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1. Introduction

Consider the Schrödinger equation

y′′ +

[
E −

n∑
m=0

(
E

1
2n

)m
qm (x)

]
y = 0, x ∈ R∗ = (−∞, +∞)\ {a} (1)

with the discontinuity conditions

y(a− 0) = αy(a+ 0), y′(a− 0) = α−1y′(a+ 0) (2)

Here E is a complex parameter, qm (x)
(
m = 0, n, n > 1

)
are supposed

to be sufficiently regular real functions decreasing fast enough as x →
±∞, a ∈ (−∞,+∞), 1 ̸= α > 0.

An equation of type (1) is has a great extent on its connection with
the nonlinear evolution equations constructed in [1](see also [2]) where
a family of nonlinear Hamiltonian equations has obtained and solved by
the method of the inverse scattering transform provided that the inverse
scattering problem (ISP) for (1) can be solved. For further discussion of
the inverse scattering theory of Schrödinger type operators we refer to
monographs [16, 21, 17, 18, 19, 20].

The ISP for (1) was first considered by Jaulent and Jean [5]. Under
some regularity conditions on the ”potentials” q0 , q1,...,qn, they solved the
ISP for (1) by reduction this problem to the ISP for generalized matrix-

Schrödinger equation. Since in Eq.(1) the (2n)th root E
1
2n is an analytic

function on a Riemann’s 2n sheet surface, it is convenient to set E =

λ2n (λ ∈ C) and to represent E
1
2n by λe

ilπ
n (l = 0, 1, ..., 2n− 1) . Equation

(1) is then represented by the 2n scalar Sturm-Liouville equations

y′′l +

[
λ2n −

n∑
m=0

λme
imlπ
n qm (x)

]
yl = 0, x ∈ R∗ (3)

and the jump conditions take the form

yl(a− 0) = αyl(a+ 0), y′l(a− 0) = α−1y′l(a+ 0). (4)

Remark that in case n = 1, on a Riemann’s two sheet surface the equa-
tion (1) is represented by the equations

y±
′′
+
[
λ2 ∓ λp (x)− q (x)

]
y± = 0 (5)

In the case when the potential functions are real valued differentiable
functions belonging to the spaces of integrable functions together with
derivatives the full-line inverse scattering problem for (3) without dis-
crete spectrum has been studied in [3],[4]. The direct and inverse scat-
tering problems, also some inverse problems of the spectral analysis for
Eq. (3) in various statements were studied in details by many authors.
We refer for further discussion to articles [6, 7, 8, 9, 10, 11, 12, 13]
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In this work the inverse scattering problem is investigated by re-
duction it to the corresponding inverse scattering problem for the en-
ergy dependent matrix Schrödinger equation with the related discon-
tinuity conditions at a real point a. We aim to establish an effec-
tive algorithm for uniquely reconstructing of the potential functions
qm (x) (m = 0, 1, ..., n) of the equation (1) .

2. Equivalent Representations Of Equations

Let us define the vector functions

Y + = (y0, y2, ..., y2n−2)
T , Y − = (y1, y3, ..., y2n−1)

T

where yl (l = 0, 1, ..., 2n− 1) satisfies the equation (3) . Then the vector
function Y ± will satisfy the matrix Schrödinger equation

Y ±′′
+
[
λ2nI − V ± (λ, x)

]
Y ± = 0, x ∈ R∗, (6)

where

V ± (λ, x) =
n∑

m=0

λmqm (x)Sm
± ,

S+ = diag
(
1, ε, ..., εn−1

)
, ε = e

2iπ
n , S− = e

iπ
n S+

Note that the discontinuity conditions can be written as

Y ±(a− 0) = αY ±(a+ 0), Y
±′(a− 0) = α−1Y

±′(a+ 0) (7)

Now consider the n× n matrix P+(λ) =
(
p+ij (λ)

)
, where

p+ij (λ) = ε(i−1)(j−1)λj−1, i, j = 1, 2, .., n

Additionally let

q+ij (λ) =
1

nε(i−1)(j−1)λi−1
, i, j = 1, 2, .., n

Since
n∑

k=1

p+ik (λ) q
+
kj (λ) =

1

n

n∑
k=1

ε(i−j)(k−1) and 1 + ε+ ...+ εn−1 = 0

we have
n∑

k=1

p+ik (λ) q
+
kj (λ) = δij =

{
1, if i = j
0, if i ̸= j

Therefore, we obtain [
P+(λ)

]−1
=

(
q+ij (λ)

)n

i,j=1
. (8)

Analogously, if we define

P−(λ) = P+(λe
iπ
n )
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we can find [
P−(λ)

]−1
=

(
q−ij (λ)

)n

i,j=1
(9)

where

q−ij (λ) =
1

nε(i−1)(j−1)e
iπ(i−1)

n λi−1
, i, j = 1, 2, .., n

Let Y ± be any solution of (6).with the jump conditions (7) . We define
the vector function

