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1. Introduction

The theory and applications of partial integral and integro-differential
equations are used in many branches of scientific research from engineer-
ing, mechanics, and physics to economics, etc [1–7].

Recently, some numerical techniques and approaches have been used
to evaluate the approximate solution of the nonlinear phenomena, whereas
using the operational matrix could be the essential part of these numeri-
cal solutions [11,12,19]. In particular, Legendre polynomials as powerful
tools have been employed to convert some nonlinear equations [13, 27].
There have been various numerical solutions for PDEs that benefit from
the operational matrix to approximate the exact solutions in many fields
of science; for example, in theory of anomalous relaxation processes in
the vicinity of singular, IDE has been solved successfully by using oper-
ational matrix [14].

Some numerical methods, such as the homotopy perturbation method
[24] and variational iteration method [26] have been represented to ob-
tain the approximate solution of the mixed Volterra-Fredholm. The
TFs methods have been used to approximate the numerical solution of
Fredholm and Volterra integral equations [15]. Maleknejad in [18] and
Khajehnasiri [17] have applied a TFs operational matrix to approximate
the solution of nonlinear kind of Volterra-Fredholm integral equations
and 2D nonlinear Volterra-Fredholm integro differential equations, re-
spectively. The two-dimensional Block-Pulse functions (2D-BPFs) have
been applied by Maleknejad and Mahdiani to find the solution of non-
linear mixed Volterra-Fredholm integral equations [16]. Imran Aziz has
extended the Haar wavelet method to evaluate the numerical solution
of 2D nonlinear integral equations [20], a class of 2D nonlinear Volterra
integral equations in [25] have solved by Legendre polynomials, in [28]
a 2DTFs have applied to find the nonlinear class of mixed Volterra-
Fredholm integral equations. Aghazadeh in [10] has ameliorated the
Block-pulse operational matrix to evaluate the approximate solution of
the nonlinear 2D Volterra integro-differential equation.

Although the 2DNVIDEs have exciting applications in Physics, Me-
chanics, and applied sciences, there have been a few simple numerical
methods for solving these equations with high accuracy. For this rea-
son, in this paper, we formulate a Legendre operational matrix for 2D
nonlinear Volterra integro-differential equations with given supplemen-
tary conditions. The most important part of our concept was extending
this polynomial to convert the nonlinear kernels of FDVIDEs, which is
unsolvable in a real evaluation. The two-dimensional nonlinear Volterra
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integro-differential equation in the general form of can be written as:

∂nu(x, t)

∂xn
+

∂mu(x, t)

∂tm
+

∂n+mu(x, t)

∂xn∂tm
+ u(x, t) = f(x, t)

+

∫ t

0

∫ x

0
G(x, t, y, z)R(y, z, U(y, z)))dydz, (x, t) ∈ [0, l]× [0, T ],

(1.1)

with given supplementary initial conditions, where u(x, t) is an unknown
function in (Ω = [0, l] × [0, T ]), the function R(y, z, U(y, z)) is given
continuous in Ω× (−∞,+∞), nonlinear in U , and the functions f(x, t)
and G(x, t, y, z, u) are given smooth functions. Here we assume that R
satisfy the following conditions:

| R(y, z, U(y, z))−R(y, z, U
′
(y, z)) |≤ λ | U(y, z)− U

′
(y, z) |,

way in [21].
In the next section, we will define some basic definitions and properties
of 2D shifted Legendre functions. In section three we will introduce the
operational matrix for integration, product properties, as well as the op-
erational matrix of differentiation. After which and in section 4, we are
solving and obtaining the solution of two-dimensional nonlinear Volterra
integro-differential equation by using 2D shifted Legendre functions. In
section 5, we estimate the norm of error for the approximation of two
variables smooth function on a specific domain Ω. Finally, we apply this
the proposed method for some examples of 2DNVIDEs.

2. 2D shifted Legendre functions (Basic definitions and
properties)

where λ is positive constants, and one can prove the uniqueness and
existence of the solution to Eq. (1.1) in the same In the progress of this
section, we define and represent some basic definition and properties of
the two-dimensional shifted Legendre functions, which are used further
in the following section.

