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Abstract. In this paper, we establish Hermite-Hadamard type in-
equalities for uniformly p-convex functions. Also, a new fractional
Hermite-Hadamard type inequality for convex functions is obtained
by using only the left Riemann-Liouville fractional integral. Finally
some estimation of left fractional integration studies for Hermite-
Hadamard type inequalities.
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functions, Hölder inequality.

2000 Mathematics subject classification: 26D15, 26D07; Secondary

39B62.

1. Introduction

In the field of mathematics inequalities, Hermite-Hadamard’s inequal-
ity has been the subject of much attention by many mathematicians
because of its usefulness. Many researchers have extended the Hermite-
Hadamard’s inequality, to different forms, using the classical convex
function. For further details involving Hermite-Hadamard’s type in-
equality on a different concept of convex function and generalizations,
the interested reader is referred to [1, 3, 4, 11].
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The theory of convex functions has been widely studied and applied
to various fields of science. Due to its close relation to the theory of
inequalities, a rich literature on inequalities can be found in the study
of convex functions [9, 12].

Many important integral inequalities are based on a convexity as-
sumption of a certain function. Furthermore, theory of inequality is one
of the most important application fields of convex and abstract anal-
ysis, while the common usage within inequalities in convex analysis is
Hermite-Hadamard inequality.

These inequalities discovered by Hermite and Hadamard for convex
functions are very important in the literature. Hermite-Hadamard in-
equality state that if f : I ⊂ R → R is a convex function on the interval
I of real numbers and a, b ∈ I with a < b,then

f(
a+ b

2
) ≤ 1

b− a

∫ b

a
f(x)dx ≤ f(a) + f(b)

2
.

We consider the basic concepts and results, which are needed to obtain
our main results.

Definition 1.1. ([2]) A mapping f : R → R is called uniformly p-
convex function with modulus ψ : [0,+∞) → [0,+∞] if ψ is increasing,
ψ vanishes only at 0, and

f(tx+ (1− t)y) + t(1− t)ψ(|x− y|) ≤ f(x) + f(y), (1.1)

for each x, y ∈ [0,+∞) and t ∈ [0, 1].

Following definitions of the left and right side Riemann-Liouville frac-
tional integrals are well known in the literature.

Definition 1.2. The left-sided and right-sided Riemann-Liouville frac-
tional integrals Jα

a+f and Jα
b−f , for f ∈ L[a, b] of order α > 0 with

b ≥ a ≥ 0 are defined by

Jα
a+f(x) =

1

Γ(α)

∫ x

a
(x− t)α−1f(t)dt with x > a,

Jα
b−f(x) =

1

Γ(α)

∫ b

x
(t− x)α−1f(t)dt with x < b,

respectively, where Γ(α) is the Gamma function and its definition is

Γ(α) =

∫ +∞

0
e−ttα−1dt.

It is to be noted that J0
a+f(x) = J0

b−f(x) = f(x). In the case of α = 1,
the fractional integral reduces to the classical integral. Also, recall that
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the Beta function which is defined by

β(x, y) =
Γ(x)Γ(y)

Γ(x+ y)
:=

∫ 1

0
tx−1(1− t)y−1dt, x > 0, y > 0.

For more details see ([7], [11]).

In [10], M. Z. Sarikaya et al. presented the Hermite-Hadamard’s in-
equalities for fractional integrals as follows.

Theorem 1.3. ([10]) Let f : I → R be a positive function with 0 ≤ a < b
and f ∈ L[a, b]. If f is a convex function on [a, b], then the following
inequality for fractional integrals holds.

f(
a+ b

2
) ≤ Γ(α+ 1)

2(b− a)α
[Jα

a+f(b) + Jα
b−f(a)] ≤

f(a) + f(b)

2
.

In [5],[6],[8] the authors used the following equality to obtain some
inequalities with respect to Hermite-Hadamard inequality.

Lemma 1.4. ([8]) Let f : Io ⊂ R → R be differentiable function on Io

and let a, b ∈ Io with a < b and f ′ ∈ L1[a, b], then

αf(a) + f(b)

α+ 1
− Γ(α+ 1)

(b− a)α
Jα
a+f(b)

=
b− a

α+ 1

∫ 1

0
[1− (α+ 1)tα]f ′(ta+ (1− t)b)dt.

Lemma 1.5. ([6]) Let f : Io ⊂ R → R be twice differentiable function
on Io and let a, b ∈ Io with a < b and f ′′ ∈ L1[a, b], then

f(a) + f(b)

2
− 1

b− a

∫ b

a

f(x)dx =
(b− a)2

2

∫ 1

0

t(1− t)f ′′(ta+ (1− t)b)dt.

