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ABSTRACT. A weighted slant Toep- Hank operator Lf; with symbol
¢ € L*>(p) is an operator on L?(8) whose representing matrix con-
sists of all even (odd) columns from a weighted slant Hankel (slant
weighted Toeplitz) matrix, 8 = {8n}nez be a sequence of positive
numbers with Bp = 1. A matrix characterization for an operator to
be weighted slant Toep-Hank operator is also obtained.
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1. INTRODUCTION

Let C and Z denote the set of all complex numbers and integers re-
spectively. Throughout this paper, the spaces are considered, unless
otherwise stated, under the assumption that the sequence 5 = {8, }nez
is a semi-dual sequence of positive numbers (that is 8, = f_, for each
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Consider the spaces

o0

L(B) ={f(2) = Z anz"|a, € C, HfH%} = Z |an|*Bn* < oo}

n=—oo n=—oo

and

H2(6) = {f(z) = Zanzn}an e C, HfH%B = Z ‘an’25n2 < OO}
n=0 n=0

The space (L*(8), || . ||3) is a Hilbert space with the inner product
defined by
< Z anz", Z bnz”> = Z an, b Bn>.

The set {e, : en(z) = 2"/Bn}nez forms an orthonormal basis for the
space L?() and H?(f3) is a subspace of L?(3).

o0
Let L*°(B) denote the set of formal Laurent series ¢(z) = > apz"

n=—oo

such that ¢L?(8) C L?*(B3) and there exists some ¢ > 0 satisfying ||¢ f]|3
< c||f|lg for each f € L?(B). For ¢ € L°°(B), define the norm ||¢||~ as

1]l = inf{c > 0 [[¢f]lp < clf]ls for each f € L*(B)}.

L>(B) is a Banach space with respect to || - |oo. Also, L>(3) C L?(f).
H®(j3) denotes the set of formal power series ¢ such that ¢H?(3) C
H?(B). These weighted sequence spaces cover Bergman, Hardy, Dirichlet
and Fischer spaces for specifically designed sequences = {3,,} and thus
become more demanding. For the detailed study of these spaces, we refer
[11] and the references therein. If ¢ € L*°(), then the weighted Laurent

operator Mf on L%(j) is given by

Mgek(z) :,31k Z anﬁn—i—ken-&-k’('z)'

n=—oo

If we put ¢(z) = z, then the operator Mfek(z) = %Zlekﬂ(z), for all
k € Z, and is known as a weighted shift [11].

The Hankel and Toeplitz operators arise in plenty of applications like
stationary processes, perturbation theory, wavelet analysis and many
more. For the detailed study of these operators and their applications,
we refer [[5, 6, 7, 10]] and the references therein. Over the years, many
generalizations of these operators also came up including slant Hankel
[1] and slant Toeplitz [8] operators on the space L?(T), T being the unit
circle. Meanwhile, the weighted sequence spaces L?(3), H?(3) and their
generalizations came up and gained popularity with the work of Shields
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[11] and Lauric [9]. Further, the notions of slant Toeplitz (slant Hankel)
operators were lifted to slant weighted Toeplitz (weighted slant Hankel)
operators on the space L%(3) (see [2] and [3]).

Motivated by all these developments and the study of a slant Toep-
Hank operator Ly on L?*(T) discussed in [4] (whose matrix representa-
tion provides a slant Hankel (slant Toeplitz) matrix if only even (odd)
columns are considered), we now introduce and study the notion of a
weighted slant Toep-Hank operator Li on the space L?(3). In the sec-
ond section, we obtain various characterizations for an operator to be
weighted slant Toep- Hank operator. In the third section, we obtain sym-
bols for any weighted slant Hankel or slant weighted Toeplitz operator
to be a weighted slant Toep-Hank operator.

2. MAIN RESULT

The main aim of this section is to find characterizations for weighted
slant Toep-Hank operators in terms of matrices and operator equations.
We begin with the following definitions of operators frequently used in
the paper.

Definition 2.1. [2] For ¢ € L*°(3), a slant weighted Toeplitz operator
Uf on the space L?(3) is an operator given by U = VVfBMf7 where W5
be the operator on L?(3) given by

Bm if e
When(z) = 4 o ém(z) if n=2m for some m € Z ‘
0 otherwise

Definition 2.2. [3] A weighted slant Hankel operator K g induced by ¢
in L>(f) is an operator on L?(3) given by K(’f = JﬂwﬁMf, where J”
is the reflection operator on L2() given by J%(e,) = e_,, for n € Z.

