Caspian Journal of Mathematical Sciences (CJMS)

University of Mazandaran, Iran http://cjms.journals.umz.ac.ir

ISSN: 2676-7260

CJMS. 10(1)(2021), 57-xx

On the *D*-concircular curvature tensor Of a generalized Sasakian-space-form

Aliakbar Hosseinzadeh ¹

¹ Department of Mathematics, University of Zabol, Sistan and Baluchestan, Iran

ABSTRACT. The object of this paper is to study of D-concircular curvature tensor on generalized Sasakian-space-forms. Actually we consider generalized Sasakian-space-forms when it is, respectively: D-concircularly flat; D-concircular-pseudosymmetric; D-concircularly Ricci-semisymmetric; D-concircularly symmetric; $V(\xi,X)$. R=0. Most of the main results obtained in this paper are in the form of necessary and sufficient conditions.

Keywords: Generalized Sasakian-space-form, *D*-concircular curvature tensor, Kenmotsu-space-form, Einstein manifold.

 $2000\ Mathematics\ subject\ classification{:}\\ 53\text{C}25, 53\text{D}15.$

1. Introduction

In [1], the notion of a generalized Sasakian-space-form is introduced as follow: If (ϕ, ξ, η, g) is an almost contact metric structure on a manifold M, R the curvature tensor and there exist three differential functions f_1 , f_2 and f_3 such that

$$R(X,Y)Z = f_1\{g(Y,Z)X - g(X,Z)Y\}$$
+ $f_2\{g(X,\phi Z)\phi Y - g(Y,\phi Z)\phi X + 2g(X,\phi Y)\phi Z\}$
+ $f_3\{\eta(X)\eta(Z)Y - \eta(Y)\eta(Z)X$
+ $g(X,Z)\eta(Y)\xi - g(Y,Z)\eta(X)\xi\}$

Received: 22 October 2019 Accepted: 17 February 2020

 $^{^1}$ Corresponding author: hosseinzadeh@uoz.ac.ir

for X, Y and Z vector fields on M, then M is said to be a generalized Sasakian-space-form. This generalizes the concept of Sasakian space form as well as generalized complex space form did with complex space form. Moreover, the authors have given some examples of generalized Sasakian-space-forms in terms of warped-product spaces. U. C. De and A. Sarkar [9], studied some conditions regarding the projective curvature tensor of a generalized Sasakian-space-form. Derivation conditions $\tilde{C}(X,Y)Z=0, \nabla S=0$ and R(X,Y).S=0 were studied where \tilde{C} is the quasi-conformal curvature tensor, in [15]. In [16] ϕ -recurrent generalized Sasakian-space-forms was studied. In [2], it is shown that in dimensions ≥ 5 a contact metric generalized Sasakian-space-form is a Sasakian-space-form $(f_1 = \frac{c+3}{4}, f_2 = f_3 = \frac{c-1}{4}, c$ being the constant ϕ -sectional curvature). In the 3-dimensional case non-Sasakian contact metric generalized Sasakian-space- forms exist and the curvature tensor is also studied in [2]. For more details about generalized Sasakian-spaceforms see also [3, 7, 11, 12, 14, 17]. This paper is organized as follows: In section 2, some preliminaries results of generalized Sasakian-spaceforms are given. In section 3, we study D-concircularly at generalized Sasakian-space-form and obtain necessary and sufficient conditions for a generalized Sasakian-space-form to be D-concircularly at. In next, Dconcircular-pseudosymmetric generalized Sasakian-space-form, D-concircularly Ricci-semisymmetric generalized Sasakian-space-form and D-concircularly symmetric generalized Sasakian-space-form were studied. Finally, the end of this section contains generalized Sasakian-space-forms satisfying $V(\xi, X)$. R=0.

2. Generalized Sasakian-space-forms

In an n-dimensional (n=2m+1) almost contact Riemannian manifold with (ϕ, η, ξ, g) almost contact metric structure, where ϕ is a (1,1)-tensor filed, η is a 1-form, ξ is the associated vector field and g is the Riemannian metric we have following conditions [4, 5, 18]

$$\phi \xi = 0, \ \eta(\phi X) = 0, \tag{2.1}$$

$$q(X,\xi) = \eta(X), \ \eta(\xi) = 1,$$
 (2.2)

$$\phi^2 X = -X + \eta(X)\xi,\tag{2.3}$$

$$g(\phi X, \phi Y) = g(X, Y) - \eta(X)\eta(Y), \tag{2.4}$$

$$g(\phi X, Y) = -g(X, \phi Y), \quad g(\phi X, X) = 0.$$
 (2.5)

for all vector fields $X, Y \in \chi(M^n)$.