2.1. Definition and approximation of the function. The 2D shifted
Legendre functions on Ω are defined as

Ψm,n(x, t) = Lm(
2

l
x− 1)Ln(

2

T
t− 1), m, n = 0, 1, 2, ..., (2.1)

where Lm and Ln are f order m and n and they are the well-known
Legendre functions, which are defined on the interval [−1, 1] and they
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can be obtained with the following formula

L0(x) = 1,

L1(x) = x,

Lm+1(x) =
2m+ 1

m+ 1
xLm(x)− m

m+ 1
Lm−1(x), m = 1, 2, 3, ...,−1 ≤ x ≤ 1.

All of the 2D shifted Legendre functions pairs are orthogonal such as:∫ T

0

∫ l

0
Ψi,j(x, t)Ψm,n(x, t)dxdt =

{ lT
(2m+1)(2n+1) , i = m and j = n,

0, otherwise.
(2.2)

Let X = L2(Ω), definition of the inner product in this space is as

⟨u(x, t), w(x, t)⟩ =
∫ T

0

∫ l

0
u(x, t)w(x, t)dxdt, (2.3)

where the norm is defined as:

∥u(x, t)∥2 = ⟨u(x, t), u(x, t)⟩
1
2 =

(∫ T

0

∫ l

0
| u(x, t) |2 dxdt

) 1
2

. (2.4)

Suppose that

Ψ00(x, t),Ψ01(x, t), · · · ,Ψ0N (x, t), · · · ,ΨM0(x, t),ΨM1(x, t), · · · ,ΨMN (x, t) ⊂ X
(2.5)

are the components of the 2D shifted Legendre functions and

XM,N = span{Ψ00(x, t),Ψ01(x, t), · · · ,Ψ0N (x, t), · · · ,ΨM0(x, t),ΨM1(x, t), · · · ,ΨMN (x, t)}

and u(x, t) represent an arbitrary function in X. And XM,N be a finite
dimensional vector space, so u is unique and it has a best approximation
uM,N ∈ XM,N [8], such that

∀w ∈ XM,N , ∥u− uM,N∥ ≤ ∥u− w∥2. (2.6)

In addition, since uM,N ∈ XM,N , unique coefficients u00, u01, · · · , uMN

are exist as follows:

u(x, t) ≃ uM,N (x, t) =
M∑
i=0

N∑
j=0

uijΨij(x, t) = UTΨ(x, t) = ΨT (x, t)U,

(2.7)
where the vectors U and Ψ(x, t) of order (M + 1)(N + 1)× 1 and given
by

U = [u00, · · · , u0N , u10, · · · , u1N , · · · , uM0, · · · , uMN ]T , (2.8)

Ψ(x, t) = [Ψ00(x, t), · · · ,Ψ0N (x, t),Ψ10(x, t), · · ·Ψ1N (x, t), · · ·ΨM0(x, t), · · ·ΨMN (x, t)].
(2.9)
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The coefficients umn of the 2D shifted Legendre function are defined by

umn =
⟨u(x, t),Ψmn(x, t)⟩

∥Ψmn(x, t)∥22
. (2.10)

We could similarly expanding any functions g in L2(Ω×Ω) respectively
in terms of the 2D shifted Legendre functions as

g(x, t, y, z) ≃ ΨT (x, t)GΨ(y, z), (2.11)

here G is block matrices like as

G = [G(i,m)]Mi,m=0, (2.12)

in which

G(i,m) = [gijmn]
N
j,n=0, i,m = 0, 1, · · · ,M,

and the coefficients of the 2D shifted Legendre kijmn, q = 1, 2, 3 are
defined by

gijmn =
⟨⟨g(x, t, y, z),Ψmn(y, z)⟩,Ψij(x, t)⟩

∥Ψij(x.t)∥22∥Ψmn(y, z)∥22
i,m = 0, 1, · · · ,M, j, n = 0, 1, · · · , N.

