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Abstract. Let ΩX be a bounded, circular and strictly convex
domain in a complex Banach space X, and H(ΩX) be the space of
all holomorphic functions from ΩX to C. The growth space Aν(ΩX)
consists of all f ∈ H(ΩX) such that

|f(x)| 6 Cν(rΩX (x)), x ∈ ΩX ,

for some constant C > 0, whenever rΩX is the Minkowski functional
on ΩX and ν : [0, 1) → (0,∞) is a nondecreasing, continuous and
unbounded function. For complex Banach spaces X and Y and a
holomorphic map φ : ΩX → ΩY , put Cφ(f) = f ◦ φ, f ∈ H(ΩY ).
We characterize those φ for which the composition operator Cφ :
Aω(ΩY ) → Aν(ΩX) is a bounded or compact operator.
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1. Introduction

Let X be a complex Banach space. We recall that ΩX ⊂ X is a circular
domain if ΩX is an open set such that for x ∈ ΩX , and any real number
θ, we have eiθx ∈ ΩX . A domain ΩX ⊂ X is said to be complete circular
if λx ∈ ΩX for any |λ| 6 1 and x ∈ ΩX . A set ΩX ⊂ X is strictly convex
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if it is convex and contains the open line segment (x1, x2) for each pair
of boundary points x1, x2 ∈ ∂ΩX . A convex set is strictly convex iff
its boundary does not contain a line segment, [10]. The Minkowski
functional rΩX

, associated to nonempty, bounded, circular and strictly
convex domain ΩX is defined by

rΩX
(x) = inf{λ > 0 : λ−1x ∈ ΩX}.

For all x ∈ X−{0}, we have (rΩX
(x))−1x ∈ ∂ΩX and rΩX

(x) = 1 if and
only if x ∈ ∂ΩX , [7]. Moreover by [11], rΩX

is a continuous seminorm
such that

(i) m||x|| ≤ rΩX
(x) ≤ M ||x|| for all x ∈ X and fixed m,M > 0,

(ii) ΩX = {x ∈ X : rΩX
(x) < 1}.

LetH(ΩX) be the space of all holomorphic functions from the nonempty,
bounded, circular and strictly convex domain ΩX in a complex Banach
space X to C. We recall that a mapping f : ΩX → C is said to be holo-
morphic or analytic if for each a ∈ ΩX , there exists a ball B(a, r) ⊂ ΩX

and a sequence of continuous m-homogeneous polynomials Pm : ΩX → C
such that

f(x) =
∞∑

m=0

Pm(x− a),

uniformly for x ∈ B(a, r). Whence, Pm : ΩX → C is said to be an m-
homogeneous polynomial if there exists an m-linear mapping A : Ωm

X →
C such that Pm(x) = A(x, ..., x).

Let ν : [0, 1) → (0,∞) be a weight, that is, ν is a non-decreasing,
continuous and unbounded function.

The growth space Aν(ΩX) consists of those functions f ∈ H(ΩX) for
which

|f(x)| ≤ Cν(rΩX
(x)), x ∈ ΩX ,

for some constant C > 0. The space Aν(ΩX) is a Banach space with the
norm

∥f∥Aν(ΩX) := sup
x∈ΩX

|f(x)|
ν(rΩX

(x))
.

For a weight ν, the associated weight ν̃ on rΩX
(ΩX) is defined by

ν̃(rΩX
(x)) := ∥δx∥ = sup{|f(x)| : ∥f∥Aν(ΩX) 6 1}, x ∈ ΩX , (1.1)

where δx denotes the point evaluation in x ∈ X. Since ν is nondecreasing
thus 1

ν(rΩX
(x)) 6 1

ν(0) hence the norm topology on Aν(ΩX) is stronger

than the pointwise convergence topology so δx ∈ (Aν(ΩX))∗ and the
norm ∥ ·∥ is taken in (Aν(ΩX))∗. Each f ∈ B̄Aν(ΩX), the closed unit ball
of Aν(ΩX), satisfies |f(x)| ≤ ν(rΩX

