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1. Introduction

A function f : [0,∞) → R is said to be superquadratic provided that for
all s ≥ 0 there exists a constant Cs ∈ R such that

f (t) ≥ f (s) + Cs (t− s) + f (|t− s|) , (1.1)

for all t ≥ 0. This notion was introduced by Abramovich, Jameson and
Sinnamon in their paper [1].

In this paper we give some inequalities for the Berezin number of some
operator classes. Our arguments based on superquadratic functions and
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operators from such functions. For more definition and fact about su-
perquadratic functions and their applications, we refer to Abramovich,
Jameson and Sinnamon [1], Agarwal and Dragomir [2] and Furuta, Hot,
Pečarić and Seo [12].

Recall that the reproducing kernel Hilbert space H = H (Q) (shortly,
RKHS) is the Hilbert space of complex-valued functions on some set Q
such that the evaluation functional f → f (λ) is bounded on H for every
λ ∈ Q. Then, by Riesz representation theorem there exists a unique
vector kλ in H such that f (λ) = ⟨f, kλ⟩ for all f ∈ H. The normalized

reproducing kernel is defined by k̂λ := kλ
∥kλ∥H

. For a bounded linear

operator A acting in H, its Berezin symbol (see Berezin [6, 7]) is defined
by

Ã (λ) :=
〈
Ak̂λ, k̂λ

〉
(λ ∈ Q) .

Berezin set and Berezin number of operator A is defined respectively
by

Ber (A) := Range
(
Ã
)
=

{
Ã (λ) : λ ∈ Q

}
and

ber (A) := sup
λ∈Q

∣∣∣Ã (λ)
∣∣∣ .

It is clear from definitions that Ã is a bounded function, Ber (A)
lies in the numerical range W (A) , and so ber (A) does not exceed the
numerical radius w (A) of operator A. Recall that the numerical range
and the numerical radius are defined, respectively, by

W (A) := {⟨Ax, x⟩ : x ∈ H and ∥x∥ = 1}

and

w (A) := sup
∥x∥=1

|⟨Ax, x⟩| .

Berezin set and Berezin number of operators are new numerical char-
acteristics of operators on the RKHS which are introduced by Karaev
in [16]. For the basic properties and facts on these new concepts, see
[3, 4, 5, 10, 13, 14, 15, 17, 18, 19, 20, 23, 26, 27, 28, 29, 30, 31].

In the present paper we consider superquadratic functions and define
continuous functional calculus for some selfadjoint operators, including
positive operators, and prove new inequalities for the Berezin number of
such operators. Our arguments mainly use ideas of papers [21, 22], while
in these papers the estimation of the Berezin number is not considered.
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2. Some facts for superquadratic functions and functions
of selfadjoint operators

Let B (H) denote the C∗-algebra of all bounded linear operators on a
Hilbert space H and I denote the identity operator. If dimH = n, we
identify B (H) with the matrix algebra Mn of all n × n matrices with
complex entries. We denote by S (J) the set of all selfadjoint operators
in B (H) whose spectra lie in an interval J ⊆ R = (−∞,+∞) . Let
f : J → R be a continuous real function. For A ∈ S (J) , we mean
by f (A) the continuous functional calculus at A. Let A ∈ S ([m,M ])
and {Et} be its spectral family. Then, f (A) can be represented via the
well-known spectral representation as

f (A) =

∫ M

m−0
f (t) dEt, (2.1)

in which the integral is in terms of the Riemann-Stieltjes integral. If
x, y ∈ H, then

⟨f (A)x, y⟩ =
∫ M

m−0
f (t) d ⟨Etx, y⟩ .

It was shown in [1] that:

Lemma 2.1. If f is a superquadratic function with Cs as in (2.1), then
(i) f (0) ≤ 0;
(ii) If f (0) = f ′ (0) = 0 and f is differentiable at s, then Cs = f ′(s);
(iii) If f ≥ 0, then f is convex and f (0) = f ′(0) = 0.

Recall that a function f : J → R is called convex if and only if

f (tα+ (1− t)β) ≤ tf (α) + (1− t) f (β) ,

for all points α, β ∈ J and all t ∈ [0, 1] .
Mond and Pečarić [25] showed that if f : J → R is a convex function,

then

f (⟨Ax, x⟩) ≤ ⟨f (A)x, x⟩ , (2.2)

for all A ∈ S (J) and all unit vectors x ∈ H.
Regarding the possible refinement of (2.2), Dragomir [9] proved the

following result.

