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Abstract. Finding Lie symmetries of nonlinear fractional differ-
ential equations play an important role in studying fractional dif-
ferential equations. The purpose of this manuscript is to find the
Lie point symmetries of the time-fractional Buckmaster equation.
After that we use the infinitesimal generators for obtaining their
corresponding invariant solutions.
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1. Introduction

The group analysis method of differential equations was introduced
by Sophus Lie about one hundred years ago. Lie symmetries method is
an effective method to solve the problems of mathematical physics, and
researchers use it for analysis of partial differential equations (PDEs).
The fractional differential equations (FDEs) have been studied by sci-
entists about thirty years ago. There are many phenomena in the na-
ture which can be described by making use of FDEs. The fractional
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differential equations arise in many fields of sciences such as: electro-
chemistry, physics, biology, mechanics, signal processing, viscoelastic
materials [2, 15, 18, 22, 24]. Many articles have been presented on dif-
ferent definitions of fractional derivatives. The greatest numbers are the
Caputo and the Riemann-Liouville derivatives. Each fractional deriv-
ative has some advantages and disadvantages. The Caputo derivative
of a constant is zero, but Riemann-Liouville derivative of a constant is
not zero. Many researchers in different articles have tried to find the
exact solutions of FDEs. In recent years, there has been significant pro-
gression in the development of finding effective methods for obtaining
exact solutions of FDEs. These methods include the separating variables
method [7], the homotopy analysis method [8], the variational iteration
method [10], the fractional complex transform [11], the homotopy per-

turbation Pade technique [16], the G′

G2 -expansion method[19], the first
integral method[20], and so on. Many researchers obtained the exact
solutions of many nonlinear PDEs by utilizing Lie group theory, but the
question then arises: can we use this method for FDEs? There is a scarce
of literature related to FDEs up to now [6, 9, 13, 14]. One of the diffi-
culties of this type of problems originate from the non-local type of the
fractional operators. In this manuscript, we study the time-fractional
Buckmaster equation, namely,

∂αu

∂tα
− ∂2(u4)

∂x2
− ∂(u3)

∂x
= 0, t > 0, x ∈ R. (1.1)

Where 0 < α < 1, u is a function of (x, t). Thin viscous fluid sheet flows
is described using the Buckmaster equation, and the exact solutions of
this equation have been presented in many articles[1, 25].
The rest of our work is organized as follows. In Section 2 we present the
analysis of the Lie Symmetry group of FDEs. After that in Section 3
we obtain the Lie point symmetries of the time-fractional Buckmaster
equation. Finally, we obtain invariant solutions and reduced equations
of this equation in Section 4. Discussion and conclusions are summarized
in Section 5.

2. Description of the symmetry group analysis of FDEs

Finding the exact solutions of the fractional differential equations is
an important and difficult task. Therefore, much effort has been made to
obtain the exact solutions of them. We recall that symmetry is one of the
most important concepts in studying the differential equations. Find-
ing the exact solutions of differential equations using the fundamental
method of the Lie symmetries was used by many researchers. Invari-
ance of the equations under transformation groups is the basic concept
of the Lie theory. Some researchers have studied this topic, Baumann
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[3], Bluman [4], Ibragimov [12] and Olver [23]. Now we express the frac-
tional Lie group method for finding infinitesimal functions of FPDEs.
Let us assume a FPDE of form:

Dα
t u = F (x, t, u(1), . . .), α > 0, (2.1)

where u is a function of independent variables x, t, andDα
t can be defined

as below.

Definition 2.1. Dα
t is the Riemann-Liouville fractional derivative op-

erator which is defined by:

Dα
t u =


∂mu
∂tm ; α = m ∈ N,

1
Γ(m−α)

∂m

∂tm

∫ t
0

u(τ,x)
(t−τ)α+1−mdτ ; m− 1 < α < m, m ∈ N.

(2.2)

In a similar way of PDEs[5, 23], we can write

Dα
t̄ ū = Dα

t u+ ε[η
(α)
t (x, t, u, u(α), u(1), . . .)] +O(ε2), (2.3)

here η
(α)
t is given by the prolongation formula [9]

η
(α)
t = Dα

t (η) + ξxDα
t (ux)−Dα

t (ξ
xux) +Dα

t (Dt(ξ
t)u)

−Dα+1
t (ξtu) + ξtDα+1

t u, (2.4)

where Dt is the total derivative operator defined as

Dt =
∂

∂t
+ ut

∂

∂u
+ uxt

∂

∂ux
+ utt

∂

∂ut
+ uxxt

∂

∂uxx
+ · · · . (2.5)

Simplifying (2.4) using the Leibnitz formula [26]

Dα
t [f(t)g(t)] =

∞∑
n=0

(
α

n

)
Dα−n

t f(t)Dn
t g(t), α > 0, (2.6)

where (
α

n

)
=

(−1)n−1αΓ(n− α)

Γ(1− α)Γ(n+ 1)
, Γ(z) =

∫ ∞

0
tz−1e−tdt, (2.7)

it can be written [17]:

