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Abstract. In this paper, firstly, in E3
1 , we defined normal Fermi-

Walker derivative and applied for the adapted frame. Normal Fermi-
Walker parallelism, normal non-rotating frame, and Darboux vector
expressions of normal Fermi-Walker derivative by normal Fermi-
Walker derivative are given for adapted frame. Being conditions
of normal Fermi-Walker derivative and normal non-rotating frame
are examined for frames throughout spacelike, timelike, lightlike
curves. It is shown that the vector field which takes part in [17] is
normal Fermi-Walker parallel by the normal Fermi-Walker deriva-
tive throughout the spacelike, timelike, and lightlike general helix.
Also, we show that the Frenet frame is a normal non-rotating frame
using the normal Fermi-Walker derivative. Afterward, we testified
that the adapted frame is a normal non-rotating frame throughout
the spacelike, timelike, and lightlike general helix.
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1. Introduction

Fermi-Walker transport is a process used to define a coordinate sys-
tem or reference frame in general relativity. All the curvatures in the
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reference frame are due to the presence of mass-energy density. These
curvatures are not arbitrary spin or rotation of the frame. Fermi-Walker
derivative, Fermi-Walker parallelism, and non-rotating frame expresses
are identified according to this derivative for Bishop and Frenet frames.
Then, the obtained notions are applied for Lie groups in E4 and are
expressed on any hypersurface in En+1 [9, 10, 12].

In Minkowski 3-space, the Fermi-Walker derivative, Fermi-Walker
parallelism, Fermi-Walker Darboux vector, and being condition of the
non-rotating frame are shown. These expresses are investigated on the
spacelike and the timelike surfaces and are explained with a spacelike
or timelike principal normal using the spherical indicatrix of a spacelike
curve. The Fermi-Walker derivative is obtained throughout the tangent
vector of a spacelike curve [11, 13, 14].

Many researchers have attracted the attention of the Fermi-Walker
derivative from time to time, and it has been used in numerous studies.
Some of these studies are as follows. The unit vector fields according
to Fermi-Walker transported are proved along Rytov-Legendre curves.
Slant and Legendre curves are defined in 3-dimensional warped products
and are parametrized via the scalar products between the normal of these
curves and the vertical vector field [5, 4]. The constant precession curve
is expressed as a unit-speed curve that its central returns approximate a
stable axis with stationary angle and stationary speed. The arc-length
parametrized closed-shape solution of the native equations is obtained
according to this constant precession curves with the help of direct geo-
metric analysis [16]. Spherical images of a curve are investigated and
are called C-slant helices. Furthermore, some new characterizations for
the C-slant helices are given and showed that the C-constant precession
curves are C-slant helices [17]. In recent years, some application is made
by using the normal of slant helix. In light of these opinions, we defined
derivative according to the normal of the curve.

Fermi-Walker derivative is given with the help of the tangent vec-
tor of the curve. We defined a new normal Fermi-Walker derivative by
using the normal vector of any curve according to the Frenet frame in
E3

1 . In our study, normal Fermi-Walker derivative, normal Fermi-Walker
parallelism, normal non-rotating frame, and Darboux vector expressions
of normal Fermi-Walker derivative are given for the adapted frame in
Minkowski 3-Space E3

1 . Also, we show if the Frenet frame is non-rotating
frame, and {N,C,W} frame is non-rotating frame according to the nor-
mal Fermi-Walker derivative according to spacelike, timelike or lightlike
curves. In this wise, the Fermi-Walker definitions can be defined by the
first vector of other frames.
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2. Preliminaries

Firstly, we give some basic notions about in E3
1 . Afterward, we define

a new derivative according to this space. The Minkowski 3-space E3
1 is

an affine 3-space. An indefinable inner product of this space is given as

⟨,⟩ = −dx21 + dx22 + dx23

where (x1, x2, x3) is coordinates of E3
1 . If t = (t1, t2, t3) and k =

(k1, k2, k3) are arbitrary vectors in E3
1 . The Minkowski vector product

of t and k is defined as follows:

t× k =

∣∣∣∣∣∣
−i j k
t1 t2 t3
k1 k2 k3

∣∣∣∣∣∣
Since ⟨,⟩ is an indefinite metric, three cases are possible for kϵE3

1 : it
can be spacelike if ⟨k, k⟩ > 0 or k=0, timelike if ⟨k, k⟩ < 0 and lightlike if