Lemma 2.2. Let f : J → R be a convex and differentiable function on
the interior J0 of J, whose derivative f ′ is continuous on J0. Then

0 ≤ ⟨f (A)x, x⟩ − f (⟨Ax, x⟩) ≤
〈
f ′ (A)Ax, x

〉
− ⟨Ax, x⟩

〈
f ′ (A)x, x

〉
,

for every A ∈ S (J) and every unit vector x ∈ H.
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Recall that a linear map is defined to be Φ : B (H) → B (K) which
preserves additivity and homogeneity, i.e., Φ (αA+ βB) = αΦ(A) +
βΦ(B) , for any α, β ∈ C and A,B ∈ B (H) . We say that the linear map
Φ : B (H) → B (K) is positive if it preserves the operator order, that is,
if A ∈ B+ (H) then Φ (A) ∈ B+ (K) . Here B+ (H) denotes the convex
cone of all positive operators on H.

Obviously, a positive linear map Φ preserves the order relation, namely,
A ≤ B ⇒ Φ(A) ≤ Φ(B) and preserves the adjoint operation Φ (A∗) =
Φ (A)∗ . Moreover, Φ is said to be normalized (unital) if it preserves the
identity operator, i.e., Φ (IH) = IK.

Recall also that a bounded linear operator A on H is selfadjoint (i.e.,
A∗ = A) if and only if ⟨Ax, x⟩ ∈ R, for all x ∈ H. For two selfadjoint
operators A,B ∈ B (H) , we write A ≤ B if ⟨Ax, x⟩ ≤ ⟨Bx, x⟩ , for all
x ∈ H.

In [24], the authors proved the following similar inequality to (2.2) for
positive linear mappings.

Lemma 2.3. If f : J → R is a convex function with f (0) ≤ 0 and A
is a Hermitian matrix, then for every vector x ∈ H with ∥x∥ ≤ 1 and
every positive linear map Φ : Mn (C) → Mm (C) with 0 ≤ Φ(I) ≤ I,
the inequality

f (⟨Φ(A)x, x⟩) ≤ ⟨Φ(f (A))x, x⟩ (2.3)

holds true.

Kian [21] proved a Jensen operator inequality for superquadratic func-
tions.

Lemma 2.4. ([21]) If f : [0,+∞) → R is a continuous superquadratic
function, then

f (⟨Ax, x⟩) ≤ ⟨f (A)x, x⟩ − ⟨f (|A− ⟨Ax, x⟩|)x, x⟩ , (2.4)

for any positive operator A and any unit vector x ∈ H.

This inequality improves (2.2) for some convex functions.

3. The Berezin number inequalities

In this section, we prove some operator inequalities in order to estimate
Berezin number of some operators on the RKHS H = H (Q).

Theorem 3.1. If f : [0,∞) → R is a nonnegative continuous su-
perquadratic function, then

sup
λ∈Q

f
(
Ã (λ)

)
≤ ber (f (A)) ,

for any positive operator A ∈ B (H (Q)).
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Proof. Let A ≥ 0, i.e., ⟨Ax, x⟩ ≥ 0 for all x ∈ H. For each s ≥ 0 it
follows from (2.1) that

f (A) ≥ f (s) I + CsA− CssI + f (|A− sI|) .
So, for every λ ∈ Q we have that〈

f (A) k̂λ, k̂λ

〉
≥ f (s) + Cs

〈
Ak̂λ, k̂λ

〉
− Css+

〈
f (|A− sI|) k̂λ, k̂λ

〉
.

(3.1)

Applying (3.1) with s =
〈
Ak̂λ, k̂λ

〉
and to use that f

(∣∣∣A− Ã (λ) IH

∣∣∣) ≥
0, we get

f
(
Ã (λ)

)
≤ f̃ (A) (λ)−

˜
f
(∣∣∣A− Ã (λ) I

∣∣∣) (λ) ≤ f̃ (A) (λ) (3.2)

for all λ ∈ Q. Taking module and supremum from the both side of the
inequality, we have that

sup
λ∈Q

f
(
Ã (λ)

)
≤ ber (f (A))

as desired. �

We need some auxiliary lemmas to prove our next result (see [11, 22]).