(x)) on ΩX . Thus we have ν̃ 6 ν
on rΩX

(ΩX). Similar to [2, Proposition 1.2], since ν̃ ◦ rΩX
is bounded

on each compact subset of ΩX , Montel’s theorem [5, Proposition 9.16],



184 Sh. Rezaei and M. Hassanlou

implies that B̄Aν(ΩX) is compact in (H(ΩX), co). Using this fact and
the continuity of point evaluations immediately yields that the sup in
the definition of ν̃, must be maximum. Thus for each x ∈ ΩX there
is fx ∈ B̄Aν(ΩX) with |fx(x)| = ν̃(rΩX

(x)). Also, Ascoli’s theorem [5,

Theorem 9.12], implies that B̄Aν(ΩX) is equicontinuous, and thus ν̃, must
be continuous.

Let X,Y be two Banach spaces, φ : ΩX → ΩY be a holomorphic
mapping. Then the composition operator Cφ : H(ΩY ) → H(ΩX) is
defined by Cφ(f) = f ◦ φ.

Let ν, ω be two weights and X,Y be two Banach spaces, then the
norm topologies on Aν(ΩX) and Aω(ΩY ) are stronger than the pointwise
convergence topology. If Cφ : Aω(ΩY ) → Aν(ΩX) is well defined, then
by closed graph theorem, Cφ is bounded. As a consequence, to fined out
if the composition operator Cφ is bounded it is enough to fined out if
Cφ is well defined.

Dubtsov gave characterization of the bounded (compact) weighted
composition operators on growth spaces in the special case ΩX = Cn,
ΩY = Cm and ν(t), ω(t) are equal to 1

(1−t)α , α > 0 or log e
1−t in [3].

Abakumov and Doubtsov characterized the boundedness and compact-
ness problem for the weighted composition operators between growth
spaces in the case X = Y = Cn by the reverse estimate in growth space
in [1]. We applied the reverse estimate in the growth space Aω(ΩCn)
and determined conditions under which Cφ : Aω(ΩCn) → Aν(ΩX) be a
bounded or compact operator in [9]. The purpose of this paper, is to
generalize the results of [9] for Cφ : Aω(ΩY ) → Aν(ΩX).

Throughout the remainder of this paper X,Y are Banach spaces,
ΩX ,ΩY are the nonempty, bounded, circular and strictly convex do-
mains in X,Y respectively, φ : ΩX → ΩY is a nonzero holomorphic map
and the open unit ball of a given Banach space X is denoted by BX .
Constants are denoted by C, they are positive and not necessarily the
same in each occurrence.

To prove the main results of this paper, we need the following lemma
which is modification of the compactness criterion in [4]. Hence we omit
its proof.

Lemma 1.1. The following statements are equivalent;

(i) Cφ : Aω(ΩY ) → Aν(ΩX) is compact.
(ii) Cφ is bounded and ∥Cφfα∥Aν(ΩX) converges to zero for any bounded

net (fα)α∈A in Aω(ΩY ) such that {fα : α ∈ A} is a countable set
which converges to zero uniformly on compact subsets of ΩY .
If, furthermore, Y is separable, then (i) and (ii) are equivalent
to
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(iii) Cφ is bounded and ∥Cφfn∥Aν(ΩX) converges to zero for any bounded
sequence (fn)n∈Nin Aω(ΩY ) which converges to zero uniformly
on compact subsets of ΩY .

2. Main result

In this section, we consider the boundedness and compactness of the
operator Cφ : Aω(ΩY ) → Aν(ΩX). It is easy to see that if φ is a linear
mapping then rΩY

(φ(x)) = rΩX
(x). This implies that for linear mapping

φ we get

∥Cφf∥Aν(ΩX) = sup
x∈ΩX

|f(φ(x))|
ν(rΩX

(x))
= sup

x∈ΩX

|f(φ(x))|
ν(rΩY

(φ(x)))

6 ∥f∥Aν(ΩY ),

therefore Cφ(Aν(ΩY )) ⊂ Aν(ΩX), hence Cφ : Aν(ΩY ) → Aν(ΩX) is
bounded. In addition for linear mapping φ if we assume that ω 6 ν
we have Cφ(Aω(ΩY )) ⊂ Aν(ΩX), which implies that Cφ is a bounded
operator from Aω(ΩY ) to Aν(ΩX).