It is known [3] that if the sequence 8 = {3, }nez is semi-dual, then the
expression ¢(z) = io: a_pz" is in L*°(p) for each ¢(z) = ioz anz"

n=-—o0o n=-—o00
in L*(p).
oo
For ¢(z) = ngw an 2", the operators U(f and Kg satisfy that
o0
Uéj@](z) = Z a2n736n€n(z)
BJ n=—00
and
o
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for each j € Z.

Definition 2.3. [4] Let ¢ € L>(T). A slant Toep-Hank operator L
on L*(T) induced by ¢ is given by Ly = K,W + Uz&M’ where W and

M are operators on L?(T) given by W (ea,) = e,, otherwise zero and
M(eant1) = en, otherwise zero.

We now extend the notion of slant Toep-Hank operator to L%(3) as
follows.

Definition 2.4. Let ¢ € L>®(8). A weighted slant Toep- Hank opera-

tor Lg on L?(B) is given by Lg = KgWB + U%Mﬁ, where we define
4

operators MP and W# on L2(3) as

MtPe, — e(n=1y if n is odd, and TP, — e(zy ifnis even,
0 if n is even if nis odd

for each n € Z.

It is worth noticing that weighted slant Hankel and slant weighted
Toeplitz operators are linear with respect to their symbols. Thus, the

class {L§|¢) € L*(B)} is a linear subspace of B(L?(f3)), the space of all

bounded operators on L?(f3), that is, Lg + Li = Lgﬂ/) and oaLg = L§¢.

Furthermore, HLiH < 2||¢]|oo and L =0 if and only if ¢ = 0. One
can also observe that the correspondence ¢ — Lf) is an injective linear

mapping from L*®(3) into B(L?(B)). The matrix of Li with respect to
the orthonormal basis {e,, : n € Z} of L?(f) is of the form

awg el ery el e al
28 SEZE SRS T S S -
af  ap @R a R 0y o,
i i s S
TS T RS S
aoy el osf i aul o
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As is observed in the case of slant Toep-Hank operators, the ma-
trix of weighted slant Toep-Hank operator L'g provides the matrix of

weighted slant Hankel operator Kg if only even columns are consid-

ered and the matrix of slant weighted Toeplitz operator U f 5 if only odd

oo
columns are considered. Further, if ¢(z) = > a,z" is the Fourier
n=—oo

expansion of ¢ and {;;}; jez denotes the matrix of the operator LA ,
then the ()" entry is given by (a;;) = <a,2¢,n%>, if 5 = 2n and
<ozi,j> = <a,gi+n+1g—i>, if j =2n+1, n € Z. Clearly, {o ;}i jez satisfies

the following relations:

B2j—1
B+

Py o= Bo ;
Xkt dj—1 = B 5, Yh—idj = B, VK0 for k,j € Z

(2.1)

ﬁakﬂ‘,zg‘ﬂ = 5'%(],;)%—]',4]'—2 = %ak,l for k, j € Z.
In [2] and [3], the matrix characterizations for slant weighted Toeplitz
and weighted slant Hankel operators are obtained. Similarly, one can ex-
pect a matrix characterization for weighted slant Toep- Hank operators.
For that purpose, we introduce the following notion.
A doubly infinite matrix {c; j }i jez is said to be a weighted slant Toep-
Hank matrix if it satisfies the relation (2.1).
We begin with the result which serve as a great tool for our study.

Lemma 2.5. If A is any bounded linear operator on L*(B3) such that
its matriz {oy ;}ijez is a weighted slant Toep-Hank matriz, then the
following holds:

—1

(1) ﬂ%(jii)aifk,2j+4k = Bﬂfjam;‘ fori,j, k € Z.