⟨k, k⟩ = 0 and k ̸= 0. ∥k∥=
√
⟨k, k⟩ is the norm of k vector. If ⟨k, t⟩ = 0,

k and t vectors are orthogonal [15].
Let β : M ⊂ R → E3

1 is a unit speed curve. Denote by

{N,C,N∧C = W}
the moving adapted frame throughout the curve β(s) in the space E3

1 .
The adapted frame equations are N ′(s)

C ′(s)
W ′(s)

 =

 0 f(s) 0
−ϵ0ϵ1f(s) 0 g(s)

0 −ϵ1ϵ2g(s) 0

 N(s)
C(s)
W (s)


and the Lorentzian vector products of adapted vectors are given as

N∧C = W,

C∧W = −ϵ1N,

W∧N = −ϵ0C,

where ⟨N,N⟩ = ϵ0 = ±1, ⟨C,C⟩ = ϵ1 = ±1 and ⟨W,W ⟩ = ϵ2 = ±1 [14].
Fermi-Walker derivative is given with the help of the tangent vector

of curve. In this study, for the first time, we will give the following
definition by using the normal vector of curve in Minkowski 3-Space.
We will say normal Fermi-Walker derivative name of this definition
in Minkowski 3-Space.

3. Adapted Frame and Normal Fermi-Walker Derivative in
E3

1

Firstly, we express a different definition of the normal Fermi-Walker
derivative with the help of the adapted frame in E3

1 . Afterward, we
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describe some theorems and results by being conditions spacelike curve,
timelike curve, or lightlike curve.

Definition 3.1. Let β : M ⊂ R → E3
1 be a unit-speed curve and X be

a vector field throughout the β(s) curve in E3
1 .

D̃X

D̃s
=

dX

ds
− ϵ⟨N,X⟩N ′ + ϵ⟨N ′, X⟩N.

Here N is any normal vector of Frenet frame and ⟨N,N⟩ = ϵ = ±1.

Lemma 3.2. Let β : M ⊂ R → E3
1 be a curve in E3

1 and X be a vector
field throughout the β(s) space curve. Afterwards, normal Fermi-Walker
derivative can be expressed of the

D̃X

D̃s
=

dX

ds
+ ϵf(W ∧X).

Proof.

D̃X

D̃s
=

dX

ds
− ϵ⟨N,X⟩dN

ds
+ ϵ⟨dN

ds
,X⟩N,

If dN
ds =fC substitutes and the necessary actions are done,

D̃X

D̃s
=

dX

ds
+ ϵf(W ∧X),

is procured. �
Now, we will investigate the conditions that a vector field is normal

Fermi-Walker parallel according to the normal Fermi-Walker derivative
in E3

1 .

Theorem 3.3. Let β(s) be a unit-speed spacelike curve. N, C and W
are the timelike principal normal vector, the spacelike vector and the
spacelike Darboux vector in E3

1 , respectively. X = λ1N + λ2C + λ3W
be a vector field throughout β(s). This X vector field is normal Fermi-
Walker parallel in accordance with the normal Fermi-Walker derivative
in E3

1 if and only if:

λ1(s) = constant,

λ2(s) = c1cos(

∫ s

1
g(s)ds) + c2sin(

∫ s

1
g(s)ds),

λ3(s) = c2cos(

∫ s

1
g(s)ds)− c1sin(

∫ s

1
g(s)ds).