For an n-dimensional generalized Sasakian-space-form we have [1].

$$R(X,Y)Z = f_1\{g(Y,Z)X - g(X,Z)Y\}$$

$$+ f_2\{g(X,\phi Z)\phi Y - g(Y,\phi Z)\phi X + 2g(X,\phi Y)\phi Z\}$$

$$+ f_3\{\eta(X)\eta(Z)Y - \eta(Y)\eta(Z)X$$

$$+ g(X,Z)\eta(Y)\xi - g(Y,Z)\eta(X)\xi\}.$$
(2.6)

$$S(X,Y) = \{(n-1)f_1 + 3f_2 - f_3\}g(X,Y)$$

$$- \{3f_2 + (n-2)f_3\}\eta(X)\eta(Y)$$
(2.7)

$$QX = \{(n-1)f_1 + 3f_2 - f_3\}X - \{3f_2 + (n-2)f_3\}\eta(X)\xi(2.8)$$

$$r = n(n-1)f_1 + 3(n-1)f_2 - 2(n-1)f_3$$
(2.9)

$$\nabla_X \xi = -(f_1 - f_3)\phi X, \quad (\nabla_X \eta)Y = g(\nabla_X \xi, Y) \tag{2.10}$$

where r and Q are the scalar curvature and the Ricci operator of generalized Sasakian-space-form $M(f_1, f_2, f_3)$, respectively. From (2.2), (2.6) and (2.7) we have

$$R(X,Y)\xi = (f_1 - f_3)\{\eta(Y)X - \eta(X)Y\}$$
 (2.11)

$$R(\xi, X)Y = (f_1 - f_3)\{g(X, Y)\xi - \eta(Y)X\}$$
 (2.12)

$$\eta(R(X,Y)Z) = (f_1 - f_3)\{g(Y,Z)\eta(X) - g(X,Z)\eta(Y)\}$$
(2.13)

$$S(X,\xi) = (n-1)(f_1 - f_3)\eta(X)$$
 (2.14)

$$S(\xi,\xi) = (n-1)(f_1 - f_3) \tag{2.15}$$

for all vector fields $X, Y \in \chi(M^n)$.

Since S(X,Y)=g(QX,Y) and $Q\phi=\phi Q,$ from Eq. (2.4) and (2.14), it follows that

$$S(\phi X, \phi Y) = S(X, Y) + (n-1)(f_1 - f_3)\eta(X)\eta(Y). \tag{2.16}$$

Theorem 2.1. ([9]) An n-dimensional generalized Sasakian-space-form is projectively flat if and only if $f_3 = \frac{3f_2}{2-n}$.

3. The *D*-concircular curvature tensor of a generalized Sasakian-space-form

The *D*-Concircular curvature tensor V on a generalized Sasakianspace-form $M(f_1, f_2, f_3)$ of dimension n is defined by [6]

$$V(X,Y)Z = R(X,Y)Z$$

$$+ \frac{r+2(n-1)}{(n-1)(n-2)} \{g(X,Z)Y - g(Y,Z)X\}$$

$$- \frac{r+n(n-1)}{(n-1)(n-2)} \{g(X,Z)\eta(Y)\xi - g(Y,Z)\eta(X)\xi + \eta(X)\eta(Z)Y - \eta(Y)\eta(Z)X\}$$
(3.1)

where R is the curvature tensor and r is the scalar curvature.

Proposition 3.1. In an n-dimensional generalized Sasakian-space-form $M(f_1, f_2, f_3)$, the D-Concircular curvature tensor V satisfies

$$V(X,Y)\xi = (f_1 - f_3 + 1)\{\eta(Y)X - \eta(X)Y\},$$

$$\eta(V(X,Y)Z) = (f_1 - f_3 + 1)\{g(Y,Z)\eta(X) - g(X,Z)\eta(Y)\}, (3.2)$$

$$V(\xi,X)Y = (f_1 - f_3 + 1)\{g(X,Y)\xi - \eta(Y)X\}$$
(3.2)

for all vector fields X, Y, Z on $M(f_1f_2, f_3)$.