Ỹ ± =
[
P± (λ)

]−1
Y ± (10)

and easily obtain that Ỹ ± satisfies the equation

Ỹ ±
′′

+ λ2nỸ ± =
[[
P± (λ)

]−1
V ± (λ, x)P± (λ)

]
Ỹ ±, x ∈ R∗

Now using (8) , (9) , (10) we compute that[
P± (λ)

]−1
V ± (λ, x)P± (λ) = U(x)± λnQ(x)

Hence we transform whole system of (2n) equations (3) to a pair of
the generalized matrix Schrödinger equations

Ỹ ±
′′

+
[
k2I − Ṽ ± (k, x)

]
Ỹ ± = 0, x ∈ R∗ (11)

with the jump conditions

Ỹ ±(a− 0) = αỸ ±(a+ 0), Ỹ ± ′(a− 0) = α−1Ỹ ±′
(a+ 0) (12)

which can be viewed as another ’representation’ of (3) ,where I is the
n× n identity matrix,

Ṽ ± (k, x) =
[
P± (λ)

]−1
V ± (λ, x)P± (λ)

= U (x)± kQ (x) , k = λn, (13)

U (x) =


q0 0 ... 0 0
q1 q0 ... 0 0
q2 q1 q0 ... 0
. . . . .

qn−1 . . q1 q0

 ,

Q(x) =


qn qn−1 qn−2 ... q1
0 qn qn−1 ... q2
. . . . .
0 0 0 qn qn−1

0 0 0 ... qn


To sum up we have obtained three equivalent ”representations” (3) , (6) , (11)
for Eq.(1)
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3. Comparison Between The Scattering Functions For
Equivalent Equations

In this section we define the scattering functions of problems (3) , (6) , (11)
and find the connection between the scattering functions. We suppose
that potentials qi

(
i = 0, n

)
satisfy the following conditions:

(a) For i = 0, n− 1 is continuously differentiable, and xqi (x) , q
′
i (x)

are integrable on R.
(b) qn (x) (x ∈ R) is twice continuously differentiable, and qn (x) , q

′
n (x) , q

′′
n (x)

are integrable on R.
The right and left Jost solutions fl(λ, x) and gl(λ, x) of (3) , respec-

tively, F±(λ, x) and G±(λ, x) of (6) , respectively, F̃±(k, x) and G̃±(k, x)
of (11), are defined as follows:

fl(λ, x) ∼
x→+∞

eiλ
nx, gl(λ, x) ∼

x→−∞
e−iλnx,

F±(λ, x) ∼
x→+∞

eiλ
nx (1, 1, ..., 1)T , G±(λ, x) ∼

x→−∞
e−iλnx (1, 1, ..., 1)T ,

F̃±(k, x) ∼
x→+∞

eikxV, G̃±(k, x) ∼
x→−∞

e−ikxV,

where T means ”transposed”, and V = (1, 0, ..., 0)T .fl(λ, x) and gl(λ, x)
are defined equivalently as the solution of the following integral equa-
tions:

fl(λ, x) = e+0 (x, λ
n) +

∫ +∞

x
S+
0 (x, t, λ)

n∑
m=0

λme
imlπ
n qm (t) fl(λ, t)dt,

(14)

gl(λ, x) = e−0 (x, λ
n)+

∫ x

−∞
S−
0 (x, t, λ)

n∑
m=0

λme
imlπ
n qm (t) gl(λ, t)dt, (15)

where

e±0 (x, λ
n) =

{
e±iλnx , ± x > ±a

A+e±iλnx ±A−e±iλn(2a−x) , ± x < ±a
, (16)

S±
0 (x, t, λ

n) =

{
± sinλn(t−x)

λn ,±a < ±x < ±t or ± x < ±t < ±a
±A+ sinλn(t−x)

λn + A− sinλn(t−2a+x)
λn , ± x < ±a < ±t ,

(17)
A± = 1

2

(
α± 1

α

)
. For fixed x, fl(λ, x) and gl(λ, x) are continuous for

0 ≤ arg λ ≤ π
n , analytic for 0 < arg λ < π

n and obey estimate

|f1 (λ, x)| ≤ Ce−bxed+(x), 0 ≤ arg λ ≤ π

n
, b = Imλn, (18)

|gl(λ, x)| ≤ Cebxed−(x), 0 ≤ arg λ ≤ π

n
, b = Imλn (19)
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where

d±(x) = ±2

∫ ±∞

x
(|t− x|+ 1)

n∑
m=0

|qm (t)| dt (20)

and C > 0 is a constant. It is clear that F±(λ, x) and G±(λ, x) are also
defined and continuous for 0 ≤ arg λ ≤ π

n , analytic for 0 < arg λ < π
n

and verify

F±(λ, x) = e+0 (x, λ
n) (1, 1, ..., 1)T+

∫ +∞

x
S+
0 (x, t, λ

n)V ± (λ, t)F±(λ, t)dt,

(21)