Here λ1, λ2, λ3 real parameters are continuous differentiable functions.
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Proof. ⇒: Let X be normal Fermi-Walker parallel according to the nor-
mal Fermi-Walker derivative throughout β(s) in Minkowski 3-Space E3

1 .
Since N is the timelike principal normal vector, C is the spacelike vector
and W is the spacelike Darboux vector;

N ′(s) = f(s)C(s),

C ′(s) = f(s)N(s) + g(s)W (s),

W ′(s) = −g(s)C(s).

and

N∧C = W,

C∧W = −N,

W∧N = C.

Also,

⟨N,N⟩ = ϵ = −1.

D̃X

D̃s
=

dX

ds
+ ϵf(W ∧X),

D̃X

D̃s
= (

dλ1

ds
)N + (

dλ2

ds
− g(s)λ3)C + (

dλ3

ds
+ g(s)λ2)W,

is procured. X vector field is normal Fermi-Walker parallel according to

the normal Fermi-Walker derivative in E3
1 and

D̃X

D̃s
=0 so,

dλ1

ds
= 0,

dλ2

ds
− g(s)λ3 = 0,

dλ3

ds
+ g(s)λ2 = 0,
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is procured. If the equation system solve,

λ1(s) = constant,

λ2(s) = c1cos(

∫ s

1
g(s)ds) + c2sin(

∫ s

1
g(s)ds),

λ3(s) = c2cos(

∫ s

1
g(s)ds)− c1sin(

∫ s

1
g(s)ds),

is obtained.

⇐=: Let X = λ1N+λ2C+λ3W be a vector field and θ = (
∫ s
1 g(s)ds)

in Minkowski 3-Space E3
1 ,

λ1(s) = constant,

λ2(s) = c1cosθ + c2sinθ,

λ3(s) = c2cosθ − c1sinθ,

and

D̃X

D̃s
=

dX

ds
+ ϵf(W ∧X),

D̃X

D̃s
= (

dλ1

ds
)N + (

dλ2

ds
− g(s)λ3)C + (

dλ3

ds
+ g(s)λ2)W,

D̃X

D̃s
= 0,

is obtained. λi parameters are constant. �

Theorem 3.4. Let β(s) be a unit-speed timelike curve. (N, C and W
are the spacelike principal normal vector, the spacelike vector and the
timelike Darboux vector in E3

1 , respectively.) X = λ1N + λ2C + λ3W
be a vector field throughout β(s). X vector field is normal Fermi-Walker
parallel according to the normal Fermi-Walker derivative in Minkowski
3-Space E3

1 if and only if:

λ1(s) = constant,

λ2(s) = c1cosh(

∫ s

1
g(s)ds) + c2sinh(

∫ s

1
g(s)ds),

λ3(s) = −c1sinh(

∫ s

1
g(s)ds)− c2cosh(

∫ s

1
g(s)ds).

Here λ1, λ2, λ3 real parameters are continuous differentiable functions.
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Theorem 3.5. Let β(s) be a unit-speed lightlike curve. (N, C and W are
the spacelike principal normal vector, the lightlike vector and the lightlike
Darboux vector in E3

1 ,respectively.) X = λ1N + λ2C + λ3W be a vector
field throughout β(s). X vector field is normal Fermi-Walker parallel
in accordance with the normal Fermi-Walker derivative in Minkowski
3-Space E3

1 if and only if:

λ1(s) = −c1gsinh
√
gs− c2gcosh

√
gs+ c3,

λ2(s) =
√
g(c1cosh

√
gs+ c2sinh

√
gs),

λ3(s) = c1sinh
√
gs+ c2cosh

√
gs.

Here λ1, λ2, λ3 real parameters are continuous differentiable functions.

Now, we can give a new theorem as follows.

Theorem 3.6. Let β(s) be a spacelike general helix in E3
1 . Then X =

λ1N+λ2C+λ3W vector field is normal Fermi-Walker parallel according
to the normal Fermi-Walker derivative along β(s). Here λ1, λ2, λ3 are
constant.