Proof. From (2.9)-(2.14) and (3.1) the Eqs. (3.2)-(3.4) follow easily. \Box

For an n-dimensional D-concirculary flat at generalized Sasakian-space-form from (3.1), we have

$$R(X,Y)Z = -\frac{r+2(n-1)}{(n-1)(n-2)} \{g(X,Z)Y - g(Y,Z)X\}$$
(3.5)
+
$$\frac{r+n(n-1)}{(n-1)(n-2)} \{g(X,Z)\eta(Y)\xi - g(Y,Z)\eta(X)\xi + \eta(X)\eta(Z)Y - \eta(Y)\eta(Z)X\}$$

In view of (2.6), (2.7) and (2.14) in (3.5) we get

$$f_{1}\{g(Y,Z)X - g(X,Z)Y\}$$

$$+ f_{2}\{g(X,\phi Z)\phi Y - g(Y,\phi Z)\phi X$$

$$+ 2g(X,\phi Y)\phi Z\} + f_{3}\{\eta(X)\eta(Z)Y$$

$$- \eta(Y)\eta(Z)X + g(X,Z)\eta(Y)\xi - g(Y,Z)\eta(X)\xi\}$$

$$= -\frac{r+2(n-1)}{(n-1)(n-2)}\{g(X,Z)Y - g(Y,Z)X\}$$

$$+ \frac{r+n(n-1)}{(n-1)(n-2)}\{g(X,Z)\eta(Y)\xi - g(Y,Z)\eta(X)\xi$$

$$+ \eta(X)\eta(Z)Y - \eta(Y)\eta(Z)X\}$$
(3.6)

In (3.6) putting $X = \xi$, from (2.1) and (2.3) we obtain

$$(f_1 - f_3 + 1)\{g(Y, Z)\xi - \eta(Z)Y\} = 0. (3.7)$$

Replacing Z by ϕZ , from (3.7) and in view of (2.9), the above equation reduce to

$$(f_1 - f_3 + 1)g(Y, \phi Z)\xi = 0. (3.8)$$

Since $g(Y, \phi Z)\xi \neq 0$ equation (3.8) implies that

$$f_1 - f_3 = -1. (3.9)$$

Conversely suppose that $f_1 - f_3 = -1$. Applying (2.6), (2.7) and (2.9) to (3.1), we get

$$V(X,Y,Z,W) = f_1\{g(Y,Z)g(X,W) - g(X,Z)g(Y,W)\}$$
(3.10)
+ $f_2\{g(X,\phi Z)g(\phi Y,W) - g(Y,\phi Z)g(\phi X,W)$
+ $2g(X,\phi Y)g(\phi Z,W)\} + f_3\{\eta(X)\eta(Z)g(Y,W)$
- $\eta(Y)\eta(Z)g(X,W) + g(X,Z)\eta(Y)\eta(W)$
- $g(Y,Z)\eta(X)\eta(W)\}$
+ $\frac{r+2(n-1)}{(n-1)(n-2)}\{g(X,Z)g(Y,W) - g(Y,Z)g(X,W)\}$
- $\frac{r+n(n-1)}{(n-1)(n-2)}\{g(X,Z)\eta(Y)\eta(W)$
- $g(Y,Z)\eta(X)\eta(W) + \eta(X)\eta(Z)g(Y,W)$
- $\eta(Y)\eta(Z)g(X,W)\}.$

In (3.10), replacing Z by ϕZ and W by ϕW , we have

$$V(X, Y, \phi Z, \phi W) = f_1\{g(Y, \phi Z)g(X, \phi W) - g(X, \phi Z)g(Y, \phi W)\}.11)$$

$$+ f_2\{g(X, \phi^2 Z)g(\phi Y, \phi W) - g(Y, \phi^2 Z)g(\phi X, \phi W)\}$$

$$+ 2g(X, \phi Y)g(\phi^2 Z, \phi W)\}$$

$$+ \frac{r + 2(n - 1)}{(n - 1)(n - 2)}\{g(X, \phi Z)g(Y, \phi W)\}.$$

In Eq. (3.11) putting $Y = W = e_i$, where $\{e_i : i = 1, 2, \dots, n\}$, is an orthonormal basis of the tangent space at any point of manifold, and taking summation over i and in view of (2.4) and (2.5), we get

$$\sum_{i=1}^{n} V(X, e_i, \phi Z, \phi e_i) = \left[-f_1 - nf_2 + \frac{r + 2(n-1)}{(n-1)(n-2)} \right] g(\phi X, \phi Z).$$