G±(λ, x) = e−0 (x, λ
n) (1, 1, ..., 1)T +

∫ x

−∞
S−
0 (x, t, λ

n)V ± (λ, t)G±(λ, t)dt

(22)
Using (8) , (9) and (11) we have

F̃±(k, x) = e+0 (x, k)V +

∫ +∞

x
S+
0 (x, t, k)Ṽ

± (k, t) F̃±(k, t)dt, (23)

G̃±(k, x) = e−0 (x, k)V +

∫ x

−∞
S−
0 (x, t, k)Ṽ

± (k, t) G̃±(k, t)dt. (24)

It is not difficult to prove that F̃±(k, x) and G̃±(k, x) are defined and
continuous for Imk ≥ 0, analytic for Imk > 0 and admits the following
inequalities:∥∥∥F̃±(k, x)

∥∥∥ ≤ Ce−bxeh+(x), x ∈ R, b = Imk ≥ 0, (25)∥∥∥G̃±(k, x)
∥∥∥ ≤ Cebxeh−(x), x ∈ R, b = Imk ≥ 0, (26)

where

h±(x) = ±2

∫ ±∞

x

[
|y − x|

n−1∑
m=0

|qm (y)|+
n∑

m=1

|qm (y)|

]
dy (27)

∥(α1, α2, ..., αn)∥ = max
1≤i≤n

|αi| , (α1, α2, ..., αn)
T ∈ Rn

For λ > 0, fl(λ, x) and fl−1(λe
iπ
n , x) form a fundamental system of

solutions of (3)l . For all l and with the convention f−1 = f2n−1, we
have the relation

gl(λ, x) = bl (λ) fl(λ, x) + al (λ) fl−1(λe
iπ
n , x), λ > 0 (28)

where

al (λ) =
1

2iλn
W [gl(λ, x), fl(λ, x)] , (29)

bl (λ) = − 1

2iλn
W

[
gl(λ, x), fl−1(λe

iπ
n , x)

]
(30)
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and W [f, g] is the Wronskian of f and g. We have from the formula
(29) that the function al (λ) admits a unique continuous extension al (λ)
(0 ≤ arg λ ≤ π

n) which is analytic for 0 < arg λ < π
n . Because of the

convention f−1 = f2n−1, we can write

[f2n−1(λ, x), f1(λ, x), ..., f2n−2(λ, x)]
T = M [f1(λ, x), f2(λ, x), ..., f2n−1(λ, x)]

T ,
(31)

where

M =


0 0 ... 0 1
1 0 ... 0 0
0 1 ... 0 0
. . . . .
0 0 ... 1 0

 .

It follows from (29) and (31) that there exist diagonal matrices A±(λ)
and B±(λ) such that

G+ (λ, x) = B+ (λ)F+(λ, x) +A+(λ)MF−(λe
iπ
n , x), λ > 0, (32)

G− (λ, x) = B− (λ)F−(λ, x) +A−(λ)F+(λe
iπ
n , x), λ > 0, (33)

where

A+(λ) = diag (a0(λ), a2(λ), ..., a2n−2(λ)) ,

B+(λ) = diag (b0(λ), b2(λ), ..., b2n−2(λ)) ,

A−(λ) = diag (a1(λ), a3(λ), ..., a2n−1(λ)) ,

B− (λ) = diag (b1(λ), b3(λ), ..., b2n−1(λ))

Clearly, A±(λ) are continuous for 0 ≤ arg λ ≤ π
n and analytic for 0 <

arg λ < π
n . From relations (32) and (33) , taking into account the formula

(10) and the equality[
P+ (λ)

]−1
M =

[
P−

(
λe

iπ
n

)]−1

(see [5]) we obtain

G̃± (k, x) = B̃±(k)F̃±(k, x) + Ã±(k)F̃∓(−k, x), k = λn, k ∈ R, (34)

where

B̃±(k) =
[
P± (λ)

]−1
B±(λ)P± (λ) , k = λn (35)

Ã±(k) =
[
P± (λ)

]−1
A±(λ)P± (λ) , k = λn.