3. Construction of operational matrix of integration

We can approximate the integration defined by (2.9) for the vector
Ψ(x, t) as following role.∫ t

0

∫ x

0
Ψ(x, t)dxdt ≃ Υ1Ψ(x, t) = (E1 ⊗ E2)Ψ(x, t), (3.1)

where x ∈ [0, l], t ∈ [0, T ] and Υ1 is the (M+1)(N+1)× (M+1)(N+1)
operational matrix of integration, with setting out the E1 and E2 as the
operational matrices of 1D shifted Legendre polynomials, respectively
and they are defined on [0, l] and [0, T ] as (See [22]):

E1 =
l

2


1 1 0 · · · 0 0 0
−1
3 0 1

3 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · −1
2M−1 0 1

2M−1

0 0 0 · · · 0 −1
2M+1 0

 ,

E2 =
T

2


1 1 0 · · · 0 0 0
−1
3 0 1

3 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · −1
2M−1 0 1

2M−1

0 0 0 · · · 0 −1
2M+1 0

 ,



326 M. Safavi, A. A. Khajehnasiri ,

and ⊗ denotes the Kronecker product, which defined for two arbitrary
matrices A and B as [30]

A⊗B = (aijB). (3.2)

Analogously, we write ∫ x

0
Ψ(x, t)dx ≃ Υ2Ψ(x, t), (3.3)

∫ t

0
Ψ(x, t)dt ≃ Υ3Ψ(x, t), (3.4)

where Υ2 and Υ3 are matrices of order (M+1)(N+1)× (M+1)(N+1)
of form

Υ2 =
l

2


I I O · · · O O O
−I
3 O I

3 · · · O O O
...

...
...

. . .
...

...
...

O O O · · · −I
2M−1 O I

2M−1

O O O · · · O −I
2M+1 O

 ,

Υ3 =


Υ2 O O · · · O
O Υ2 O · · · O
O O Υ2 · · · O
...

...
...

. . .
...

O O O · · · Υ2

 ,

where, O and I are zero and the identity matrix of order N +1, respec-
tively.

3.0.1. Product properties. To following our approach to approximate the
initial equations, we need to evaluate the product of two vectors Ψ(x, t)
and ΨT (x, t), that is called the product matrix of Legendre functions.
For this purpose, let

Ψ(x, t)ΨT (x, t)Up ≃ ŨpΨ(x, t), (3.5)

where Up is defined by (2.8) and Ũp is the product operational matrix
of order (M + 1)(N + 1)× (M + 1)(N + 1) . We put

Ψij(x, t)Ψkh(x, t) =
i+k∑
r=0

j+h∑
s=0

brsΨrs(x, t), (3.6)

after which we can derive the brs in the following form. Multiplying both
sides of Eq.(3.6) by Ψmn(x, t),m = 0, 1, · · · , i + k, n = 0, 1, · · · , j + h,
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and integrating the prior result we have:∫ T

0

∫ 1

0
Ψij(x, t)Ψkh(x, t)Ψmn(x, t)dxdt =

i+k∑
r=0

j+k∑
s=0

brs

∫ T

0

∫ l

0
Ψrs(x, t)Ψmn(x, t)dxdt,

=
lT bmn

(2m+ 1)(2n+ 1)
,

then we have

bmn =
(2m+ 1)(2n+ 1)

lT

∫ T

0

∫ l

0
Ψij(x, t)Ψkh(x, t)Ψmn(x, t)dxdt

=
(2m+ 1)(2n+ 1)

lT
υi,k,mυ

′
j,h,n, (3.7)

where υi,k,m and υ
′
j,h,n are represented as follows.

υi,k,m =

∫ l

0
Li(

2

l
x− 1)Lk(

2

l
x− 1)Lm(

2

l
x− 1)dx,

υ
′
j,h,n =

∫ T

0
Li(

2

T
t− 1)Lh(

2

T
t− 1)Ln(

2

T
t− 1)dt,

and it can be easily computed (See [23]). By substituting bmn into
Eq.(3.6) we have

Ψij(x, t)Ψkh(x, t) =
i+k∑
m=0

j+h∑
n=0

(2m+ 1)(2n+ 1)

lT
υi,k,mυ

′
j,h,nΨmn(x, t).