(2) %jf Qit12j45 = %O‘iﬂj-‘rl fori,jeZ.
Proof. We first prove (1). Let ¢/, k" and j' be any integers. First we con-
sider the case when j” is an odd integer. As {«; ;}i jez is a weighted slant
Toep- Hank matrix, it satisfies the relation (2.1). Hence, for each k,j €
Z,

Ba2j—1

0
Of—j4j—2 = 7 Q1.
B (k—j) Bk

On substituting k = ¢/ + (£472), j = 724 and k = i/ - (£FL),j = 42
successively in the above equation, we get

B2k Bo By

Ol k! 247 /= a, i’ = Qi 947
6—(i’—/€') oA Bi/+(gj/+1) 1/+(%),1 Bfi’ 2
2
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Now consider the case when j' is an even integer. Again from relation
(2.1), for each k,j € Z,

Pai ag ‘4‘276O Q0
B—(k—]) VIR /B—k )
This equatlon on substituting k = i’ + (%) | = # and k = ¢ +
(j/) j= 3 successively, gives that
Bijr 2k s it = Bo N By o s
Aii/_gj/_,'_/_i.,/ io—i'i/7j/,
I} (i —K') Bf('iur%) v+5, i

This completes the proof of (1). Similarly, (2) can be obtained using the
equations

@ak+‘4'+l Bo —ay,1 and Paj P gy jajo1 = 70%0
By B Br+j Mg
from (2.1). O

In [12], Zorboska discussed the notion of composition operator C’g
(f = fo¢) on the weighted sequence spaces. It is evident from here
that if the sequence {f,}nez be such that the sequence {%—:}nez is
bounded, then the composition operator C’f 5 is a bounded operator on
L?*(B). For B, = 1 for each n, the operator CEQ coincides with the
composition operator C2 on L?(T). Further, it is proved in [4] that AC,.
is a slant Hankel operator and AM,C',2 is a slant Toeplitz operator for
every slant Toep-Hank operator A on L?(T). However, we will see that
this is not the situation in case of weighted slant Toep-Hank operator.

It is known that corresponding to the weight sequence {f,}nez of
positive real numbers, a doubly infinite matrix {\; ;}; jez is called

(1) slant weighted Toeplitz matrix 1f )\ i = gi—ﬁ/\prl,ﬁg for each

1,7 € Z.
(2) weighted slant Hankel matrix if %)\M = Bﬁj; " Ni—k j+or for
each 1,7,k € Z.

Under the assumptions of 5 = {3, }nez being semi-dual and {%—:}nez
being bounded, it is shown in [2] ([3]) that an operator on L?(B) is
slant weighted Toeplitz (weighted slant Hankel) operator if and only if
its matrix is a slant weighted Toeplitz (weighted slant Hankel) matrix.
We show through next example that for a weighted slant Toep- Hank
operator A on L?(j), ACZB2 and AZ\IZBC'ZB2 need not be weighted slant
Hankel and slant weighted Toeplitz operator respectively.
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Example 2.6. Let ¢(z) = 273+ 1 and 3 = {8, }nez be defined as
1 ifn=0,1,-1
Bn = { / .

2  otherwise

Then {f,} is a bounded semi-dual sequence such that % < 55 11 <1

for n > 0 and {%—:}nez is bounded. We see that ¢ € L*°(3). Con-
sider the weighted slant Toep-Hank operator A (= Lg) on L%(3). Let
{aijtijez, {Nijtijez and {7i;}ijez be the matrices of A, AC’?2 and
AM ZB Cf » respectively with respect to the orthonormal basis {e,, },ecz of
L*(3). Now using Lemma 2.5, we find that the matrix {\; ;}; ez of
AC’f , satisfies

5@;22) Ni—kji2k = ﬁﬁj;% <A
Bjt2k <523+4k
B(i—k) " Bi+2k
_ Pk Prjrar Bi

B—(i—k) M-k 2j+ak = Bij+2k 8"
and ﬁ)",j = g” ;95 for each 4,5,k € Z. Thusfor i = j =k =1, we
find that ﬂﬁ% Nickjtok =1 #2= *BJ )\” Hence, ACB2 can not be a

k)
weighted slant Hankel operator.

On the similar lines of computation, we obtain that

Bjt2 Bit2 P Baj+s Bj
= Yitlj+2 = AMECY,ej40, i =G 2541
Big1 5+1< G Cit1) = Bjve Bi 7

and ﬂ%%j = %Oﬁ,%ﬂ for each i,j € Z. These for i = j = 1 show

that gi—if'yiﬂ,ﬁg =1#2= %%J. This shows that AMZ’BC'f2 can not
be a slant weighted Toeplitz operator.

2€j4-2k, €i— k>

Aegjyak, €imk)

In order to derive a weighted slant Hankel operator (slant weighted
Toeplitz operator) from a given weighted slant Toep-Hank operator, we
proceed to define the following operators.