Since the function λ = k
1
n is continuous for 0 ≤ arg k ≤ π, analytic

for 0 < arg k < π we have that Ã±(k) is continuous for Imk ≥ 0 and
analytic for Imk > 0.
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Now we define reflection coefficients rl (λ) , R
±(λ) and R̃±(k) for the

problems (3) , (6) and (11) , respectively, as follows:

rl (λ) =
b (λ)

a (λ)
, λ > 0, (36)

R±(λ) =
[
A±(λ)

]−1
B±(λ), λ > 0, (37)

R̃±(k) =
[
Ã±(k)

]−1
B̃±(k)

=
[
P± (λ)

]−1
R±(λ)P± (λ) , k = λn, k ∈ R. (38)

As in the classical case(see [22] ) it can be shown that rl (λ) and R±(λ)

are continuous for λ > 0. This implies R̃±(k) is continuous for k ∈ R.
We impose the following condition (c) :

(c) The zeros λlj of al (λ) are simple, in finite number Nl,

0 < arg λlj <
π

n
, λlj ̸= λl′j

if l ̸= l′, have the same parity.
The square integrable solutions of (3),(4) corresponds to the zeros

λlj (j = 1, 2, ...Nl) of al (λ) . Similarly, the square integrable solutions of
(6) , (7) corresponds to the zeros λm±(m± = 1, 2, ...,M±) of detA± (λ)
and the square integrable solutions of (11) , (12) corresponds to the zeros

km± = (λm±)n (m± = 1, 2, ...,M±) of det Ã± (k) . Moreover, it is clear
that{

λm+ ,m+ = 1, 2, ...,M+
}
= {λ2lj , j = 1, 2, ...Nl, l = 0, 1, ..., n− 1} ,

(39){
λm− ,m− = 1, 2, ...,M−} = {λ2l+1j , j = 1, 2, ...Nl, l = 0, 1, ..., n− 1} .

(40)
To each zero λlj of al (λ) we associate a constant scalar clj defined as

clj = lim
λ→λlj

(λ− λlj)
b (λ)

a (λ)
. (41)

Similarly to the zeros λm± and km± we correspond the matrices

Cm+ = n (λm+)n−1 diag(0, 0, ..., c2lj , 0, ..., 0) if λm+ = λ2lj , (42)

Cm− = n (λm−)n−1 diag(0, 0, ..., c2l+1j , 0, ..., 0) if λm+ = λ2l+1j , (43)

C̃m± =
[
P± (λm±)

]−1
Cm±P± (λm±) , km± = (λm±)n .

We define the scattering data s, L, L̃ of (3) − (4) , (5) − (6) , (11) − (12)
respectively by

S = {rl (λ) (λ > 0) ;λlj ; clj (j = 1, 2, ..., Nl, l = 0, 1, ..., 2n− 1)} , (44)

L =
{
R± (λ) (λ > 0) ;λm± ;Cm±

(
m± = 1, 2, ...,M±)} , (45)
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L̃ =
{
R̃± (k) (k ∈ R) ; km± ; C̃m±

(
m± = 1, 2, ...,M±)} . (46)

The scattering data S,L and L̃ are equivalent. Therefore, later on we
just consider the ISP for (11) − (12) .It also follows that the functions

det [A±(λ)](respectively det
[
Ã±(k)

]
) have not any zero on the corre-

sponding regions.

4. Integral Representations of Solutions

In this section similarly to the scalar case [3, 4] we have the inte-

gral representations for the solutions F̃+(k, x), G̃±(k, x) and prove the
following assertions. Let

σ±(x) = ±
∫ ±∞

x
{(1 + |t|) ∥U(t)V ∥+ ∥Q(t)V ∥} dt.

Lemma 4.1. If the condition (a) is satisfied then the solutions F̃+(k, x)

and G̃±(k, x) can be expressed as

F̃±(k, x) = f±
1 (x)V eikx + f±

2 (x)V eik(2a−x)

+∞
x K±(x, t)eiktdt, Imk ≥ 0, x ∈ R, (47)

G̃±(k, x) = g±1 (x)V e−ikx + g±2 (x)V e−ik(2a−x)

+x
−∞H±(x, t)e−iktdt, Imk ≥ 0, x ∈ R (48)

respectively, where

f±
1 (x) = exp

(
± i

2

∫ +∞

x
qn(t)dt

){
1, x > a

A+, x < a

g±1 (x) = exp

(
± i

2

∫ x

−∞
qn(t)dt

){
1, x < a

A+, x > a
,

f±
2 (x) = A− exp

∓ i

2

+∞∫
x

qn(s)ds± i

+∞∫
a

qn(s)ds

 for x < a,

g±2 (x) = −A− exp

∓ i

2

x∫
−∞

qn(s)ds± i

a∫
−∞

qn(s)ds

 for x > a,

f±
2 (x) = 0, for x > a and g±2 (x) = 0, for x < a

and the kernels K±(x, t) and H±(x, t) which are real vector functions
defined on x ≤ t < ∞ and −∞ < t ≤ x respectively, satisfy the inequal-
ities
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∫ ∞

x

∥∥K±(x, t)
∥∥ dt ≤ Ceσ

+(x),

∫ x

−∞

∥∥H±(x, t)
∥∥ dt ≤ Ceσ

−(x) (49)

for every real x and for some constant C > 0.