From the above equation by a contraction, we get

$$(n-1)\left[-f_1 - nf_2 + \frac{r + 2(n-1)}{(n-1)(n-2)}\right] = 0.$$
 (3.12)

In view of (2.9) and (3.9) in (3.12), we have

$$f_2 = 0. (3.13)$$

Equations (3.9), (3.12) and (3.13) implies that

$$\frac{r+2(n-1)}{(n-1)(n-2)} = f_1 \tag{3.14}$$

and

$$\frac{r+n(n-1)}{(n-1)(n-2)} = f_3 \tag{3.15}$$

Applying eqs. (3.13)-(3.15) to (3.1), we have V(X,Y)Z=0. Hence we have the following:

Theorem 3.2. An n-dimensional generalized Sasakian-space-form is D-concircularly flat if and only if $f_1 - f_3 = -1$.

In [1], as example of a generalized Sasakian-space-form, it is shown that, a Kenmotsu-space-form, i.e., a Kenmotsu manifold with constant ϕ -sectional curvature c, is a generalized Sasakian-space-form with $f_1 = \frac{c-3}{4}$ and $f_2 = f_3 = \frac{c+1}{4}$, hence $f_1 - f_3 = -1$. Thus we have the following corollary:

Corollary 3.3. An n-dimensional Kenmotsu-space-form is D-concircularly flat.

Since in a Sasakian-space-form $f_1 = \frac{c+3}{4}$ and $f_3 = \frac{c-1}{4}$, so $f_1 - f_3 \neq -1$. Thus we may state the following:

Corollary 3.4. There is no D-concircularly flat Sasakian-space-form.

A Riemannian manifold (M^n, g) is said to be pseudosymmetric [12] if

$$(R(X,Y).R)(Z,U)W = L_R[((X \wedge Y).R)(Z,U)W]$$

holds on $U_R = \{x \in M | R - \frac{r}{n(n-1)}G \neq 0 \text{ at } x\}$, where G is the (0,4)-tensor defined by $G(X,Y,Z,W) = g((X \wedge Y)Z,W)$, L_R is some smooth function on U_R ,

$$(X \wedge Y)Z = g(Y, Z)X - g(X, Z)Y. \tag{3.16}$$

and

$$(R(X,Y).R)(Z,U)W = R(X,Y)R(Z,U)W - R(R(X,Y)Z,U)W - R(Z,R(X,Y)U)W - R(Z,U)R(X,Y)W.$$
(3.17)

A Riemannian manifold (M^n, g) is said to be D-concircular-pseudosymmetric if

$$(R(X,Y).V)(Z,U)W = L_V[((X \wedge Y).V)(Z,U)W]$$
 (3.18)

holds on $U_V = \{x \in M | V \neq 0 \text{ at } x\}$, where L_V is some function on U_V and V is the D-concircular curvature tensor. Every pseudosymmetric manifold is D-concircular-pseudosymmetric, but the converse is not true. If R.V = 0 then (M^n, g) is called D-concircular-semisymmetric. Let $M(f_1, f_2, f_3)$ be a D-concircular-pseudosymmetric generalized Sasakian-space form. Then from (3.20), we have

$$(R(\xi, Y).V)(Z, U)W = L_V[((\xi \wedge Y).V)(Z, U)W]. \tag{3.19}$$

In view of (3.16) and (3.17) in (3.19), we have

$$R(\xi,Y)V(Z,U)W - V(R(\xi,Y)Z,U)W$$

$$- V(Z,R(\xi,Y)U)W - V(Z,U)R(\xi,Y)W$$

$$= L_V[(\xi \wedge Y)V(Z,U)W - V((\xi \wedge Y)Z,U)W$$

$$- V(Z,(\xi \wedge Y)U)W - V(Z,U)(\xi \wedge Y)W].$$

Using (2.12) in the above equation, we can see

$$0 = [L_V - (f_1 - f_3)] \{ V(Z, U, W, Y) \xi - \eta(V(Z, U)W) Y$$

- $g(Y, Z)V(\xi, U)W + \eta(Z)V(Y, U)W - g(Y, U)V(Z, \xi)W$
+ $\eta(U)V(Z, Y)W - g(Y, W)V(Z, U)\xi + \eta(W)V(Z, U)Y \},$