Using the following lemma one see that if ΩX and Ω′
X are nonempty,

bounded, complete circular and strictly convex domains in the complex
Banach space X and φ(0) = 0, then Cφ(Aν(Ω′

X)) ⊂ Aν(ΩX).

Lemma 2.1. [7] Let G,G′ be complete circular domains in a complex
Banach space X which G′ is pseudoconvex. If φ : G → G′ is a holo-
morphic map with φ(0) = 0, then rG′(φ(x)) 6 rG(x) for all x ∈ G
and if rG′(φ(x)) = rG(x) for some x ∈ G, then, for all λ ∈ C with
|λ| < (rG(x))

−1, we have rG′(φ(λx)) = rG(λx) = |λ|rG(x).

In following, we give some characterizations for the boundedness and
compactness of composition operators. We show that, if φ(ΩX) ⊆ r0ΩY

for some 0 < r0 < 1, then Cφ : Aω(ΩY ) → Aν(ΩX) is bounded. For
showing this, since rΩY

(y) < 1 for all y ∈ ΩY , and ω is nondecreasing,
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then for every f ∈ BAω(ΩY ) we have

∥Cφf∥Aν(ΩX) = sup
x∈ΩX

|(Cφf)(x)|
ν(rΩX

(x))

6 1

ν(0)
sup
x∈ΩX

|f(φ(x))|

6 C

ν(0)
sup
x∈ΩX

ω(rΩY
(φ(x)))

6 C

ν(0)
sup
y∈ΩY

ω(rΩY
(r0y))

6 C

ν(0)
sup
y∈ΩY

ω(r0rΩY
(y))

6 C
ω(r0)

ν(0)
.

Theorem 2.2. Assume that ν and ω be two weights and φ : ΩX → ΩY

be a holomorphic mapping. Then the following statements are equivalent:

(i) The operator Cφ : Aω(ΩY ) → Aν(ΩX) is bounded.

(ii) sup
x∈ΩX

ω̃(rΩY
(φ(x)))

ν(rΩX
(x))

< ∞.

If in addition ω is an analytic function, then (i) and (ii) are equivalent
to

(iii) sup
x∈ΩX

ω(rΩY
(φ(x)))

ν(rΩX
(x))

< ∞.

Proof. Suppose that Cφ : Aω(ΩY ) → Aν(ΩX) be bounded. If (ii) does
not hold, there exists a sequence (xn)n∈N in ΩX such that

lim
n→∞

ω̃(rΩY
(φ(xn)))

ν(rΩX
(xn))

= ∞.

For each n ∈ N, we can take fn ∈ B̄Aω(ΩY ) such that |fn(φ(xn))| =
ω̃(rΩY

(φ(xn))). Hence

∥Cφfn∥Aν(ΩX) = sup
x∈ΩX

|fn(φ(x))|
ν(rΩX

(x))
> ω̃(rΩY

(φ(xn)))

ν(rΩX
(xn))

,
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which is a contradiction with the fact that Cφ is bounded. If (ii) holds,
for every f ∈ Aω(ΩY ) with ∥f∥Aω(ΩY ) 6 1, we have

∥Cφf∥Aν(ΩX) = sup
x∈ΩX

|(Cφf)(x)|
ν(rΩX

(x))

= sup
x∈ΩX

|f(φ(x))|
ν(rΩX

(x))

≤ sup
x∈ΩX

|ω̃(rΩY
(φ(x)))|

ν(rΩX
(x))

.

The last inequality comes from the definition of ω̃. The implication
(iii)⇒(ii) is clear because ω̃ ≤ ω on rΩY

(ΩY ). Now suppose that ω is an
analytic weight function and (i) holds. Define the function f as follows

f(y) = ω(rΩY
(y)).

Then f ∈ Aω(ΩY ) and the boundedness of Cφ implies that

∞ > ∥Cφ∥ ≥ ∥Cφf∥Aν(ΩX) = sup
x∈ΩX

|f(φ(x))|
ν(rΩX

(x))
= sup

x∈ΩX

|ω(rΩY
(φ(x)))|

ν(rΩX
(x))

,

and the condition (iii) is obtained. �

Now we are going to prove the necessary and sufficient conditions for
the compactness of Cφ : Aω(ΩY ) → Aν(ΩX). Similar to [8] we have the
following definition.