Lemma 4.2. If the conditions (a) and (b) are satisfied then K±(x, t)
(x ≤ t < ∞ ) and H±(x, t) ( −∞ < t ≤ x ) are continuous vectors at
t ̸= 2a−x, x ̸= a for which the inequalities (41) are satisfied. Moreover,
the functions K±(x, t) and H±(x, t) have the following properties:

2K±(x, x) =

(∫ +∞

x

[
U(s) +

1

4
Q2(s)

]
V ds∓ i

2
Q(x)V

)
f±
1 (x) , (50)

2K±(x, 2a− x+ 0)− 2K±(x, 2a− x− 0) =∓ i

2
Q(x)V +

+∞∫
a

(U (s) +
1

4
Q2(s))V ds−

a∫
x

(U (s) +
1

4
Q2(s))V ds

 f±
2 (x) , x < a,

(51)

2H±(x, x) =

(∫ x

−∞

[
U(s) +

1

4
Q2(s)

]
V ds∓ i

2
Q(x)V

)
g±1 (x) , (52)

2H±(x, 2a− x− 0)− 2H±(x, 2a− x+ 0) =∓ i

2
Q(x)V +

a∫
−∞

(U (s) +
1

4
Q2(s))V ds−

x∫
a

(U (s) +
1

4
Q2(s))V ds

 f±
2 (x) , x > a

(53)
respectively.

Lemma 4.3. The matrices Ã±(k) and B̃±(k) can be expressed as

Ã±(k)V = A+

[
1− 1

2ik

+∞

−∞
(U(t)± kQ(t)) exp

(
± i

2

t

−∞
qn(s)ds

)
dt

]
V

+
1

2ik

0

−∞
G±(s)V e−iksds, (54)

B̃±(k)V = −A−e−2ikaV

+
A−e−2ika

2ik

(
a
−∞(U(t)± kQ(t)) exp

(
± i

2

t

−∞
qn(s)ds

)
dt

)
V

(55)

−A−e−2ika

2ik

(
+∞
a (U(t)± kQ(t)) exp

(
∓ i

2

t

−∞
qn(s)ds± ia−∞qn(s)ds

)
dt

)
V

+
1

2ik

∞

−∞
L±(s)V e−iksds,

where0−∞ ∥G±(s)V ∥ ds < ∞ and ∞
−∞ ∥L±(s)V ∥ ds < ∞.
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Proof. By equation (24) it follows that, for real k ̸= 0 ,

G̃±(k, x) = e−ikx

[
A+V −a

−∞
A+eikt +A−eik(2a−t)

2ik
Ṽ ± (k, t) G̃±(k, t)dt

−+∞
a

eikt

2ik
Ṽ ± (k, t) G̃±(k, t)dt

]
+ eikx

[
a
−∞

A+e−ikt +A−e−ik(2a−t)

2ik
Ṽ ± (k, t) G̃±(k, t)dt

+ +∞
a

e−ikt

2ik
Ṽ ± (k, t) G̃±(k, t)dt

]
+ o(1), x → +∞.

On the other hand by (34) , we have

G̃± (k, x) = B̃±(k)eikx + Ã±(k)e−ikx + o(1), x → +∞.

A comparision of corresponding terms shows that

Ã±(k)V = A+V −
∫ a

−∞

A+eikt +A−eik(2a−t)

2ik
Ṽ ± (k, t) G̃±(k, t)dt

−
∫ +∞

a

eikt

2ik
Ṽ ± (k, t) G̃±(k, t)dt, (56)

B̃±(k)V =

∫ a

−∞

A+e−ikt +A−e−ik(2a−t)

2ik
Ṽ ± (k, t) G̃±(k, t)dt+∫ +∞

a

e−ikt

2ik
Ṽ ± (k, t) G̃±(k, t)dt. (57)

for real k ̸= 0. Now,the formulas (54) , (55) easily obtained from the

representation (48) of the solution G̃
±
(k, x). �

From the above lemma we have

Ã±(k)V = A+ exp

(
± i

2

∫ +∞

−∞
qn(s)ds

)
V−A+

2ik
WA+

1

2ik

∫ 0

−∞
G±(s)V e−iksds,

(58)

B̃±(k)V = −A−e−2ika∓ip0V +
A−e−2ika

2ik
WB +

1

2ik

∫ ∞

−∞
L±(s)V e−iksds,

(59)
where WA,WB are constant vectors in Rn,

p0 =
1

2

∞

−∞
qn(t)sgn(t− a)dt,

α0 =
1

2

∞

−∞
qn(t)dt. (60)
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Using the formulas (54) , (55) , the matricial representation of Ã±(k),

B̃±(k) (see [5]) and the Wiener-Levy theorem we can prove

Ã±(k) = A+e±iα0I +
1

2ik

∫ 0

−∞
G̃±(t)e−iktdt, (61)

B̃±(k) = −A−e−2ika∓ip0I +
1

2ik

∫ ∞

−∞
L̃±(t)e−iktdt, (62)

where
∫ 0
−∞

∥∥∥G̃±(t)V
∥∥∥ dt < ∞,

∫∞
−∞

∥∥∥L̃±(t)V
∥∥∥ dt < ∞ and I is n × n

unit matrix.The following lemma is a direct result of (61) and (61) .