Definition 2.7. Consider the following operators defined for f(z) =
o0
S anz™ € L3(B),

(1) An operator C’fQ on L?(B3) is defined as
@) = 3
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(2) An operator MY on L%(8) is defined as

Clearly ol > and M} 5 are bounded linear operators on L?(3). Further,
2n

C’fz (en) = CEQ(Bn) 6— = egn, and M (e,) = ey for each n € Z.
The following result is now immediate.

Proposition 2.8. Let f = {B,}nez be a sequence such that {%}nez
is bounded. If matriz of any bounded linear operator A defined on L*(B)
is a weighted slant Toep-Hank matriz, then AC’ZBQ is a weighted slant

Hankel operator and AJ\ZECA’ZB2 1s a slant weighted Toeplitz operator on
L2(8).

It is clear that the matrix representation of a weighted slant Toep-
Hank operator on L%(3) is always (without 8 = {8, }nez being semi-
dual or {%}nez is bounded) a weighted slant Toep-Hank matrix. How-
ever, these additional assumptions on the sequence {f,, },ez along with
Proposition 2.8 help us to prove the main result of this section as follows.

Theorem 2.9. Let 8 = {Bn}nez be a sequence such that {%}nez is
bounded. Then for a bounded operator A on L*(8), the following are
equivalent.

(1) A is a weighted slant Toep-Hank operator.

(2) Matriz of A with respect to the orthonormal basis {en}nez of
L?(B) is a weighted slant Toep-Hank matriz.

(3) A satisfies the following equations:
(a) M2 AC% = ACY, MY,

= AMféﬁ MY,

Proof. Let {c ; }iJEZ denotes the matrix of operator A with respect to
the orthonormal basis {ep }nez of L*(B).

(1) implies (2) is obvious. For the reverse, assume that the matrix
{ci;}ijen of Ais a weighted slant Toep-Hank matrix and hence satis-

fies the relation (2.1). Using Proposition 2.8, Aé’f , 18 a weighted slant

Hankel operator and AM. zﬁ C’f , is a slant weighted Toeplitz operator on
~ ~ ~ oo

L?(B). Let AMEC’ZB2 = Uf and AC’?2 = K? for some ¥(2) = > by2"

n=—oo
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and ((z) = > c¢p2" in L(f). Let {vi;}ijez and {)\;;}ijez be the

n=-—00
matrices of ANPCP , and ACP , respectively. Then using the definition
z 4
of slant weighted Toeplitz operator, we have 7; ; = %bgi_]‘ for i,j € Z.
This fact along with the equations in (2.1) yields that for each n € Z

<¢ . > _ boi, = %’Yk,o = %<AM£O§2€0,6}€> if n =2k
o bop—1 = %%,1 = %(AMfozel,ek> ifn=2k—-1
£0 if n = 2k
N %O&k,g = ﬁ,(ﬁko,l)ak_lvo ifn=2k—-1"
o0
Define a complex valued function ¢(z) = > an2", where a, =

n=—oo

b_pi1 for n € Z. Then ¢ = z¢ so that ¢ € L®(83) (since {By}nez is
semi-dual). Now by the definition of weighted slant Hankel operator, we

have \; ; = %C_Qi_j = %C_Qi_j for i,j € Z. This gives that for n € Z

o= (o) = { B0 = 5(ACReo,e) it =2k
n y €n %/\k@ = %<ACZ’8261,€]€> ifn=-2k—1
— %O‘k,ﬁ = bog41 = a—gk if n = —2k
%O‘k,? = gfilak—f—l,l =a_op_1 ifn=-2k-1
= ap.

This provides that ¢ = ¢. Hence, Aé’f » is the weighted slant Hankel
operator Kg and AMZBC’EQ is the slant weighted Toeplitz operator Ui?

Now each h(z) € L%*(3) can be written as h(z) = hyi(z2) + zha(2?)
with hi,he € L?(B). Say, hi(z) = ioj anz" and ho(z) = io: bp2".

n=—oo n=-—oo

o0 o
Then, h1(2%) = > an2?", zhe(2?) = > bpz®! and

Lin(z) = (K§W5+U5$Mﬁ)(h1(zz)+zh2(22))

= K(f( Z anﬁQnen) ""_Ufg( Z bnﬁ2n+len)

= ACL( D" anPonen) + AMPCEL( D" buPontren)

n=—oo n=—oo
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A( ) anBomean+ D buPantieanti) = Ah(z)

n=—oo n=—oo

for each h € L?(B). This implies that A = Lg and hence (1) and (2) are
equivalent.