η
(α)
t =

∂αη

∂tα
+ (ηu − αDt(ξ

t))
∂αu

∂tα
− u

∂αηu
∂tα

+

∞∑
n=1

[(
α

n

)
∂n(ηu)

∂tn
−
(

α

n+ 1

)
Dn+1

t (ξt)

]
Dα−n

t (u)

−
∞∑
n=1

(
α

n

)
Dα−n

t (ux)D
n
t (ξ

x). (2.8)

We have a definition as the following.
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Definition 2.2. The equations for finding coefficients of the infinitesi-
mal operator X are given below:

X(α)[Dα
t u− F (x, t, u, u(1), . . .)]Dα

t u=F (x,t,u(1),...)
= 0, (2.9)

where

X(α) = ξx(x, t, u)
∂

∂x
+ ξt(x, t, u)

∂

∂t
+ η(x, t, u)

∂

∂u

+η
(1)
i (x, t, u, u(1))

∂

∂ui
+ · · ·+ η

(k)
i1i2··· ,ik(x, t, u, u(1), . . . u(k))

∂

∂ui1i2··· ,ik
+ η

(α)
t (x, t, u, . . . , u(α),···)

∂

∂u
(α)
t

. (2.10)

Expanding the (2.9) using (2.10) and preceding relations, we obtain
the determining equations. As a result, these obtained equations yields
Lie symmetries.

3. Application of fractional Lie symmetries of the
time-fractional Buckmaster equation

Here we employ this method to the time-fractional Buckmaster equa-
tion

∂αu

∂tα
− ∂2(u4)

∂x2
− ∂(u3)

∂x
= 0, t > 0, 0 < α < 1. (3.1)

We search the infinitesimal generators of (3.1).

Theorem 3.1. Lie symmetries of the time fractional Buckmaster Equa-
tion (3.1) are

1. If α ̸= 1
2 ,

4
5 , then we have:

ξx = c1αx+ c2, ξt = −c1t, ηu = c1αu.

Where c1 and c2 are two arbitrary constants. Therefore, the
infinitesimal generators are given by

X1.1 =
∂

∂x
, X1.2 = αx

∂

∂x
− t

∂

∂t
+ αu

∂

∂u
.

2. If α = 1
2 , then we have:

ξx = c1x+ c2, ξt = −2c1t, ηu = c1u.

Where c1 and c2 are two arbitrary constants. Therefore, the
infinitesimal generators are given by

X2.1 =
∂

∂x
, X2.2 = x

∂

∂x
− 2t

∂

∂t
+ u

∂

∂u
.
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3. If α = 4
5 , then we have:

ξx = 4c1x+ c2, ξt = −5c1t, ηu = 4c1u.

Where c1 and c2 are three arbitrary constants. Therefore, the
infinitesimal generators are given by

X3.1 =
∂

∂x
, X3.2 = 4x

∂

∂x
− 5t

∂

∂t
+ 4u

∂

∂u
.

Proof. Let us assume the one-parameter Lie group of infinitesimal
transformation in x, t, u given by

x∗ = x+ εξx(x, t, u) +O(ε2),

t∗ = t+ εξt(x, t, u) +O(ε2),

u∗ = u+ εηu(x, t, u) +O(ε2),

where ε is the group parameter, and the Lie algebra of Buckmaster equa-
tion is spanned by vector fields

X = ξx(x, t, u)
∂

∂x
+ ξt(x, t, u)

∂

∂t
+ ηu(x, t, u)

∂

∂u
, (3.2)

where

ξx =
dx∗

dε
|ε=0 , ξt =

dt∗

dε
|ε=0 , ηu =

du∗

dε
|ε=0 . (3.3)

Applying the X(α) to (3.1), we have

X(α)

[
∂αu

∂tα
− ∂2(u4)

∂x2
− ∂(u3)

∂x

]
∂αu
∂tα

− ∂2(u4)

∂x2
− ∂(u3)

∂x
=0

= 0. (3.4)

Where X(α) is given by (2.10). Expanding the (3.4), and solving obtained
system using the Maple, we obtain the Lie point symmetries for the time-
fractional Buckmaster equation. If α ̸= 1

2 ,
4
5 , then we have:

ξx = c1αx+ c2, ξt = −c1t, ηu = c1αu.

Therefore, the infinitesimal generators are given by

X1.1 =
∂

∂x
, X1.2 = αx

∂

∂x
− t

∂

∂t
+ αu

∂

∂u
.

We now apply this argument again, with α = 1
2 , to obtain:

ξx = c1x+ c2, ξt = −2c1t, ηu = c1u.

Therefore, the infinitesimal generators are given by

X2.1 =
∂

∂x
, X2.2 = x

∂

∂x
− 2t

∂

∂t
+ u

∂

∂u
.

In the same manner for α = 4
5 , we can obtain:

ξx = 4c1x+ c2, ξt = −5c1t, ηu = 4c1u.



Group analysis of  time-fractional  equation 117

Therefore, the infinitesimal generators are given by

X3.1 =
∂

∂x
, X3.2 = 4x

∂

∂x
− 5t

∂

∂t
+ 4u

∂

∂u
.