Lemma 4.4. The reflection coefficient R̃±(k) is expressed as

R̃±(k)− R̃±
0 (k) =

∫ ∞

−∞
R±(s)e−iksds, (63)

where

R̃±
0 (k) = −A−

A+
e−2ika∓iγ+

I, γ+ =

∫ +∞

a
qn(s)ds (64)

and
∫∞
−∞ ∥R±(s)V ∥ < ∞.

5. Study the ISP

We recall that F̃+(k, x) is defined equivalently as the solution in the
class of continuous functions for x ≥ 0 of the equation (23) and, for fixed

x, F̃+(k, x) is continuous for Imk ≥ 0 and analytic for Imk > 0. By
applying the successive approximation method to (23) we can find the

behavior for large values of |k| of F̃+(k, x) :

F̃±(k, x) =
(
f±
1 (x)eikx + f±

2 (x)eik(2a−x)
)
V +

eikx

k
W1 (x)+

eik(2a−x)

k
W2 (x) +O

(
1

k2

)
, Imk ≥ 0, |k| → ∞, (65)

G̃±(k, x) =
(
g±1 (x)e

−ikx + g±2 (x)e
−ik(2a−x)

)
V +

e−ikx

k
U1 (x)

+
e−ik(2a−x)

k
U2 (x) +O

(
1

k2

)
, Imk ≥ 0, |k| → ∞, (66)

where Wj(x) and Uj(x) (j = 1, 2) are vectors in Rn such that W2 (x) and
U2 (x) are zero vectors for x > a and x < a respectively. Consequently,

F̃±(k, x)−
(
f±
1 (x)eikx + f±

2 (x)eik(2a−x)
)
V, for fixed x, belongs to L2(R)
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and admits a Fourier transform. In fact, similarly to the scaler case [23],

F̃±(k, x) has the following representation :

F̃±(k, x) =
(
f±
1 (x)eikx + f±

2 (x)eik(2a−x)
)
V

++∞
x K±(x, t)eiktdt, Imk ≥ 0, x ∈ R (67)

Here K±(x, t) =
(
K±

0 (x, t), ...,K±
n−1(x, t)

)
is the Rn-valued function so-

lution of the PDE system(
D2

xx −D2
tt − U (x)∓ iQ(x)Dt

)
K±(x, t) = 0, t > x, (68)

with additional conditions

f±
1 (x)

′′
V − 2

d

dx
K±(x, x)∓ iQ(x)K±(x, x)− U (x) f±

1 (x)V = 0, x > a

(69)

f±
2 (x)

′′
V − 2

d

dx

[
K±(x, 2a− x− 0)−K±(x, 2a− x+ 0)

]
∓ iQ(x)

[
K±(x, 2a− x− 0)−K±(x, 2a− x+ 0)

]
− U (x) f±

2 (x)V = 0, x < a (70)

and K±(x,+∞) = 0. It is important to remark that, if we seek U and
Q in the form given by (13) we can construct them from f+

1 , f−
1 , f+

2 ,
f−
2 ,K+ andK−. Using the (13) form in Eg. (68) and taking into account
the relations from Lemma1 we obtain the triangular system with (n+ 1)
equation and (n+ 1) unknown values q0 , q1 , ..., qn :

±i
n−1∑
j=0

qn−j (x)K
±
j (x, x)− q0(x)f

±
1 (x) = 2

d

dx
K±

0 (x, x) + f±
1 (x)

′′
,

±i
n−m−1∑
j=0

qn−j (x)K
±
j+m(x, x)−qm(x)f

±
1 (x) = 2

d

dx
K±

m(x, x),m = 1, ..., n−1,

qn(x) = ±2i
f±
1 (x)

′′

f±
1 (x)

if x > a (71)

±i
n−1∑
j=0

qn−j (x)K
±
j (x, x)− q0(x)f

±
2 (x) = 2

d

dx
K±

0 (x, x) + f±
2 (x)

′′
,

±i

n−m−1∑
j=0

qn−j (x)K
±
j+m(x, x)−qm(x)f

±
2 (x) = 2

d

dx
K±

m(x, x),m = 1, ..., n−1,

qn(x) = ±2i
f±
2 (x)

′′

f±
2 (x)

if x < a. (72)