Lemma 3.2. Every unital positive map on a commutative C∗-algebra
is completely positive.

Theorem 3.3. ([8]) Let Φ be a unital completely positive linear map
from a C∗-subalgebra A of Mn (C) into Mn (C). Then, there exists a
Hilbert space K, an isometry V : Cm → K and a unital ∗-homomorphism
π from A into the C∗-algebra B (K) such that Φ(A) = V ∗π (A)V.

Our next result extends (2.2) for superquadratic functions.

Theorem 3.4. Let f : [0,∞) → R be a continuous superquadratic func-
tion and let Φ : Mn (C) → Mm (C) be a unital positive linear map.
Then,

f
(
Φ̃ (A) (λ)

)
≤ ˜Φ(f (A)) (λ)−

(
Φ
(
f
(∣∣∣A− Φ̃ (A) (λ) In

∣∣∣)))̃ (λ) ,

(3.3)
for every positive matrix A ∈ Mn (C) and every λ ∈ Q.

Proof. Let A ∈ Mn (C) be positive. Suppose that A ⊂ Mn (C) is the
C∗-subalgebra generated by A and I. We may assume without loss of
generality that Φ is defined on A. It follows from Lemma 3.2 that Φ
is completely positive. Hence, by Theorem 3.3, there exists a RKHS
Hilbert space K = K (Ω) , an isometry V : Cm → K and a unital ∗-
homomorphism π from A into the C∗-algebra B (K) such that Φ (A) =
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V ∗π (A)V. Obviously, f (π (A)) = π (f (A)) . Moreover, for any α ∈ C,
it is easy to see that

f (|π (A− αI)|) = π (f (|A− αI|)) . (3.4)

Since
∥∥∥V k̂λ

∥∥∥ = 1, for all λ ∈ Q, we have,

f
(〈

Φ(A) k̂λ, k̂λ

〉)
= f

(〈
V ∗π (A)V k̂λ, k̂λ

〉)
= f

(〈
π (A)V k̂λ, V k̂λ

〉)
≤

〈
f (π (A))V k̂λ, V k̂λ

〉
−

−
〈
f
(∣∣∣π (A)−

〈
π (A)V k̂λ, k̂λ

〉∣∣∣)V k̂λ, V k̂λ

〉
(by Lemma 2.3)

=
〈
f (π (A))V k̂λ, k̂λ

〉
−

−
〈
π
(
f
(∣∣∣A−

〈
π (A)V k̂λ, k̂λ

〉∣∣∣))V k̂λ, k̂λ

〉
(By (3.4) )

=
〈
V ∗π (f (A))V k̂λ, k̂λ

〉
−

−
〈
V ∗π

(
f
(∣∣∣A− V ∗π (A)V k̂λ, k̂λ

∣∣∣))V k̂λ, k̂λ

〉
=

〈
Φ(f (A)) k̂λ, k̂λ

〉
−

−
〈
Φ
(
f
(∣∣∣A−

〈
Φ(A) k̂λ, k̂λ

〉
I
∣∣∣)) k̂λ, k̂λ

〉
= ˜Φ(f (A)) (λ)−

(
Φ
(
f
(∣∣∣A− Φ̃ (A) (λ)

∣∣∣)))̃ (λ) .

Hence

f
(
Φ̃ (A) (λ)

)
≤ ˜Φ(f (A)) (λ)−

(
Φ
(
f
(∣∣∣A− Φ̃ (A) (λ)

∣∣∣)))̃ (λ)

which proves (3.3). �

Corollary 3.5. If f is non-negative, then

sup
λ∈Q

f
(
Φ̃ (A) (λ)

)
≤ ber (Φ (f (A))) .

4. Some reverse inequalities

In this section, we give some reverse inequalities for Berezin symbols
and Berezin number.

Lemma 2.1 can be improved for non-negative superquadratic func-
tions. First, we prove a reverse inequality for (3.3).