Proof. In E3
1 , let β(s) be any spacelike curve, N be the timelike principal

normal vector, C be the spacelike vector, and W is the spacelike Darboux
vector. If obtained adapted frame equations and the Lorentzian vector
products of the adapted frame are put back, then

D̃X

D̃s
=

dX

ds
+ ϵf(W ∧X),

D̃X

D̃s
= λ′

1N + (λ′
2 − gλ3)C + (gλ2 + λ′

3)W,

= g(λ2W − λ3C),

is obtained. Since β(s) is any spacelike general helix, then g = 0. So,

D̃X

D̃s
= 0 is procured. �

Moreover, in Minkowski 3-Space E3
1 , if β(s) is any timelike general

helix, N is the spacelike principal normal vector, C is the spacelike vector
and W is the timelike Darboux vector; the same vector field is a nor-
mal Fermi-Walker parallel in accordance with the normal Fermi-Walker
derivative along β(s).
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Theorem 3.7. Let β(s) be lightlike general helix in Minkowski 3-Space
E3

1 . Then X = λ1N + λ2C + λ3W vector field is not normal Fermi-
Walker parallel in accordance with the normal Fermi-Walker derivative
along β(s). Here λ1, λ2, λ3 are constant.

Proof. In E3
1 , let β(s) be any lightlike curve, N be the spacelike principal

normal vector, C be the lightlike vector, and W is the lightlike Darboux
vector. If obtained adapted frame equations and the Lorentzian vector
products of the adapted frame are put back in Lemma (3.2), then

D̃X

D̃s
= g(λ2N − λ3C)− λ2W

is obtained. Even if β(s) is a lightlike general helix, that is g = 0,

D̃X

D̃s
̸= 0. �

Example 3.8. {N,C,W} vectors are normal Fermi-Walker parallel us-
ing the normal Fermi-Walker derivative along the timelike and spacelike
general helix in E3

1 .

Now, in three dimensional Minkowski Space E3
1 , we described a rela-

tionship between the normal Fermi-Walker parallelism and Euclid par-
allelism as follows.

Corollary 3.9. Let X be a vector field throughout the β(s) space curve
in E3

1 . Normal Fermi-Walker derivative along the space curve of X
coincides with Euclidean derivative of X iff

X = λW.

λ is constant.

Proof. Due to Lemma (3.2),

D̃X

D̃s
=

dX

ds
,

iff

X = λW

is obtained. �
As a result, if we pay attention to the Corollary (3.9), it is seen that

the Corollary (3.9) holds for the timelike, the spacelike and the lightlike
curves.
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{T,N,B} frame is not non-rotating in accordance with Fermi-Walker
derivative. But now, we will analyze to see if {T,N,B} frame is nor-
mal Fermi-Walker non-rotating frame according to normal Fermi-Walker
derivative along the timelike, the spacelike or the lightlike curves in E3

1 .

Corollary 3.10. Let β(s) be a unit-speed spacelike curve and {T,N,B}
be the Frenet frame of β(s). The {T,N,B} is normal Fermi-Walker
non-rotating frame throughout the spacelike curves according to normal
Fermi-Walker derivative in E3

1 .

Proof. In E3
1 , the normal Fermi-Walker derivative is given Definition

(3.1) and Lemma (3.2).
Here β(s) is a unit-speed spacelike curve, T is the spacelike vector,

N is the timelike principal normal vector and B is the spacelike vector.
From Definition (3.1), if necessary calculations are done,

D̃T

D̃s
= T ′ − ϵ⟨N,T ⟩N ′ + ϵ⟨N ′, T ⟩N.

Since ⟨N,T ⟩ = 0, T ′ = κN , N ′ = κT + τB and ⟨N,N⟩ = ϵ = −1,

D̃T

D̃s
= 0.

Likewise, if you do others,

D̃N

D̃s
= 0,

D̃B

D̃s
= 0.

�

Although β(s) is a unit-speed spacelike curve, the {T,N,B} is not nor-
mal Fermi-Walker non-rotating frame throughout the spacelike curves
according to normal Fermi-Walker derivative in E3

1 . The reason for this
is that T is the spacelike vector, N is the spacelike principal normal
vector and B is the timelike vector.