Definition 2.3. A weight ν is said to be essential if there exists C > 0
such that ν̃(x) 6 ν(x) 6 Cν̃(x) for all x ∈ ΩX .

Theorem 2.4. Let Cφ(Aω(ΩY )) ⊂ Aν(ΩX) and ω be an essential weight.
Then Cφ : Aω(ΩY ) → Aν(ΩX) is compact if and only if

lim
rΩY

(φ(x))→1

ω̃(rΩY
(φ(x)))

ν(rΩX
(x))

= 0. (2.1)

Proof. If Cφ does not compact by Lemma 1.1, there is a bounded net
(gα)α∈A in Aω(ΩY ) with {gα : α ∈ A} countable which converges to zero
uniformly on compact subsets of ΩY such that (∥Cφgα∥Aν(ΩX))α∈A does
not converge to zero. Therefore, there is C > 0 and a subnet (gβ)β so
that ∥Cφgβ∥Aν(ΩX) > C for all β. Note that (gβ)β is countable. Let us
write (gβ)β = (fn)n∈N. Then we have (fn)n∈N bounded and in particular
∥Cφfn∥Aν(ΩX) > C for every n ∈ N. Hence there exists (xn)n∈N ⊂ ΩX

such that
|fn(φ(xn))|
ν(rΩX

(xn))
> C,
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for each n ∈ N. Since (fn) ⊂ Aω(ΩY ) is bounded then we can assume
that supn ∥fn∥Aω(ΩY ) ≤ 1, the definition Aω(ΩY ) and the condition ω is
essential implies

Cω̃(rΩY
(φ(xn)))

ν(rΩX
(xn))

> ω(rΩY
(φ(xn)))

ν(rΩX
(xn))

≥ |fn(φ(xn))|
ν(rΩX

(xn))
≥ C.

Therefore the limit in (2.1) can not be zero and we obtain the re-
sult. Now suppose that Cφ is compact. Let (xn)n∈N be a sequence
in ΩX such that rΩY

(φ(xn)) → 1 as n → ∞. There exist functions
fn ∈ B̄Aω(ΩY ) such that |fn(φ(xn))| = ω̃(rΩY

(φ(xn))). We choose
y∗n ∈ Y ∗ with ∥y∗n∥ = 1 such that |y∗n(φ(xn))| = ∥φ(xn)∥. Define
gn(y) =

1
∥y∥nY

(y∗n(y))
nfn(y)r

n
ΩY

(y) for all y ∈ ΩY . We show that gn is a

bounded sequence in Aω(ΩY ) which converges to zero on any compact
subset of ΩY . We have

sup
y∈ΩY

|gn(y)|
ω(rΩY

(y))
= sup

y∈ΩY

|y∗n(y)|n|fn(y)|rnΩY
(y)

∥y∥nY ω(rΩY
(y))

6 sup
y∈ΩY

1

∥y∥nY
∥y∥nY ∥fn∥Aω(ΩY )r

n
ΩY

(y) < ∞.

Given any compact set K ⊂ Y , since ∥fn∥Aω(ΩY ) 6 1 and ω ◦ rΩY
is

continuous, there exists C > 0 such that

sup
y∈K

|fn(y)| 6 sup
y∈K

ω(rΩY
(y)) 6 C,

for all n ∈ N. Also the compactness of K implies that

|gn(y)| =
1

∥y∥nY
|y∗n(y)|n|fn(y)|rnΩY

(y) 6 CrnΩY
(y) 6 Crn0 ,

for some 0 < r0 < 1. It follows that, gn is a bounded sequence in Aω(ΩY )
which converges to zero on any compact subset of ΩY . Using Lemma
1.1, we have ∥Cφgn∥Aν(ΩX) → 0 as n → ∞. Observe that for any n ∈ N,
we have

∥Cφgn∥Aν(ΩX) = sup
x∈ΩX

|y∗n(φ(x))|n|fn(φ(x))|
∥φ(x)∥nν(rΩX

(x))
rnΩY

(φ(x))