Now we prove the equivalency of (1) and (3). To obtain (3) from
(1), suppose that A is a weighted slant Toep-Hank operator. Then, its
matrix {a; ; }i jez satisfies (2.1). As any bounded operator B on L? (B) is
weighted slant Hankel (slant weighted Toeplitz) if and only if M f B =
BMZ’B2 (MZBB = BMf;), we obtain (a) and (b) using Proposition 2.8.

From (2.1), ﬁ%ii’)ak_jAj_Q = %a;@l for each k,j € Z. It provides

on replacing k by £+ 1 and j by 1, that Aak 9 = ﬁfolakH_l 1 for each
k € Z. Then <Mf,1AMf,105261,6k> = 519 . <A61,6k+1> 55 . k41,1 =
b =& <A€2,6k> = <AM§2M£*el,ek> for each k € Z. Thus we have

Bo ¥k:2 = By
(c).

Now on replacing k by k—1 and j by 1 in the equation ’Bﬁ

= mak,o of (2.1) and applying the same arguments as earher, we obtam

(d).
In order to obtain (1) from (3), suppose that A satisfies (a), (b),

(c) and (d). Then, (a) and (b) respectively provide that AC’Z’B , is the

weighted slant Hankel operator and AM Zﬁ C’f 5 is the slant weighted Toeplitz

operator. The equations (c) and (d) respectively gives gl Qg2

_ B Bo
Br+1 B—(k-1)
On using these facts and applying the arguments as in the proof of (2)

implies (1), we obtain that A is a weighted slant Toep-Hank operator.

This completes the proof. O

Q1,1 and %ahg = ag—1,0 for each k € Z.

The adjoint Lg)* of a weighted slant Toep-Hank operator Lg is nothing
but an operator on L?(f3) satisfying Li* = Wﬁ*Kf)* + MB*UZ%*, where
WP and MP" on L2(j) are defined as W7 (e,) = eg, and MP" (e,,) =
eant1 for n € Z. Further, if ¢(z) = § anz™ € L*°(B), then for each

n=—m

JEZL

oo

= B_; Z — e, aundU~ ej = B Z %en.

n=—oo n=—oo
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It is now natural from Theorem 2.9 that the adjoint of a weighted slant
Toep-Hank operator need not be a weighted slant Toep- Hank operator
on L?(B). This can be verified from the following example.

Example 2.10. Let ¢(z) = 27! and 8 = {B,}nez be the sequence as
in Example 2.6. Clearly, ¢ € L*°(3). But the matrix of Lg* is not a

weighted slant Toep-Hank matrix as, if we take k = 2 and j = 2 then
the condition

* Bo *
<Lf, €4j-1,€hj) = m@i €0, € )

Baj—1

Brotj
implies that 0 = % Hence L'g* is not a weighted slant Toep- Hank oper-
ator on L2(f3).

However if Lg*, for ¢ € L*°(p), is a weighted slant Toep- Hank oper-
ator on L?(f3), then from relation (2.1), for each k, j € 7Z,

B2j B Bo /s p*
——— (L’ eqi,ep_i) = ——(L eg,er).
5_(k_j)< o etjrerj) = g~ (L co.ex)
In particular, for k = j =2[ (I € Z),
Bai

5,y _ Do 5
E 681,K¢60> = E<€Q7K¢€l>.

This implies that a_; = 5; B_o; B4 P—_g; a_1¢g for each | € Z. From here
we observe that if the sequence {8, }nez is such that 8, = 1 for each n,
then using the fact that lim, _,., a, = 0, we have a,, = 0 for all n € Z.
So ¢ = 0.

The above observation can be summed up in the following form.

Remark 2.11. The only self-adjoint slant Toep-Hank operator on L?(T)
is the zero operator.

3. CONNECTION AMONG VARIOUS CLASSES

Proposition 2.8 helps us to obtain a weighted slant Hankel operator or
slant weighted Toeplitz operator from a given weighted slant Toep- Hank
operator. In the present section, our aim is to compute the intersection
of the class of weighted slant Toep-Hank operators with the classes of
weighted slant Hankel and slant weighted Toeplitz operators. Let the
classes of weighted slant Toep-Hank, weighted slant Hankel and slant
weighted Toeplitz operators be denoted by Cysi—n, Cuwsn and Cgyt re-
spectively. Now we have the following.