Corollary 3.11. Let β(s) be a unit-speed timelike curve and {T,N,B}
be the Frenet frame of β(s). The {T,N,B} is normal Fermi-Walker non-
rotating frame throughout the timelike curves according to normal Fermi-
Walker derivative in three dimensional Minkowski Space E3

1 . Here T is
the timelike vector, N is the spacelike principal normal vector, and B is
the spacelike vector.
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Also, if β(s) is a unit-speed lightlike curve, the {T,N,B} is not normal
Fermi-Walker non-rotating frame along β(s) according to normal Fermi-
Walker derivative in three dimensional Minkowski Space E3

1 .

Corollary 3.12. Let β(s) be any spacelike curve. {N,C,W} is the
adapted frame of β(s). The {N,C,W} is normal Fermi-Walker non-
rotating frame according to normal Fermi-Walker derivative iff g = 0 in
three dimensional Minkowski Space E3

1 .

Proof. Since β(s) is any spacelike curve, N is the spacelike principal
normal vector, C is the timelike vector, and W is the spacelike Darboux
vector, obtained adapted frame equations and the Lorentzian vector
products of the adapted frame are put back in Definition (3.1). We will
compute the following equations to show that it is a non-rotating frame
of {N,C,W} frame according to normal Fermi-Walker derivative in E3

1 .
If necessary calculations are done,

D̃N

D̃s
= fC − fC + ⟨fC,N⟩N,

D̃N

D̃s
= 0.

Similarly, if you do others,

D̃C

D̃s
= gW,

D̃W

D̃s
= gC.

Here, there should be g = 0 to be normal Fermi-Walker parallel accord-
ing to normal Fermi-Walker derivative. Thus, β(s) must be a spacelike
general helix. Theorem (3.6) is obtained again from the result. �

But, if N is the timelike principal normal vector, C is the spacelike
vector and W is the spacelike Darboux vector, the {N,C,W} is not
normal Fermi-Walker non-rotating frame according to normal Fermi-
Walker derivative in Minkowski 3-Space E3

1 .
Because,

N ′(s) = f(s)C(s),

C ′(s) = f(s)N(s) + g(s)W (s),

W ′(s) = −g(s)C(s).
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and

⟨N,N⟩ = ϵ = −1,

and

D̃N

D̃s
= 2fC.

Similarly, if you do others,

D̃C

D̃s
= gW,

D̃W

D̃s
= −gC.

Hence, even if g = 0, the {N,C,W} cannot normal Fermi-Walker non-
rotating frame according to normal Fermi-Walker derivative in E3

1 .

Corollary 3.13. Let β(s) be timelike curve. {N,C,W} is the adapted
frame of β(s). The {N,C,W} is normal Fermi-Walker non-rotating
frame according to normal Fermi-Walker derivative iff g = 0 in three di-
mensional Minkowski Space E3

1 . Here N is the spacelike principal normal
vector, C is the spacelike vector, and W is the timelike vector.

On the other hand, in three dimensional Minkowski Space E3
1 , if N

is the spacelike principal normal vector, C is the timelike vector, and
W is the spacelike vector, the {N,C,W} is normal Fermi-Walker non-
rotating frame according to normal Fermi-Walker derivative again. On
the contrary, if β(s) is a unit-speed lightlike curve, the {N,C,W} is not
normal Fermi-Walker non-rotating frame according to normal Fermi-
Walker derivative.

Corollary 3.14. Let {N,C,W} be the adapted frame of β(s) spacelike
curve. In accordance with the adapted frame, Darboux vector of the
normal Fermi-Walker derivative is ω∗ = gN in Minkowski 3-Space E3

1 .

Proof. Since β(s) is any spacelike curve, N is the spacelike principal
normal vector, C is the timelike vector, and W is the spacelike Dar-
boux vector, obtained adapted frame equations and the Lorentzian vec-
tor products of the adapted frame put back in Definition (3.1). If the
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calculations are done,

D̃N

D̃s
= ω∗ ∧N,

D̃C

D̃s
= ω∗ ∧ C,

D̃W

D̃s
= ω∗ ∧W.