(3.8)

The matrix Ũp in (3.5) is obtained. If we retain just the elements of
Ψ(x, t) in (2.9), as:

Ũp = [U (i,j)
p ]i,j=0,1,··· ,M (3.9)

moreover in Eq. (3.9), U
(i,j)
p , i, j = 0, 1, · · · ,M are defined as follows:

U (i,j)
p =

2j + 1

l

M∑
m=0

υi,j,mBm,

and Bm, m = 0, 1, · · · ,M are matrices of order (N +1)× (N +1) which
are given by

[Bm]kh =
2h+ 1

T

N∑
n=0

υ
′
k,h,numn, k, h = 0, 1, · · · , N. (3.10)

Finally, for matrix G = [G(i, j)], i, j = 0, 1, · · · ,M, with (M + 1)(N +
1)× (M + 1)(N + 1) such that

G(i,j) = [gimjn]
N
m,n=0, i, j = 0, 1, · · · ,M, (3.11)
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we have

ΨT (x, t)GΨ(x, t) ≃ G̃Ψ(x, t), (3.12)

where Ĝ is a vector of order 1× (M + 1)(N + 1) which is defined by

Ĝ = [G00, · · · , G0N , G10, · · · , G1N , · · · , GM0, · · · , GMN ], (3.13)

and

Gmn =
(2m+ 1)(2n+ 1)

IT

M∑
i=0

N∑
j=0

M∑
r=0

N∑
s=0

υi,r,mυ
′
j,s,ngijrs,

where m = 0, 1, · · · ,M, n = 0, 1, · · · , N.

3.1. Operational matrix of differentiation. In this section, we eval-
uate the operational matrix of differentiation. For this purpose, we let

u(x, t) = UTΨ(x, t),
u(x, 0) = UT

x0Ψ(x, t),
u(0, t) = UT

0tΨ(x, t),
ut(x, t) = UT

t Ψ(x, t),
ux(x, t) = UT

x Ψ(x, t),
ut(x, 0) = UT

tx0Ψ(x, t),
utt(x, t) = UT

ttΨ(x, t),
ux(0, t) = UT

x0tΨ(x, t),
uxx(x, t) = UT

xxΨ(x, t),
uxt(x, t) = UT

xtΨ(x, t).

(3.14)

Now, we can write:

u(x, t)− u(x, 0) =

∫ t

0
ut(x, τ)dτ, (3.15)

from (3.14), we obtain

UTΨ(x, t)− UT
x0Ψ(x, t) =

∫ t

0
UT
t Ψ(x, τ)dτ

= UT
t

∫ t

0
Ψ(x, τ)dτ

= UT
t Υ3Ψ(x, t). (3.16)

So we get

UT − UT
x0 = UT

t Υ3, (3.17)

then

UT
t = (UT − UT

x0)Υ
−1
3 . (3.18)
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Similarly, one can write:

u(x, t)− u(0, t) =

∫ x

0
ux(τ, t)dτ, (3.19)

then from (3.14), we have

UTΨ(x, t)− UT
0tΨ(x, t) =

∫ x

0
UT
x Ψ(τ, t)dτ,

= UT
x

∫ x

0
Ψ(τ, t)dτ,

= UT
x Υ2Ψ(x, t), (3.20)

so we get

UT − UT
0t = UT

x Υ2, (3.21)

hence

UT
x = (UT − UT

0t)Υ
−1
2 . (3.22)

We can use such a way for the partial differential equations of the second-
order. So one can write:

ut(x, t)− ut(x, 0) =

∫ t

0
utt(x, τ)dτ, (3.23)

by using (3.14), we have

UT
t Ψ(x, t)− UT

tx0Ψ(x, t) =

∫ t

0
UT
ttΨ(x, τ)dτ,

= UT
tt

∫ t

0
Ψ(x, τ)dτ,

= UT
ttΥ3Ψ(x, t), (3.24)

so we get

UT
t − UT

tx0 = UT
ttΥ3, (3.25)

then

UT
tt = (UT

t − UT
tx0)Υ

−1
3 . (3.26)

In the same way, We get the following equation, which approximates
uxx(x, t),

UT
xx = (UT

x − UT
x0t)Υ

−1
2 . (3.27)

And finally, to obtain the approximate uxt(x, t), the following procedure
could be used as fallow.

ut(x, t)− ut(t, 0) =

∫ t

0
uxt(t, τ)dτ, (3.28)
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hence

UT
x Ψ(x, t)− UT

x0tΨ(x, t) =

∫ t

0
UT
xtΨ(x, τ)dτ,

= UT
xt

∫ t

0
Ψ(x, τ)dτ,

= UT
xtΥ3Ψ(x, t), (3.29)

so we get

UT
x − UT

x0t = UT
xtΥ3, (3.30)

then we have

UT
xt = (UT

x − UT
x0t)Υ

−1
3 . (3.31)