Clearly, q0 , q1 , ..., qn are uniquely determined by the system (71) and
(72) .
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Using Eq. (58) , (59) by integration in parts we have the following

estimations for Ã±(k) and B̃±(k) as |k| → ∞ :

Ã±(k)V = A+e±iα0V +
W1

k
+O

(
1

k2

)
, |k| → ∞, Imk ≥ 0

B̃±(k)V = A−e2ika+ip0V +
W2

k
+O

(
1

k2

)
, |k| → ∞, k ∈ R

where

α0 =
1

2

+∞∫
−∞

qn(x)dx, p0 =
1

2

+∞∫
a

qn(x)dx− 1

2

a∫
−∞

qn(x)dx

and W1,W2 are constant vectors in Rn. Using the matricial representa-

tions of Ã±(k) and B̃±(k) it is easy to obtain

Ã±(k) = A+e±iα0I + T +O

(
1

k

)
, Imk ≥ 0, (73)

[
Ã±(k)

]−1
=

1

A+
e∓iα0I + T ′ +O

(
1

k

)
, Imk ≥ 0, k ̸= km, (74)

where T and T ′ are constant superior triangular matrices with zeros on
the diagonal, and

B̃±(k) = −A−e−2ika∓ip0V +O

(
1

k

)
, k ∈ R, (75)

R̃± (k) = R̃±
0 (k) +O

(
1

k

)
, k ∈ R, (76)

R̃±
0 (k) = ∓A−

A+
e∓2i(ka±γ±)I, γ± =

1

2

±∞∫
a

qn(s)ds. (77)

det Ã±(k) =
[
A+e±iα0

]n
+O

(
1

k

)
, Imk ≥ 0, (78)

det
[
Ã±(k)

]−1
=

[
A+e±iα0

]−n
+O

(
1

k

)
, Imk ≥ 0, k ̸= km. (79)

Note that R̃± (k)− R̃±
0 (k) has a Fourier transform in L2(R).

In order to establish the main integral equations of the scattering
problem we start from the formula (34) written in the form[
Ã±(k)

]−1
G̃± (k, x)−

[
Ã±(k)

]−1
B̃±(k)F̃±(k, x) = F̃∓(−k, x), k ∈ R

(80)
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and in the equivalent form for fixed x,

G±
x (k)−H±

x (k) = F̃∓(−k, x)−
(
f∓
1 (x)e−ikx + f∓

2 (x)e−ik(2a−x)
)
V

=+∞
x A±(x, t)e−iktdt, (81)

where

G±
x (k) =

[
Ã±(k)

]−1
G̃± (k, x)−

(
f∓
1 (x)e−ikx + f∓

2 (x)e−ik(2a−x)
)
V,

(82)

H±
x (k) =

[
Ã±(k)

]−1
B̃±(k)F̃±(k, x) = R̃±(k)F̃±(k, x). (83)

Let us compute the Fourier transform of functions G±
x (k) and H±

x (k).
The function G±

x (k) is continuous for Imk ≥ 0, k ̸= km, and analytic
for Imk > 0, k ̸= km. Since

G±
x (k) =

[[
Ã±(k)

]−1
− 1

A+
e∓iα0I

] [
G̃± (k, x)−

(
g±1 (x)e

−ikx + g±2 (x)e
−ik(2a−x)

)
V
]

+

[[
Ã±(k)

]−1
− 1

A+
e∓iα0I

] [(
g±1 (x)e

−ikx + g±2 (x)e
−ik(2a−x)

)
V
]

+
1

A+
e∓iα0

[
F̃±(k, x)−

(
g±1 (x)e

−ikx + g±2 (x)e
−ik(2a−x)

)
V
]

(84)

using formulas (66) and (74) we have

G±
x (k) = e−ikxO(

1

k
), Imk ≥ 0, k ̸= km. (85)

From the estimation (85) and the formulas (35) , (42) , (43) we can easily
obtain that∫ +∞

−∞
G±

x (k)e
iktdk = 2πK∓(x, t) =

M±∑
m±=1

C̃m±F̃±(km± , x)ei(km±)t.

(86)
To obtain the Fourier transform for H±

x (k), we write thus

H±
x (k) =

[
R̃± (k)− R̃±

0 (k)
] [

F̃±(k, x)−
(
f±
1 (x)eikx + f±

2 (x)eik(2a−x)
)
V
]

+
[
R̃±(k)− R̃±

0 (k)
] (

f±
1 (x)eikx + f±

2 (x)eik(2a−x)
)
V (87)

Now recalling the formulas (76) and taking into account the result (86)
we obtain the main integral equations

K±(x, t)∓A−

A+
e∓2iγ+

K±(x, 2a−t) = f∓
1 (x)F∓

0 (x+t)+f∓
2 (x)F∓

0 (2a−x+t)

+

+∞∫
x

F∓
0 (t+ y)K∓(x, t)dt, t > x, (88)
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where

F±
0 (x) = − 1

2π

∫ +∞

−∞

[
R̃± (k)− R̃±

0 (k)
]
eikxdk +

M±∑
m±=1

C̃m±ei(km±)x.