which implies that either $L_V = f_1 - f_3$ or

$$0 = V(Z, U, W, Y)\xi - \eta(V(Z, Y)W)Y - g(Y, Z)V(\xi, U)W(3.20)$$

$$+ \eta(Z)V(Y, U)W - g(Y, U)V(Z, \xi)W + \eta(U)V(Z, Y)W$$

$$- g(Y, W)V(Z, U)\xi + \eta(W)V(Z, U)Y.$$

Assume that $L_V \neq f_1 - f_3$. Taking the inner product of (3.20) with ξ we obtain

$$0 = V(Z, U, W, Y) - \eta(Y)\eta(V(Z, U)W) - g(Y, Z)\eta(V(\xi, U)W)(3.21) + \eta(Z)\eta(V(Y, U)W) - g(Y, U)\eta(V(Z, \xi)W) + \eta(U)\eta(V(Z, Y)W) - g(Y, W)\eta(V(Z, U)\xi) + \eta(W)\eta(V(Z, U)Y).$$

Putting Y = Z in (3.21), we find

$$0 = V(Y, U, W, Y) - g(Y, Y)\eta(V(\xi, U)W) - g(Y, U)\eta(V(Y, \xi)W) + \eta(W)\eta(V(Y, U)Y).$$
 (3.22)

In Eq. (3.22) putting $Y = e_i$, where $\{e_i : i = 1, 2, \dots, n\}$, is an orthonormal basis of the tangent space at any point of manifold, and

taking summation over i, and using (3.3) and (3.4) we get

$$S(U,W) = [f_1 + 3f_2 + (n-3)f_3 + 2 - n]g(U,W)$$

$$- [nf_1 + 3f_2 - 2f_3 + n]\eta(U)\eta(W).$$
(3.23)

From (2.7) and (3.23) we can get $f_1 - f_3 = -1$. according to the theorem 3.2, this means that $M(f_1, f_2, f_3)$ is *D*-concircularly flat. Hence we can state the following theorem:

Theorem 3.5. Let $M(f_1, f_2, f_3)$ be a generalized Sasakian-space-form. If $M(f_1, f_2, f_3)$ is D-concircular-pseudosymmetric then $M(f_1, f_2, f_3)$ is either $L_V = f_1 - f_3$ or $M(f_1, f_2, f_3)$ is D-concircularly flat.

From the above theorem, it can be seen that:

Corollary 3.6. Every D-concircular-pseudosymmetric generalized Sasakianspace-form is of the form

$$(R(X,Y) \cdot V)(Z,U)W = (f_1 - f_3)[((X \wedge Y) \cdot V)(Z,U)W].$$

Since a Sasakian space form $f_1 - f_3 = 1$ and due to the corollary 3.4, it can be seen that

Corollary 3.7. For every Sasakian-space-form, we have

$$(R(X,Y) . V) (Z,U)W = [((X \wedge Y).V) (Z,U)W].$$

A Riemannian manifold is said to be D-concircularly Ricci-semisymmetric if the relation V(X,Y) . S=0 holds. Now we prove the following theorem:

Theorem 3.8. Let $M(f_1, f_2, f_3)$ be an n-dimensional generalized Sasakian-space-form. $M(f_1, f_2, f_3)$ is D-concircularly Ricci-semisymmetric if and only if $f_3 = \frac{3f_2}{2-n}$ or $M(f_1, f_2, f_3)$ is D-concircularly flat.

Proof. Assume that $M(f_1, f_2, f_3)$ be an n-dimensional generalized Sasakian-space-form. The condition V(X, Y) . S = 0, implies that

$$S(V(X,Y)Z,W) + S(W,V(X,Y)Z) = 0. (3.24)$$

In view of 2.7 in 3.24 we get

$$0 = [3f_2 + (n-2)f_3] \left[\eta(V(X,Y)Z)\eta(W) + \eta(Z)\eta(V(X,Y)W) \right]. (3.25)$$

The equation 3.25, implies that either

$$f_3 = \frac{3f_2}{2-n},\tag{3.26}$$

or

$$0 = \eta(V(X, Y)Z)\eta(W) + \eta(Z)\eta(V(X, Y)W). \tag{3.27}$$

From 3.3 in (3.27) we have

$$0 = (f_1 - f_3 + 1) \{ g(Y, Z)\eta(X)\eta(W) - g(X, Z)\eta(Y)\eta(W)(3.28) + g(Y, W)\eta(X)\eta(Z) - g(X, W)\eta(Y)\eta(Z) \}.$$

Taking $Z = \xi$ in (3.28), by a contraction, we get

$$f_1 - f_3 = -1. (3.29)$$

According to the theorem 3.2 and the equation (3.29), $M(f_1, f_2, f_3)$ is D-concircularly flat.