4. Applying the method

In this section, by using 2D shifted Legendre functions, we find the ap-
proximate solution of two-dimensional nonlinear Volterra integro-differential
equation. As we evaluated in the previous section, we can write

u(x, t) = UTΨ(x, t),

f(x, t) = F TΨ(x, t),

ut(x, t) = UT
x Ψ(x, t),

ut(x, t) = UT
t Ψ(x, t), (4.1)

uxx(x, t) = UT
xxΨ(x, t),

utt(x, t) = UT
ttΨ(x, t),

utx(x, t) = UT
txΨ(x, t),

g(x, t, y, z) = ΨT (x, t) ·G ·Ψ(y, z),

R(y, z, U(y, z)) = RTΨ(y, z) = ΨT (y, z)R,

where the m1m2-vectors U,F, Ux, Ut, Uxx, Utt, Utx and matrix K and R
are the 2D shifted Legendre coefficients of u(x, t), f(x, t), ux(x, t), ut(x, t), uxx(x, t), utt(x, t), ux,t(x, t),
G(x, t, y, z) and R(y, z, U(y, z))) respectively, now, consider the follow-
ing equation,

uxx + utx + utt + u(x, t) = f(x, t) +

∫ t

0

∫ x

0
G(x, t, y, z)R(y, z, U(y, z)))dydz,(4.2)
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By using the proposed equations, we have∫ t

0

∫ x

0
G(x, t, y, z)R(y, z, U(y, z)))dydz ≃

∫ t

0

∫ x

0
ΨT (x, t) ·G ·Ψ(y, z) ·Ψ(y, z)Rdydz

= ΨT (x, t) ·G ·
∫ t

0

∫ x

0
Ψ(y, z) ·Ψ(x, y)T ·Rdydx

≃ ΨT (x, t) ·G · R̃p

∫ t

0

∫ x

0
Ψ(x, y)dydx,

= ΨT (x, t) ·G · R̃p ·Υ1 ·Ψ(x, t) (4.3)

So we can rewrite the right part of Eq.(4.2) as:

f(x, t) +

∫ t

0

∫ x

0
G(x, t, y, z)R(y, z, U(y, z)))dydz ≃ F TΨ(x, t) + ΨT (x, t) ·

(
G · R̃p ·Υ1

)
·Ψ(x, t)

≃ F TΨ(x, t) +
( ̂G · R̃p ·Υ1

)
·Ψ(x, t),

where (ĜR̃pΥ) is a 4m1m2-vector with components equal to the diagonal

components of the matrix GR̃pΥ. Since R̃p is a diagonal matrix, we get

(ĜR̃pΥ1) = Π ·Rp, (4.4)

in which Π is a (4m1m2 × 4m1m2)-matrix with components

Πi,j = (KR)i,j · (Υ1)j,i, i, j = 1, 2, · · · , 4m1m2. (4.5)

So

Ψ(x, t)T (Uxx + Utx + Utt + U) = F T ·Ψ(x, t) + (Π ·Rp)
T ·Ψ(x, t)

= ΨT (x, t)(F +Π ·Rp)

such that

Uxx + Utx + Utt + U = F T +Π ·Rp (4.6)

Now, by using the equations (3.18), (3.22), (3.26), (3.27) and (3.31) we
can obtain

AU = F (4.7)

in system of (4.7) A and F are the combination of 2DSLFs coefficient
matrix and U which can be solved by Newton-Raphson method.

5. Error estimation for two variables functions

This section estimates the norm of error for approximating two vari-
ables smooth function on a specific domain Ω. First, we suppose that
u(x, t) is a two variables smooth function on a specific domain Ω and
PM,N (x, t) is the approximation of u in point (xi, ti), where xi, i =
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0, 1, · · · ,M belong to interval [0, l] which are the shifted Chebyshev poly-
nomials’ roots and tj , j = 0, 1, · · · , N belong to interval [0, T ] which are
the the shifted Chebyshev polynomials’ roots, we can evaluate upper
band for derivatives as fallow.

u(x, t)− PM,N (x, t) =
∂M+1u(ξ, t)

∂xM+1(M + 1)!