(89)
Using (69) and (70) , to the system (88) we add the coupling conditions

f−
1 (x)K+

n−1 (x, x) = f+
1 (x)K−

n−1 (x, x) , n > 1, x > a, (90)

f−
2 (x)

[
K+

n−1(x, 2a− x− 0)−K+
n−1(x, 2a− x+ 0)

]
=

f+
2 (x)

[
K−

n−1(x, 2a− x− 0)−K−
n−1(x, 2a− x+ 0)

]
, n > 1, x < a.

(91)
Note that the uniqueness property and the solution of the inverse prob-
lem can be proved by the same arguments as in [23].

Theorem 2 If the conditions (a), (b), (c) are satisfied then equations
(88) have the unique solutions K+(x, .) ∈ L1(x,∞) and K−(x, .) ∈
L1(−∞, x) for each fixed x > −∞ and x < +∞ respectively.

Proof: For each fixed x > −∞ consider the operator (see [24] )

(M+
x f)y =

{
f(y) , x > a

f(y)− A−

A+ e
−2iγ+

f(2a− y) , x < a

acting in the space L1(x,∞) (and also L2(x,∞)). It is easy to show that
the operator M+

x is invertible. Using this operator the main equation
(88) can be rewritten as

K+(x, y) + (M+
x )−1F+(x, y) + (M+

x )−1ϕ+K+(x, .)(y) = 0 , y > x (92)

where the operator ϕ+ is defined as

ϕ+f(y) =

+∞∫
x

F+
0 (t+ y)f(t)dt, y > x (93)

for each fixed x > −∞.
It is known that (see [16]) the operator ϕ+ is a compact operator in

the space L1(x,∞) (also in L2(x,∞)). By the boundness of the opera-
tor M−1

x we have that the operator M−1
x ϕ+ is also a compact operator.

Therefore, to prove the theorem, it is sufficient to show that the homo-
geneous equation

hx(y)−
A−

A+
e−2iγ+

hx(2a− y) +

+∞∫
x

hx(t)F
+
0 (t+ y)dx = 0, y > x (94)

has only the trivial solution hx(y) ∈ L1(x,∞). By our assumptions the
function F+

0 (y) and the corresponding solution hx(y) are bounded in the
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half axis x ≤ y < +∞. Therefore hx(·) ∈ L2(x,∞). Consequently, we
have

0 =

+∞∫
x

∥hx(y)∥2 dy −
A−

A+
e−2iγ+

+∞∫
x

hx(2a− y)hx(y)dy

+

+∞∫
x

+∞∫
x

hx(t)hx(y)F
+
0 (t+ y)dtdy (95)

Using the formula (95) and the Parseval’s identities

+∞∫
x

∥hx(y)∥2 dy =
1

2π

+∞∫
−∞

∥∥∥h̃(λ)∥∥∥2 dλ,
−A−

A+
e−2iγ+

+∞∫
x

hx(y)hx(2a− y)dy =
1

2π

+∞∫
−∞

R̃+
0 (λ) h̃2(λ)dλ,

where h̃(λ) =
+∞∫
x

hx(t)e
−iλtdt, we obtain

1

2π

+∞∫
−∞

∥∥∥h̃(λ)∥∥∥2 dλ+ 1

2π

+∞∫
−∞

(
R̃+ (λ)− R̃+

0 (λ)
)
h̃2(λ)dλ+

1

2π

+∞∫
−∞

h̃2(λ)dλ = 0

i.e.

1

2π

+∞∫
−∞

∥∥∥h̃(λ)∥∥∥2 dλ = − 1

2π

+∞∫
−∞

R̃+ (λ) h̃2(λ)dλ.

Therefore
+∞∫

−∞

∥∥∥h̃(λ)∥∥∥2 dλ =

∥∥∥∥∥∥−
+∞∫

−∞

R̃+ (λ) h̃2(λ)dλ

∥∥∥∥∥∥ ≤
+∞∫

−∞

∥∥∥R̃+ (λ)
∥∥∥∥∥∥h̃(λ)∥∥∥2 dλ,

that is
+∞∫

−∞

(1−
∥∥∥R̃+ (λ)

∥∥∥)∥∥∥h̃(λ)∥∥∥2 dλ ≤ 0. (96)

Since
∥∥∥R̃+ (λ)

∥∥∥ < 1 for λ ̸= 0, (96) implies that h̃(λ) ≡ 0. Consequently

the equation (94) has a unique solution.

This theorem implies that the potential functions q0(x), ..., qn(x) in
problem (1)− (2) without discrete spectrum are uniquely defined by the
right(left) reflection coefficient.
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