This paper aims to show that Hermite-Hadamard type inequalities are
established for uniformly p-convex functions. Moreover, a new fractional
Hermite-Hadamard type inequality for convex functions is deduced by
using only the left Riemann-Liouville fractional integral. Finally we ob-
tain some estimation of left fractional integration with respect Hermite-
Hadamard type inequalities.

2. Hermite-Hadamard’s inequality for uniformly p-convex
functions

In this section we give a new result of the Hermite-Hadamard inequal-
ities for uniformly p-convex functions.
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Theorem 2.1. Let f : [a, b] → R be a uniformly p-convex function with
modulus ψ. Then for each α > 0 the following inequalities for fractional
integrals hold:

f(
a+ b

2
) +

Γ(α+ 1)

2α+2(b− a)α
Jα
(a−b)+ψ(|a− b|)

≤ Γ(α+ 1)

(b− a)α
[Jα

a+f(b) + Jα
b−f(a)]

≤ 2(f(a) + f(b))− 2αβ(α+ 1, 2)ψ(|a− b|).

Proof. In Equation (1.1), set t := 1
2 , then

f(
x+ y

2
) +

1

4
ψ(|x− y|) ≤ f(x) + f(y). (2.1)

Now, taking x := ta+ (1− t)b and y := (1− t)a+ tb in Equation (2.1)
and multiplying both sides of this equation by tα−1 and then integrating
the resulting inequality with respect to t over [0, 1], we obtain∫ 1

0
tα−1f(

a+ b

2
)dt+

1

4

∫ 1

0
tα−1ψ(|(2t− 1)(a− b)|)dt

≤
∫ 1

0
tα−1f(ta+ (1− t)b)dt+

∫ 1

0
tα−1f((1− t)a+ tb)dt,

by making the change of variables ta+ (1− t)b := x, (1− t)a+ tb := y
and (2t− 1)(a− b) := z, then

f(a+b
2 )

α
+

1

4

∫ a−b

b−a
(
b− a− z

2(b− a)
)α−1ψ(|z|) dz

2(a− b)
≤∫ a

b
(
b− x

b− a
)α−1f(x)

dx

a− b
+

∫ b

a
(
y − a

b− a
)α−1f(y)

dy

b− a
,

therefore

f(a+b
2 )

α
+

Γ(α)

2α+2(b− a)α
Jα
(a−b)+ψ(|a− b|) ≤ Γ(α)

(b− a)α
[Jα

a+f(b) + Jα
b−f(a)].

Conversely, since f is uniformly p-convex we have

f(tx+ (1− t)y) + t(1− t)ψ(|x− y|) ≤ f(x) + f(y), (2.2)

now, replace x by y then

f(ty + (1− t)x) + t(1− t)ψ(|x− y|) ≤ f(y) + f(x), (2.3)

by adding Equation (2.2) to Equation (2.3), we arrive at the following
equation:

f(tx+ (1− t)y) + f((1− t)x+ ty) + 2t(1− t)ψ(|x− y|) ≤ 2f(x) + 2f(y). (2.4)
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Put x := a and y := b in Equation (2.4) and also multiplying both sides
of this equation by tα−1 and then integrating the resulting inequality
with respect to t over [0, 1], we obtain∫ 1

0
tα−1f(ta+ (1− t)b)dt+

∫ 1

0
tα−1f((1− t)a+ tb)dt

+

∫ 1

0
2tα(1− t)ψ(|a− b|)dt

≤
∫ 1

0
2tα−1f(a)dt+

∫ 1

0
2tα−1f(b)dt,

so

Γ(α)

(b− a)α
[Jα

a+f(b) + Jα
b−f(a)]

≤ 2f(a) + 2f(b)

α
− 2β(α+ 1, 2)ψ(|a− b|),

as asserted. �

3. Fractional Hermite-Hadamard type inequality for
convex functions

In this section we will prove the identity related to Lemma 1.5 and
deduce a new fractional Hermite-Hadamard type inequality for convex
functions by using only the left Riemann-Liouville fractional integral.