> |y∗n(φ(xn))|n|fn(φ(xn))|
∥φ(xn)∥nν(rΩX

(xn))
rnΩY

(φ(xn))

=
ω̃(rΩY

(φ(xn)))

ν(rΩX
(xn))

rnΩY
(φ(xn))

Using this inequality along with rΩY
(φ(xn)) → 1 as n → ∞, we have

lim
rΩY

(φ(x))→1

ω̃(rΩY
(φ(x)))

ν(rΩX
(x))

= 0.
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�

Theorem 2.5. Let Cφ(Aω(ΩY )) ⊂ Aν(ΩX). Then Cφ : Aω(ΩY ) →
Aν(ΩX) is compact if and only if φ(ΩX) is a relatively compact subset
of ΩY .

Proof. First suppose that Cφ is compact. We apply the same techniques
used in [4]. If φ(ΩX) is not relatively compact, by assumption, there is
ε > 0 and a sequence (xn)n∈N ⊂ ΩX such that ∥φ(xn) − φ(xm)∥Y > ε
for every n ̸= m. Thus for each pair (n,m), n ̸= m, we can choose
Tmn ∈ Y ∗ with ∥Tmn∥ = 1 such that

|Tmn(φ(xn))− Tmn(φ(xm))| > ε. (2.2)

Since ΩY is bounded, thus

sup
y∈ΩY

|Tmn(y)|
ω(rΩY

(y))
6 sup

y∈ΩY

∥Tmn∥∥y∥Y
ω(rΩY

(y))
6 C

ω(0)
,

which implies that Tmn is a bounded subset of Aω(ΩY ) for all n ̸= m.
The compactness of Cφ implies that the adjoint operator of (Cφ)

∗ :
(Aν(ΩX))∗ → (Aω(ΩY ))

∗ is also compact. Also

∥δx∥ = ν̃(rΩX
(x)) x ∈ ΩX ,

and since ν̃ is bounded, so {δx : x ∈ ΩX} is bounded in (Aν(ΩX))∗.
Hence {(Cφ)

∗(δx) : x ∈ ΩX} = {δφ(x) : x ∈ ΩX} is relatively compact in
(Aω(ΩY ))

∗. On the other hand by (2.2),

ε 6 |δφ(xn)(Tmn)− δφ(xm)(Tmn)| 6 ∥δφ(xn) − δφ(xm)∥∥Tmn∥,

for every n ̸= m. Hence

∥δφ(xn) − δφ(xm)∥ > ε,

for all n ̸= m. This contradicts the fact that {δφ(x) : x ∈ ΩX} is
relatively compact. Therefore φ(ΩX) is relatively compact.

Now suppose that φ(ΩX) is a relatively compact subset of ΩY and
(gα)α∈A is a net in BAω(ΩY ) with {gα : α ∈ A} countable, such that
gα converges to zero uniformly on compact subsets of ΩY . Let us
write (gα)α∈A = (fn)n∈N. In particular if K ⊆ ΩY is compact, then
supy∈K |fn(y)| → 0 as n → ∞. It follows that, for every ε > 0 there is
an integer N > 1 such that

sup
y∈φ(ΩX)

|fn(y)| ≤ sup
y∈φ(ΩX)

|fn(y)| < ε,

for all n > N . Thus

∥Cφfn∥Aν(ΩX) = sup
x∈ΩX

|fn(φ(x))|
ν(rΩX

(x))
6 ε

ν(0)
,
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for all n > N . It follows that ∥Cφfn∥Aν(ΩX) → 0 as n → ∞. By Lemma
1.1, Cφ : Aω(ΩY ) → Aν(ΩX) is compact. �

We finalize the paper by a question:
Question Are there any conditions on which the statements of Theorem
2.1 are equivalent to the following?

sup
x∈ΩX

ω̃(rΩY
(φ(x)))

ν̃(rΩX
(x))

< ∞ or sup
x∈ΩX

ω(rΩY
(φ(x)))

ν̃(rΩX
(x))

< ∞.

The similar question can be stated for the compactness.
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