Conversely suppose that

$$f_3 = \frac{3f_2}{2-n},\tag{3.30}$$

Applying (3.30) in (2.7), we can see that $M(f_1, f_2, f_3)$ is an Einstein manifold. Therefore it's easily visible that $M(f_1, f_2, f_3)$ is D-concircularly Ricci-semisymmetric. Also if $M(f_1, f_2, f_3)$ be D-concircularly flat it's trivial $M(f_1, f_2, f_3)$ is D-concircularly Ricci-semisymmetric. \square

From the theorem 2.1, we have the following:

Corollary 3.9. A non D-concircularly at generalized Sasakian-spaceform is D-concircularly Ricci- semisymmetric if and only if it is Riccisemisymmetric.

Now, we prove the following:

Theorem 3.10. Let $M(f_1, f_2, f_3)$ be an n-dimensional generalized Sasakian-space-form. Then $M(f_1, f_2, f_3)$ satisfies the condition $R(\xi, X).V = 0$ if and only if $f_1 = f_3$ or $M(f_1, f_2, f_3)$ is D-concircularly flat.

Proof. Assume that $M(f_1, f_2, f_3)$ be an n-dimensional generalized Sasakian-space-form and satisfies the condition $R(\xi, X).V = 0$, we can write

$$0 = R(\xi, X)V(Y, Z)W - V(R(\xi, X)Y, Z)W - V(Y, R(\xi, X)Z)W - V(Y, Z)R(\xi, X)W,$$
(3.31)

for all vector fields X, Y, Z, W. Using (2.12), in (3.31) we find

$$0 = (f_{1} - f_{3}) \Big\{ V(Y, Z, W, X) \xi - \eta(V(Y, Z)W) X$$

$$- g(X, Y)V(\xi, Z)W + V(X, Z)W\eta(Y),$$

$$- g(X, Z)V(Y, \xi)W + V(Y, X)W\eta(Z)$$

$$- g(X, W)V(Y, Z) \xi + V(Y, Z)X\eta(W) \Big\},$$
(3.32)

which implies that either $f_1 - f_3 = 0$ or

$$0 = V(Y, Z, W, X)\xi - \eta(V(Y, Z)W)X$$

$$- g(X, Y)V(\xi, Z)W + V(X, Z)W\eta(Y),$$

$$- g(X, Z)V(Y, \xi)W + V(Y, X)W\eta(Z)$$

$$- g(X, W)V(Y, Z)\xi + V(Y, Z)X\eta(W).$$
(3.33)

Assume that $f_1 \neq f_3$. Taking the inner product of (3.33) with ξ we obtain

$$0 = V(Y, Z, W, X) - \eta(V(Y, Z)W)\eta(X)$$

$$- g(X, Y)\eta(V(\xi, Z)W) + \eta(V(X, Z)W)\eta(Y),$$

$$- g(X, Z)\eta(V(Y, \xi)W) + \eta(V(Y, X)W)\eta(Z)$$

$$- g(X, W)\eta(V(Y, Z)\xi) + \eta(V(Y, Z)X)\eta(W).$$
(3.34)

Hence in view of (3.2)-(3.4) the Eq. (3.34) is reduced to

$$V(Y, Z, W, X) = [f_1 - f_3 + 1]$$

$$\times \{g(X, Y)g(Z, W) - g(X, Z)g(Y, W)\}.$$
(3.35)

So by a suitable contraction of (3.35) we get

$$S(Z,W) = (n-1) \left[\frac{r + (n-1)}{n-1} + (n-1)(f_1 - f_3 + 1) \right] (3.36)$$
$$\times g(Z,W) - \left[\frac{r + (n-1)}{n-1} \right] \eta(Z)\eta(W).$$

From (2.7), (2.9) and (3.36) we have

$$f_1 - f_3 = -1 (3.37)$$

According to the theorem 3.2, the above equation implies that $M(f_1, f_2, f_3)$ is a D-concircularly flat manifold.