Lemma 3.1. Let f : Io ⊂ R → R be twice differentiable function on Io

and let a, b ∈ Io with a < b and f ′′ ∈ L1[a, b], then

αf(a) + f(b)

α+ 1
− Γ(α+ 1)

(b− a)α
Jα
a+f(b)

=
(b− a)2

α+ 1

∫ 1

0
[t− tα+1]f ′′(ta+ (1− t)b)dt. (3.1)

Proof. By applying the integration by parts on the right hand side of
Equation (3.1), we have∫ 1

0

[t− tα+1]f ′′(ta+ (1− t)b)dt

=
t− tα+1

a− b
f ′(ta+ (1− t)b)|10 −

1

a− b

∫ 1

0

[1− (1 + α)tα]f ′(ta+ (1− t)b)dt

=
1− (1 + α)tα

(b− a)2
f(ta+ (1− t)b)|10 −

α(1 + α)

(b− a)2

∫ 1

0

tα−1f(ta+ (1− t)b)dt

=
αf(a) + f(b)

(b− a)2
− α(1 + α)

(b− a)2

∫ 1

0

tα−1f(ta+ (1− t)b)dt.

�
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Corollary 3.2. Let α = 1 in Lemma 3.1, then the inequality in Lemma
1.5 is obtained.

Theorem 3.3. Let f : Io ⊂ R → R be a twice differentiable function on
Io and let a, b ∈ Io with a < b. If the function |f ′′| is a convex function
on [a, b], then

I(f) = |αf(a) + f(b)

α+ 1
− Γ(α+ 1)

(b− a)α
Jα
a+f(b)|

≤ (b− a)2

α+ 1
[

α

3(α+ 3)
][|f ′′(a)|+ |f ′′(b)|].

Proof. Using Lemma 3.1, we have

I(f) =
(b− a)2

α+ 1

∫ 1

0

|t− tα+1||f ′′(ta+ (1− t)b)|dt

≤ (b− a)2

α+ 1

∫ 1

0

|t− tα+1||t||f ′′(a)|dt+ (b− a)2

α+ 1

∫ 1

0

|t− tα+1||1− t||f ′′(b)|dt

≤ (b− a)2

α+ 1
|f ′′(a)|

∫ 1

0

t2(1− tα)dt+
(b− a)2

α+ 1
|f ′′(b)|

∫ 1

0

|t− t1+α|(1− t)dt

≤ (b− a)2

α+ 1
|f ′′(a)|[

∫ 1

0

t2dt−
∫ 1

0

tα+2dt] +
(b− a)2

α+ 1
|f ′′(b)|[

∫ 1

0

t2dt−
∫ 1

0

tα+2dt]

≤ (b− a)2

α+ 1
|f ′′(a)|[ 1

3
− 1

α+ 3
] +

(b− a)2

α+ 1
|f ′′(b)|[ 1

3
− 1

α+ 3
]

≤ (b− a)2

α+ 1
[
α|f ′′(a)|+ α|f ′′(b)|

3(α+ 3)
].

�

Theorem 3.4. Let f : Io ⊂ R → R be twice differentiable function on
Io and let a, b ∈ Io with a < b. If the function |f ′′|q is a convex function
on [a, b] for some q > 1, then the following inequality holds:

I(f) = |αf(a) + f(b)

α+ 1
− Γ(α+ 1)

(b− a)α
Jα
a+f(b)|

≤ (b− a)2

α(α+ 1)
(β(

p+ 1

α
, p+ 1))

1
p [
|f ′′(a)|q + |f ′′(b)|q

2
]
1
q ,

where, 1
p + 1

q = 1.
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Proof. By using Lemma 3.1, power mean inequality and the convexity
of |f ′′|q, we have

I(f) =
(b− a)2

α+ 1

∫ 1

0
|t− tα+1||f ′′(ta+ (1− t)b)|dt

≤ (b− a)2

α+ 1
(

∫ 1

0
|t|p|1− tα|pdt)

1
p (

∫ 1

0
|f ′′(ta+ (1− t)b)|qdt)

1
q

≤ (b− a)2

α+ 1
(

∫ 1

0
tp(1− tα)pdt)

1
p (

∫ 1

0
t|f ′′(a)|q + (1− t)|f ′′(b)|qdt)

1
q

≤ (b− a)2

α(α+ 1)
(β(

p+ 1

α
, p+ 1))

1
p [
|f ′′(a)|q + |f ′′(b)|q

2
]
1
q .

Note that ∫ 1

0
tp(1− tα)pdt =

∫ 1

0
u

p
α (1− u)p

α
√
u

αu
du

=
1

α

∫ 1

0
u

p
α
+ 1

αu−1(1− u)pdu

=
1

α

∫ 1

0
u

p−α+1
α (1− u)pdu

=
1

α
β(
p+ 1

α
, p+ 1).

�
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