M∏
i=0

(x− xi) +
∂N+1u(x, η)

∂tN+1(N + 1)!

N∏
j=0

(t− tj)

− ∂M+N+2u(ξ′, η′)

∂xM+1∂tN+1(M + 1)!(N + 1)!

M∏
i=0

(x− xi)

N∏
j=0

(t− tj),

where (ξ, ξ′) ∈ [0, l], and (η, η′) ∈ [0, T ]. Then we have∣∣∣∣u(x, t)− PM,N (x, t)

∣∣∣∣ ≤ max
(x,t)∈Ω

∣∣∣∣∣∂M+1u(x, t)

∂xM+1

∣∣∣∣∣
∏M

i=0 |x− xi|
(M + 1)!

+ max
(x,t)∈Ω

∣∣∣∣∣∂N+1u(x, t)

∂tN+1

∣∣∣∣∣
∏N

j=0 |t− tj |
(N + 1)!

+ max
(x,t)∈Ω

∣∣∣∣∣∂M+N+2u(x, t)

∂xM+1∂tN+1

∣∣∣∣∣
∏M

i=0 |x− xi|
∏N

j=0 |t− tj |
(M + 1)!(N + 1)!

,

(5.1)

we set M1, M2 and M3 as follows.

max
(x,t)∈Ω

∣∣∣∣∣∂M+1u(x, t)

∂xM+1

∣∣∣∣∣ ≤ M1, (5.2)

max
(x,t)∈Ω

∣∣∣∣∣∂N+1u(x, t)

∂tN+1

∣∣∣∣∣ ≤ M2, (5.3)

max
(x,t)∈Ω

∣∣∣∣∣∂M+N+2u(x, t)

∂xM+1∂tN+1

∣∣∣∣∣ ≤ M3. (5.4)

By use (5.1), (5.2), (5.3), (5.4) and estimation of Chebyshev interpola-
tion (See [9]) we obtain∣∣∣∣u(x, t)− PM,N (x, t)

∣∣∣∣ ≤ M1
(l/2)M+1

(M + 1)!2M
+M2

(T/2)N+1

(N + 1)!2N

+M3
(l/2)M+1(T/2)N+1

(M + 1)!(N + 1)!2M+N
.(5.5)

Following results are obtain by using (5.5) as follows (See [25]).
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Theorem 5.1. Assume that uM,N (x, t) = UT
M,NΨ(x, t) is the 2D shifted

Legendre function of u(x, t) which is sufficient smooth on Ω, and

U = [u00, · · · , u0N , u10, · · · , u1N , · · · , uM0, · · · , uMN ]T ,

and

umn =
(2m+ 1)(2n+ 1)

lT

∫ T

0

∫ l

0
u(x, t)Φ(x, t)dxdt,

then, there are M ′
1,M

′
2,M

′
3 such that:∣∣∣∣∣∣∣∣u(x, t)− PM,N (x, t)

∣∣∣∣∣∣∣∣
2

≤ M ′
1

(l/2)M+1

(M + 1)!2M

+M ′
2

(T/2)N+1

(N + 1)!2N
+M ′

3

(l/2)M+1(T/2)N+1

(M + 1)!(N + 1)!2M+N
.

Proof. Suppose that XM,N be a subset of two variables polynomials of
degree ≤ M for x and degree ≤ N for t. Let w(x, t) be an arbitrary
polynomial in XM,N , the best approximation of u is uM,N such that:∣∣∣∣u(x, t)− uM,N (x, t)

∣∣∣∣
2

≤
∣∣∣∣u(x, t)− w(x, t)

∣∣∣∣
2

(5.6)

We can derive that∣∣∣∣u(x, t)− uM,N (x, t)
∣∣∣∣2
2

≤
∫ T

0

∫ l

0

∣∣u(x, t)− uM,N (x, t)
∣∣2dxdt

≤
∫ T

0

∫ l

0

∣∣u(x, t)− PM,N (x, t)
∣∣2dxdt(5.7)

where PM,N (x, t) is the approximation of u. Now from (5.5) and (5.7)
we have∣∣∣∣u(x, t)− uM,N (x, t)

∣∣∣∣2
2

≤
∫ T

0

∫ l

0

[
M ′

1

(l/2)M+1

(M + 1)!2M

+M ′
2

(T/2)N+1

(N + 1)!2N
+M ′

3

(l/2)M+1(T/2)N+1

(M + 1)!(N + 1)!2M+N

]2
dxdt

= lT

[
M ′

1

(l/2)M+1

(M + 1)!2M
+M ′

2

(T/2)N+1

(N + 1)!2N

+M ′
3

(l/2)M+1(T/2)N+1

(M + 1)!(N + 1)!2M+N

]2
.