Theorem 4.1. Let f : [0,∞) → [0,∞) be a differentiable superquadratic
function whose derivative f ′ is continuous. If Φ : Mn (C) → Mm (C) is
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a unital positive linear map, then

0 ≤ ˜Φ(f (A)) (λ)− f
(
Φ̃ (A) (λ)

)
≤ ˜Φ(f ′ (A)A) (λ)− Φ̃ (A) (λ) ˜Φ(f ′ (A)) (λ)−

−
(
Φ
(
f
(∣∣∣A− Φ̃ (A) (λ) I

∣∣∣)))̃ (λ) ,

for every positive matrix A ∈ Mn (C) and every λ ∈ Q; here and in
what follows, Q is the set over which Cn is the RKHS, i.e., Cn = Cn (Ω)
as the RKHS.

Proof. Let s ≥ 0 be an arbitrary fixed number. Since f is superquadratic,
there is Cs ∈ R such that

f (t) ≥ f (s) + Cs (t− s) + f (|t− s|) , (4.1)

for every t ≥ 0. As f ≥ 0, it follows from Lemma C of the paper [22] that
f is convex and Cs = f ′ (s) . So, the first inequality follows from (2.3)

by putting x = k̂λ,n, where k̂λ,n is the normalized reproducing kernel of

the space Cn. Now, let k̂λ,m denote the normalized reproducing kernel

of the space Cm. Assume now that x ∈ Cm with x = k̂λ,m and A ≥ 0.

Using the functional calculus for (4.1) with s = A and t = Φ̃ (A) (λ) , we
obtain

f
(
Φ̃ (A) (λ)

)
≥ f (A)+f ′ (A) Φ̃ (A) (λ)−f ′ (A)A+f

(∣∣∣A− Φ̃ (A) (λ) In

∣∣∣) .

Applying the positive linear map Φ to both sides of the last inequality,
we get

f
(
Φ̃ (A) (λ)

)
≥ Φ(f (A)) + Φ

(
f ′ (A)

)
Φ̃ (A) (λ)− Φ

(
f ′ (A)A

)
+

+Φ
(
f
(∣∣∣A− Φ̃ (A) (λ) In

∣∣∣)) ,

which gives us the desired result. �

For the case Φ (A) = A, the last theorem gives an improvement of
Lemma 2.1. Namely, let f be as in Theorem 3.4. Then, we have

0 ≤ f̃ (A) (λ)− f
(
Ã (λ)

)
≤ ˜f ′ (A)A (λ)− Ã (λ) f̃ ′ (A) (λ)−

(
f
(∣∣∣A− Ã (λ) In

∣∣∣))̃ (λ) , (4.2)

for every positive operator A and all λ ∈ Q.

Since
(
f
(∣∣∣A− Ã (λ) In

∣∣∣))̃ (λ) ≥ 0, for all λ ∈ Q,an immediate corol-

lary of (4.2) is the following.
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Corollary 4.2. We have :

(i) ber (f (A)) ≥ supλ∈Q

(
f
(
Ã (λ)

))
;

(ii)
ber (f (A)) ≤ supλ∈Q

(
f
(
Ã (λ)

))
+ ber (f ′ (A)A) + ber (A) ber (f ′ (A))

≤ f (ber (A)) + ber (f ′ (A)A) + ber (A) ber (f ′ (A)) ,

since Ã (λ) ≤ ber (A) for all λ and every non-negative superquadratic
function is non-decreasing.

Example 4.3. If r ≥ 2, then f (t) = tr is a non-negative superquadratic
function on [0,∞) . If A ≥ 0 and λ ∈ Q, then applying Corollary 4.2, we
get

0 ≤ Ãr (λ)− Ã (λ)r

≤ rÃr (λ)− rÃ (λ) Ãr−1 −
(∣∣∣A− Ã (λ) In

∣∣∣r)̃ (λ) .

This implies,in particular, that :
(i) ber (A)r ≤ ber (Ar)

(ii) r
[
Ã (λ) Ãr−1 (λ)− Ãr (λ)

]
≤ Ã (λ)r + (r − 1) Ãr (λ) , which im-

plies that

sup
λ∈Q

[
Ã (λ) Ãr−1 (λ)− Ãr (λ)

]
≤ ber (A)r

r
+

r − 1

r
ber (Ar) .

It is necessary to note that, in general, the Berezin symbol is not

multiplicative, i.e., ÃB ̸= ÃB̃ (see Kılıç [23]).
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[5] H. Başaran, M. Gürdal, and A. N. Güncan, Some operator inequalities
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