Conversely, if $f_1 = f_3$ then from (2.12), we can see that $R(\xi, X) = 0$. Obviously $R(\xi, X).V = 0$. Also if $M(f_1, f_2, f_3)$ be D-concircularly flat, in view of (3.31), this shows that $R(\xi, X).V = 0$. This completes the proof of the theorem.

A Riemannian manifold is said to be D-concircularly symmetric if it satisfies $\nabla V = 0$ and is said to be D-concircularly semisymmetric if it satisfies R(X,Y).V = 0. It can be seen easily that if $M(f_1, f_2, f_3)$ is a D-concircularly symmetric, then it is D-concircularly semisymmetric. Thus we have the following two corollaries:

Corollary 3.11. If $M(f_1, f_2, f_3)$ be an n-dimensional D-concircularly symmetric generalized Sasakian-space-form, then $f_1 = f_3$ or $M(f_1, f_2, f_3)$ is D-concircularly flat.

Corollary 3.12. If $M(f_1, f_2, f_3)$ be an n-dimensional D-concircularly semisymmetric generalized Sasakian-space-form, then $f_1 = f_3$ or $M(f_1, f_2, f_3)$ is D-concircularly flat.

References

- P. Alegre, D. Blair and A. Carriazo, Generalized Sasakian-space-forms, Israel J. Math., 141 (2004), 157-183.
- [2] P. Alegre and A. Carriazo, Structure on Generalized Sasakian-space-forms, Differential geometry and its applications, 26 (6) (2008), 656-666.
- [3] P. Alegre and A. Carriazo, Generalized Sasakian-space-forms and Conformal Changes of the metric, Results Math. **59** (2011), 485-493.
- [4] D. E. Blair, Contact manifolds in Riemannian geometry, Lecture Notes in Mathematics 509, Springer-Verlag, Berlin, (1976).
- [5] D. E. Blair, Riemannian geometry of contact and symplectic manifolds, Progress Mathematics, 203, Birkhauser, Boston-Basel-Berlin, (2002).
- [6] G. Chuman, D-conformal changes in para-Sasakian manifolds, Tensor, N. S. 39 (1982), 117-123.
- [7] M. Cîrnu, Cohomology and stability of generalized Sasakian-space-forms, Bull. Malay. Math. Sci. Soc. 35 (2) (2012), 263-275.
- [8] U. C. De, C. Özgür and A.K. Mondal, On φ-quasiconformallysymmetric Sasakian manifolds, Indag. Mathern., N.S., 20 (2) (2009), 191-200.
- [9] U. C. De and A. Sarkar, On the projective curvature tensor of Generalized Sasakian-space-forms, Questions Mathematicae, 33 (2) (2010), 245-252.
- [10] U. C. De, R. N. Singh and S. K. Pandey, On the Conharmonic Curvature Tensor of Generalized Sasakian-Space-Forms, ISRN geometry, Volume 2012, Article ID 876276, 14 pages.
- [11] M. Falcitelli, Locally conformal C₆-manifolds and Sasakian-space-forms, Mediterr. J. Math. 7 (1) (2010), 19-36.
- [12] A. Ghosh, Killing vector fields and twistor Forms on generalized Sasakian-spaceforms, Mediterr. J. Math. 10 (2) (2013), 1051-1065.
- [13] Y. Ishii, On conharmonic transformations, Tensor N.S, 7 (1957), 73-80.
- [14] D.G. Parakasha, On Generalized Sasakian-space-forms, Lobachevskii J. Math., 33 (3) (2012), 244-248.
- [15] A. Sarkar and U.C. De Some curvature properties of Generalized Sasakian-spaceforms, Lobachevskii J. Math., 33 (1) (2012), 22-27.
- [16] A. Sarkar and M. Sen On φ-recurrent generalized Sasakian-space-forms, Lobachevskii J. Math., 33 (3) (2012), 244-248.
- [17] S. Sular and C. Özgür Generalized Sasakian-space-forms semi symmetric nonmetric connections, Proc. Est. Acad. Sci., 60 (2011), 251-257.
- [18] K. Yano and M. Kon Structure on manifolds, Series on pure mathematics, 3. Word Scientific Publishing Co., Springer (1984).