By substitution M ′
1 =

√
lTM1, M ′

2 =
√
lTM2 and M ′

3 =
√
lTM3 in

previous expression (5.8) we can see that hypothesis (5.6) is true. �

Theorem 5.2. Assume that uM,N (x, t) and uM,N (x, t) ⊆ XM,N and
uM,N and uM,N are two variables smooth functions such as uM,N =
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UM,NΨ(x, t) and uM,N = UM,NΨ(x, t), then there is a positive number
βM,N ≥ 0 such that∣∣∣∣uM,N (x, t)− uM,N (x, t)

∣∣∣∣
2

≤
∣∣∣∣uM,N (x, t)− wM,N (x, t)

∣∣∣∣
2
(5.8)

Proof. To prove the hypothesis of theorem we can construct the solution
from left side such as:∣∣∣∣uM,N (x, t)− uM,N (x, t)

∣∣∣∣2
2

=

∫ T

0

∫ l

0

∣∣u(x, t)M,N − uM,N (x, t)
∣∣2dxdt

=

∫ T

0

∫ l

0

∣∣∣∣∣
M∑

m=0

N∑
n=0

(umn − umn)Ψmn(x, t)

∣∣∣∣∣
2

dxdt

≤
∫ T

0

∫ l

0

(
M∑

m=0

N∑
n=0

|umn − umn|2
)(

M∑
m=0

N∑
n=0

|Ψmn(x, t)|2
)
dxdt

=

M∑
m=0

N∑
n=0

|umn − umn|2 ×
M∑

m=0

N∑
n=0

∫ T

0

∫ l

0
|Ψmn(x, t)|2dxdt

= ||UM,N − UM,N ||22 ×
M∑

m=0

N∑
n=0

||Ψmn(x, t)||22

= ||UM,N − UM,N ||22 ×
M∑

m=0

N∑
n=0

|| lT

(2m+ 1)(2n+ 1)

= lT ||UM,N − UM,N ||22

(
M∑

m=0

1

2m+ 1

)(
N∑

n=0

1

2n+ 1

)
. (5.9)

Taking the squared root from both sides of (5.9) conclude that

∣∣∣∣u(x, t)M,N − uM,N (x, t)
∣∣∣∣2
2

≤

√√√√lT

(
M∑

m=0

1

2m+ 1

)(
N∑

n=0

1

2n+ 1

)
||UM,N − UM,N ||2.

Finally from (5.10), we conclude that (5.8) is valid with

βM,N =

√√√√lT

(
M∑

m=0

1

2m+ 1

)(
N∑

n=0

1

2n+ 1

)
, (5.10)

the proof is complete. �

Lemma 5.3. In Theorem (5.2) if M = N and l = T = 1 then∣∣∣∣u(x, t)− uM,M (x, t)
∣∣∣∣
2

≤
(
M ′

1 +M ′
2 +

M ′
3

(M + 1)!22M+1

)
1

(M + 1)!22M+1
,
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therefore ∣∣∣∣u(x, t)− uM,M (x, t)
∣∣∣∣
2

= O

(
1

(M + 1)!22M+1

)
,

so uM,M (x, t) is the best approximation for two variables the smooth
function u(x, t), It means that when calculating the upper band for error
in (5.5), the expression containing M ′

3 could be eliminate.

6. Numerical illustration

In this section, some experiments of 2DNVIDEs are given to illustrate
our results. The supplementary initial conditions from the exact solution
are taking into account for all examples. The presented method in this
paper has been used to find the solution of two examples. The numerical
results are compared with the exact solutions by the next error function:

e(x, t) =| u(x, t)− ūm1,m2(x, t) |,
where u(x, t) is exact soulution and ūm1,m2(x, t) represent the approxi-
mate solution of the integral equation. The error estimation for different
values of m1 and m2 as e(x, t) for the next set

Dgrids = {(0.0, 0.0), (0.1, 0.1), (0.2, 0.2), · · · , (0.9, 0.9)} , (6.1)

are evaluated, and the results represented in Tables 1-2.

