important to note that the con-
vergence of SAM is guaranteed whenever α ∈ [0, 1), which is true in our
case (a) and (b).
Implementing the algorithm described in Section 5, one can obtain the
suboptimal solution for given ϵ = 5 × 10−6, after N = 15 iterations.
Table 1 shows the relative error of optimal objective values for several
iterations. It is seen that SAM (a) and (b) reach the tolerance limit
after 15 iterations. For N = 15, the suboptimal control and objective
value can be found using SAM (a) as:
u∗(t) ∼= u15(t) = 8.2005× 10−7 t16 + 0.23575× 10−5 t15 − 0.18623× 10−4 t14

−0.12099× 10−4 t13 − 0.10112× 10−3 t12 − 0.16282× 10−3 t11 + 0.59612× 10−3 t10

+0.21462× 10−3 t9 + 0.21739× 10−2 t8 + 0.27712× 10−2 t7 − 0.022487 t6

−0.78086× 10−2 t5 − 0.036403 t4 − 0.035923 t3 + 0.49182 t2 + 0.049226 t− 0.14024,

J∗ ∼= J15 = 0.175683.

To illustrate the efficiency of the proposed method, we compare the
results of SAM (a), with two recent methods, VIM [18] and HPM [4].
The number of iterations and the CPU time of these methods are sum-
marized in Table 2, for different tolerance limits (5.3).
According to Table 2, the proposed SAM is faster than two other meth-
ods. For instance, the proposed SAM reaches the tolerance limit ϵ =
5× 10−12, in less than one second while the modified VIM and HPM do
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Figure 1. The suboptimal states of Example 1.
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Figure 2. The suboptimal control of Example 1.

Table 2. Comparison of the proposed SAM, Modified
VIM [18] and HPM [4], Example 1.

Tolerance Proposed SAM Modified VIM [18] HPM [4]
limit (ϵ) N CPU Time∗ N CPU Time N CPU Time
5× 10−6 15 0.266 10 0.546 11 8.752
5× 10−9 22 0.406 17 2.761 - -
5× 10−12 29 0.811 23 15.71 - -

* CPU time (sec.)

not. In fact, HPM could not reach the tolerance limit less than 5×10−9,
because of the complicated calculations and the CPU time of the modi-
fied VIM grows rapidly for a large number of iterations.
Also, the values of objective functional for these methods are presented
in Table 3. According to this table, the sub-optimal objective value is
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Table 3. Comparison of objective values of the pro-
posed SAM (a)-(b), Modified VIM [18] and HPM [4] for
m = 10 iterations, Example 1.

Method Jm
Proposed SAM (a) 0.1756936822
Proposed SAM (b) 0.1756786212
Modified VIM 0.1756827686
HPM 0.1756827686

approximately J∗ = 0.1757. Figures 1 and 2 show the suboptimal solu-
tions after N = 15 algorithm iterations, compared to the Modified VIM
and collocation method [13].

7. Conclusions

In this paper, a novel analytical approximate method called SAM
has been proposed for solving a broad class of optimal control problems.
This method can solve the TPBVP obtained from PMP recursively. The
proposed SAM does not need any complex computations in comparison
with other recent methods. The convergence of the proposed SAM is
proved and an illustrative example demonstrated the effectiveness and
good results in low CPU time.
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