But, if N is the timelike principal normal vector, C is the spacelike vector
and W is the spacelike Darboux vector, these equations don’t satisfy. �

Corollary 3.15. Let {N,C,W} be the adapted frame of β(s) timelike
curve. In accordance with the adapted frame, the Darboux vector of
the normal Fermi-Walker derivative is ω∗ = gN in three dimensional
Minkowski Space E3

1 . Here N is the spacelike principal normal vector, C
is the spacelike vector, and W is the timelike vector.

Additionally, if N is the spacelike principal normal vector, C is the
timelike vector, and W is the spacelike vector, Darboux vector of the
normal Fermi-Walker derivative is ω∗ = gN throughout β(s) timelike
curve using the adapted frame in E3

1 .

Theorem 3.16. Let β(s) be a unit-speed spacelike curve. ω∗=gN . Dar-
boux vector of the normal Fermi-Walker derivative is normal Fermi-
Walker parallel according to the normal Fermi- Walker derivative iff g
is constant in three dimensional Minkowski Space E3

1 .

Proof.

D̃ω∗

D̃s
=

dω∗

ds
+ ϵf(W ∧ ω∗),

D̃ω∗

D̃s
=

D̃(gN)

D̃s
=

d(gN)

ds
=

d(g)

ds
N +

d(N)

ds
g,

D̃ω∗

D̃s
=

d(g)

ds
N +N ′g,

Since N is the spacelike principal normal vector, C is the timelike vector
and W is the spacelike Darboux vector, obtained adapted frame equa-
tions and the Lorentzian vector products of adapted frame put back in
Definition(3.1). If the calculations are done,

f(W ∧ ω∗) = f(W ∧ gN) = −fgC,
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and

D̃ω∗

D̃s
=

d(g)

ds
N.

Then, D̃ω∗

D̃s
= 0 iff g is constant. When N is the timelike principal normal

vector, C is the spacelike vector and W is the spacelike Darboux vector,
ω∗ ̸= gN . Hence, Theorem (3.16) is not satisfied. �
Theorem 3.17. Let β(s) be a unit-speed timelike curve. ω∗=gN . Dar-
boux vector of the normal Fermi-Walker derivative is normal Fermi-
Walker parallel by the normal Fermi- Walker derivative iff g is constant
in three dimensional Minkowski Space E3

1 . Here N is the spacelike prin-
cipal normal vector, C is the spacelike vector, and W is the timelike
vector.

Besides, if N is the spacelike principal normal vector, C is the timelike
vector, and W is the spacelike vector, Theorem (3.17) is satisfied.

Example 3.18. If β(s) is a spacelike and timelike constant preces-
sion curve, ω∗ is normal Fermi-Walker parallel using the normal Fermi-
Walker derivative. Infact, if β(s) is a constant precession curve, f =
constant, σ = constant. Hence, g is constant.

Conclusion

In our study, we clarified normal Fermi-Walker derivative, normal
Fermi-Walker parallelism, normal non-rotating frame, normal Fermi-
Walker derivative Darboux vector concepts by the adapted frame in
E3

1 .
The Frenet frame is not non-rotating according to Fermi-Walker de-

rivative. Thus, we described the new normal Fermi-Walker derivative
to be non-rotating of the Frenet frame in Minkowski 3-Space E3

1 . Then,
we showed if the Frenet frame is a normal non-rotating frame using the
normal Fermi-Walker derivative in E3

1 . Otherwise, the adapted frame is
not non-rotating frame by this normal Fermi-Walker derivative in E3

1 .
However, if a curve is a spacelike, timelike or lightlike general helix,
the adapted frame can be non-rotating frame using this normal Fermi-
Walker derivative in E3

1 .
In E3

1 , the Fermi-Walker derivative can be defined by the first vector
of other frames. In this way, various Fermi-Walker derivatives can be
redefined for different frames.
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[9] F. Karakuş, and Y. Yaylı, On the Fermi-Walker derivative and non-rotating
frame, Int. Journal of Geometric Methods in Modern Physics. (9,8)(2012),
1250066.
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