Theorem 3.1. A weighted slant Hankel operator on L*(B) is a weighted
slant Toep-Hank operator if and only if it is a zero operator.
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Proof. Let a weighted slant Hankel operator A be a weighted slant Toep-
Hank operator on L?(B), say A = Lﬁ for some ¢(z) = Z anz"

n=-—o0o
L*>(B). Thus, its matrix satisfies equations in (2.1). The operator A,
being a weighted slant Hankel operator, satisfies

Z a_2n— ]B—nen( )

=—00

Aej(z) = L¢ J ,8]

Now using relation (2.1), for all k, j € Z, we have

B2 Bo
B—(k—j) Bk

<Lge4j, ek_j> = <Lgeo, ek>.

Hence
o0

ﬂ S - , N ﬁ 1
ﬁ—(k—j) <ﬁ4j L a—2n—4j Bfnen, ek—]> B_k <BO n:Z_OO afgnﬁfnen’ €k>-

Therefore a_g,_2; = a_ 2;%) Y for all k,j € Z. Putting k = 0, we get
a_oj = ao% for all j € Z.
Again from (2.1) for k,j € Z,

B B
2 ]1 <Lg€4j—1aek+j> = ﬁ—_ok@ieo,ek)

Using the same computations as above, we get a_g; 41 = ao% for all

o0 o0
j € Z. Now, since [ao?> 3= ()" < 3 g4n\a0| Bul= 3 lan8a <

n=—oo n=—oo n=—oo
o0, hence we must have ag = 0 so that ¢ = 0. This provides that A is a
zero operator. The converse is obvious. Hence the theorem. O

The next result, proof of which follows almost along the same argu-
ments as made in Theorem 3.1, is the following.

Theorem 3.2. A non-zero slant weighted Toeplitz operator cannot be a
weighted slant Toep-Hank operator on L*(3).

From Theorem 3.1 and Theorem 3.2, we conclude that
Cwst—h N Cwsh = {O} = Cwst—h N Cswt-

Our next result discusses the product of weighted slant Toep- Hank op-
erator with the operator W# as well as with the weighted Laurent opera-
tor. We recall that the adjoint of W# is given by W# e, (2) = 5 " eon(2),
n € 7.

Theorem 3.3. For ¢, in L*>(3),
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(1) WﬁLg 1s a weighted slant Toep-Hank operator if and only if
¢ =0.

(2) Mmei and MgLfm, m € Z, are weighted slant Toep-Hank op-
erators.

Proof. For the necessary part of (1), let WBL(?) be a weighted slant Toep-

Hank operator and {o; ;} jez be its matrix. Then relation (2.1) gives
that for k, 5 € Z,

P21

0
= Qg jdj—1 = o Q0
Brey Y B

which implies that

52;‘—1 BrB Po Brp
fray—1 WL€4'—1)ek . :7WL€O,ek .
5(k+j)< v ) ﬁ*k< ’ >
Hence,
B2j—1 (U eaj 1, W er) = E<K5607Wﬁ*ek>.
Blksi) * * Bon

This equality for £ = 0 provides that ag = a_p; for all j € Z. Sim-

ilarly, using the equality %akﬂAﬁl = %ak,l of (2.1), we obtain
; :

that a_g = a_gj41 for j € Z. As ¢ € L>=(B) C L?*(8), we must have
ag = a_o = 0 so that ¢ = 0. Sufficient part is obvious. Hence the result.

Now we prove (2). Let ¢(z) = > an2" in L™(f) and {a;;}ijez

n=—o0o
be the matrix representation of M Z’BmLﬁ. Without much computations,
we obtain that

Baj-1 B2; Bo

o Oktj4i-1 = Ok—jaj = 5 k0 = A—2k+2m
Br+j B—(k—3) Bk
and
B2; B _ Po _
o kiA1= o Ok—jdj-2 = k1 = 0-2k42m+1
Br+j B—(k—j) Bk

for each k, j € Z. Thus { ;}i jez is a weighted slant Toep- Hank matrix.
[o¢]
Similarly, if {; ; }: jez denotes the matrix of MgLfm, (z2) = > anz",

n=—oo

then for each k,j € Z

/32]',1 o _ 52] S ﬁka _ 6k+% if m is even
By M0 0 if m is odd
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and

B2j B2j-1 Bo 0 if m is even
o ViA1= 5 Tk—j4i—2 = 50k = 4 . .

Brg 5,47 B_ o) VY By Uy (m1) if m is odd.

This proves that {7; ;}i jez is a weighted slant Toep- Hank matrix. This
completes the proof.
O
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