Example 6.1. The first example represent the following equation [29],

∂2u(x, t)

∂t2
+

∂2u(x, t)

∂x∂t
+ xu3(x, t) +

∫ x

0

∫ t

0
u2(t, τ)dtdτ = f(x, t), x, t ∈ [0, 1],

and

f(x, t) = 2y +
1

15
x3t5 − x4t5 + 2x,

where u(x, t) = xt2 is the exact solution of this problem. With supple-
mentary initial conditions.

B.Cs : u(x, 0) = 0,
∂u(x, 0)

∂t
= 0. (6.2)

The numerical results for different values of m1 and m2 are shown in
Table 1.

Example 6.2. For second example, we consider a 2DVIDE as follows

u(x, t)
∂2u(x, t)

∂t2
− 4u(x, t)

∂2u(x, t)

∂x2
+ 4

∫ x

0

∫ t

0
u2u(t, τ)dtdτ = f(x, t), x, t ∈ [0, 1],
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Figure 1. Exact and approximate solution with m =
32of Example 1.

Table 1. Absolute errors of Example 1

x = t e(x,t) e(x,t) e(x,t)

m1 = m2 = 4 m1 = m2 = 8 m1 = m2 = 32
0 3.2612× 10−3 4.1230× 10−3 1.1905× 10−5

0.1 2.2941× 10−3 9.2341× 10−3 2.6508× 10−5

0.2 2.2154× 10−3 1.7014× 10−3 3.2548× 10−5

0.3 3.2541× 10−3 4.4011× 10−3 1.2884× 10−4

0.4 3.2522× 10−3 5.1472× 10−3 2.1524× 10−4

0.5 2.2589× 10−3 7.1203× 10−3 6.8459× 10−4

0.7 2.2542× 10−3 9.1014× 10−3 2.9528× 10−4

0.8 3.2514× 10−3 3.2458× 10−2 9.1215× 10−4

0.9 2.2254× 10−3 2.9872× 10−2 2.2547× 10−3

and

f(x, t) =

(
x− 1

2π
sin(2πx)

)(
t− 1

4π
sin(4πt)

)
where u(x, t) = sin(πx)cos(2πt) is the exact solution of this problem
[29]. With supplementary boundary and initial conditions such as:

B.Cs : u(0, t) = u(1, t) = 0,

I.Cs : u(x, 0) = sin(πx),
∂u(x, 0)

∂t
= 0, 0 ≤ x ≤ 1,

the numerical results and error estimation are presented in Table 2.
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Figure 2. Comparison of the exact solution and present
method with m = 32 of Example 2.

Table 2. Absolute errors of Example 2

x = t e(x,t) e(x,t) e(x,t)

m1 = m2 = 4 m1 = m2 = 8 m1 = m2 = 32
0 2.0352× 10−2 7.1215× 10−3 5.1963× 10−5

0.1 1.5322× 10−2 4.2509× 10−3 3.6591× 10−5

0.2 8.4454× 10−2 1.2145× 10−3 1.2548× 10−5

0.3 7.2840× 10−2 1.2547× 10−3 2.2124× 10−4

0.4 5.9522× 10−2 2.5804× 10−3 2.2524× 10−4

0.5 8.7589× 10−2 3.2154× 10−3 2.1063× 10−4

0.6 1.1850× 10−2 1.2152× 10−3 3.2562× 10−4

0.7 2.3698× 10−2 3.1002× 10−2 2.5098× 10−4

0.8 2.5874× 10−2 7.2425× 10−2 7.5214× 10−3

0.9 3.4512× 10−2 1.9272× 10−2 6.1251× 10−3

7. Conclusion

This paper implies the two-dimensional Legendre operational ma-
trix to approximate the numerical solution of two-dimensional nonlinear
Volterra integro-differential equation. The Legendre operational matrix
has been used to convert the 2DNVIDE to an algebraic system, which
could be easily solved to find the approximate solution. Furthermore,
the error estimation for the proposed method is analyzed. Some exam-
ples and results examined the effectiveness and accuracy of the method
have shown remarkable performance.
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