The proof is completed.

4. Invariant solutions and the reduced equations of the
time-fractional Buckmaster equation

The time-fractional Buckmaster equation is expressed in the coordi-
nates (x, t, u), so we want to reduce it by using new coordinates. By in-
troducing invariants (r,z), we obtain the new coordinates corresponding
of the infinitesimal symmetry generator, and we can reduce the men-
tioned equation [21]. Consider a Lie point symmetry

X = ξx(x, t, u)
∂

∂x
+ ξt(x, t, u)

∂

∂t
+ ηu(x, t, u)

∂

∂u
,

of the time-fractional Buckmaster equation

∂αu

∂tα
− ∂2(u4)

∂x2
− ∂(u3)

∂x
= 0, t > 0, 0 < α < 1.

Under the one-parameter group generated by X, the invariant solutions
are obtained as follows. Two linearly independent invariants r = φ(x, t)
and z = ψ(x, t) can be calculated by solving the first-order quasi-linear
PDE

X(J) = ξx(x, t, u)
∂(J)

∂x
+ ξt(x, t, u)

∂(J)

∂t
+ ηu(x, t, u)

∂(J)

∂u
= 0,

or its characteristic equations

dx

ξx(x, t, u)
=

dt

ξt(x, t, u)
=

du

ηu(x, t, u)
.

Then we write one of the invariants as a function of the other, for ex-
ample

z = f(r), (4.1)

and solve (4.1) for u. Finally, the expression of u is substituted in
equation (3.1) and a fractional ODE is obtained for the unknown func-
tion f . With this procedure, we can reduce the number of independent
variables by one. Now we obtain corresponding invariants, and present
the reduced nonlinear fractional ordinary differential equations. Finally,
we obtain the corresponding group invariant solutions of the fractional
Buckmaster equation as follow.
Case1: 0 < α < 1, X1.1 = ∂x.
In this case the corresponding invariants are given by:

r = t, z = u. (4.2)
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A solution of our equation becomes

z = f(r) ⇒ u = f(t), (4.3)

substitute (4.3) into (3.1) in order to determine the f(r). Then f(r)
fulfills the following differential equation:

dαf(t)

dtα
= 0. (4.4)

The solution of the Eq.(4.4), by using the Laplace transform, is given
by [24]

f(t) =
k

Γ(α)
tα−1. (4.5)

Where k is a constant and Γ(α) is given by (2.7).
Case2: 0 < α < 1, α ̸= 1

2 ,
4
5 , X1.2 = αx ∂

∂x − t ∂∂t + αu ∂
∂u .

In this case the corresponding invariants are given below:

r = tx
1
α , xz = u. (4.6)

Then, a solution of our equation has the form

z = f(r) ⇒ u = xf(tx
1
α ), (4.7)

and we substitute it into (3.1) to determine the f(r). Then f(r) has to
satisfy in the following differential equation:

α2∂
αf

∂rα
− 12α2f(r)4 − 3α2f(r)3 − 4rf ′(r)f(r)3 − 28rαf ′(r)f(r)3

−4r2f ′′(r)f(r)3 − 12r2f ′(r)2f(r)2 − 3rαf ′(r)f(r)2 = 0.

In the same manner, we have
Case3: α = 1

2 , X2.2 = x ∂
∂x − 2t ∂∂t + u ∂

∂u .

The corresponding invariants for α = 1
2 and X2.2 can be obtained as:

r = tx2, xz = u. (4.8)

As a result, we obtain:

z = f(r) ⇒ u = xf(tx2), (4.9)

where f(r) as solution of the following differential equation

∂αf

∂rα
− 12f(r)4 − 72rf ′(r)f(r)3 − 16r2f ′′(r)f(r)3 − 3f(r)3

−48r2f ′(r)2f(r)2 − 6rf ′(r)f(r)2 = 0.

Case4: α = 4
5 , X3.2 = 4x ∂

∂x − 5t ∂∂t + 4u ∂
∂u .

The invariants in this case have the following form:

r = tx5/4, xz = u. (4.10)
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As a result, we obtain:

z = f(r) ⇒ u = xf(tx5/4), (4.11)

by substituting it into (3.1), we conclude that f(r) has to satisfy the
following differential equation:

4
∂αf

∂rα
− 48f(r)4 − 165rf ′(r)f(r)3 − 25r2f ′′(r)f(r)3 − 12f(r)3

−75r2f ′(r)2f(r)2 − 15rf ′(r)f(r)2 = 0.

5. Conclusion

In the present study, we investigated the efficiency of the classical Lie
symmetry group analysis to the fractional differential equations. The
application of the fractional Lie symmetries method is considered to the
time-fractional Buckmaster equation with the Riemann-Liouville deriva-
tive, and we found the Lie point symmetry group of this equation. As an
application of the infinitesimal symmetries, we have presented that time-
fractional Buckmaster equation can be obtained as a nonlinear ODE of
fractional order. Finally, some group invariant solutions in an explicit
form are obtained as well.
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