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Abstract. In this paper, we study the prediction problem in the
two-sample case for predicting future progressively Type-II censored
order statistics based on observed progressively Type-II censored or-
der statistics with random removals from the Rayleigh distribution.
We consider two important distributions for random removals, bi-
nomial and discrete uniform distributions. In both cases, Bayesian
point and interval predictors are obtained. In the following, through
a simulation study, the results are compared to each other. Finally,
a real data set is given to illustrate the output results.
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1. Introduction

The Rayleigh distribution was introduced by Rayleigh [20]. This model
has an extensive range of applications in many statistical fields, includ-
ing life-testing and reliability theory, as its failure rate is a linear func-
tion of time. The origin and other aspects of this distribution can be
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found in Siddiqui [21] and Miller and Sackrowitz [19]. Inference and pre-
diction problems for the Rayleigh distribution have been discussed by
several authors. Fernández [16] considered a Bayesian approach to infer-
ence in reliability studies based on Type-II doubly censored data from a
Rayleigh distribution. Bayesian prediction of progressively Type-II cen-
sored data from the Rayleigh distribution was considered by Ali Mousa
and Al-Sagheer [2]. Asgharzadeh and Azizpour [3] based on a hybrid
censored sample from a Rayleigh distribution obtained Bayes estima-
tors and highest posterior density credible intervals. Asgharzadeh et al.
[4] obtained exact confidence intervals and regions for the location and
scale parameters of the Rayleigh distribution. Basiri [10] studied the
problem of finding the optimal number of failures in Type-II censoring
by considering two criteria, total cost of experiment and mean squared
prediction error in the Rayleigh distribution.

The scheme of progressive Type-II censoring is an important method
of obtaining data in lifetime studies. It allows the experimenter to re-
move units from a life test at various stages during the experiment.
Under the progressively Type-II censoring scheme, n units are placed
on a lifetime test. At the first failure time, r1 surviving items are
randomly withdrawn from the test. At the second failure time, r2
surviving items are selected at random and taken out of the experi-
ment, and so on. Finally, at the time of the mth failure, the remaining
rm = n−m−

∑m−1
i=1 ri objects are removed. If the failure times are based

on an absolutely continuous cumulative distribution function (cdf) F (·)
and probability density function (pdf) f(·), and denote the ith failure
time by X r̃

i:m:n then random variables X r̃
1:m:n, . . . , X

r̃
m:m:n are called pro-

gressively Type-II censored order statistics (PCOs) based on censoring
scheme r̃ = (r1, . . . , rm), where n = m +

∑m
j=1 rj . For notational sim-

plicity, hereafter we use Xi:m:n instead of X r̃
i:m:n. For a detailed discus-

sion of progressive censoring, we refer the reader to Balakrishnan and
Aggarwala [7] Balakrishnan [6], Balakrishnan and Cramer [8] and the
references contained therein.

One of the issues that the experimenter always pays attention to in
lifetime tests is to predict future events and future failure times. So far,
several researchers have studied the problem of prediction and both the
classical and Bayesian approaches have been utilized. For example, two
methods for obtaining prediction intervals for the times to failure of units
censored in multiple stages in a progressively censored sample from pro-
portional hazard rate models have been presented by Asgharzadeh and
Valiollahi [5]. Ahmadi et al. [1] derived Bayesian prediction intervals for
k-record values from a future sequence based on observed progressively
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Type-II censored data from an exponential distribution. Basiri and Ah-
madi [11] obtained non-parametric prediction intervals for progressively
Type-II censored order statistics in terms of upper and lower k-records.
Basiri and Ahmadi [12] studied the problem of non-parametric predict-
ing future generalized order statistics, by assuming the future sample
size is a random variable. They also considered predicting future pro-
gressively Type-II censored order statistics with random sample size as
a special case.

All these mentioned works assumed that the censoring scheme, or
values of r1, . . . , rm are all prefixed. But, for example in a clinical test,
the number of patients that dropped out at each stage is random and
cannot be fixed. In such cases, the pattern of removal at each failure
is random. Soliman et al. [22] studied the problem of predicting future
records and order statistics (two-sample prediction) based on progressive
Type-II censored with binomial removals. Meshkat and Dehqani [18]
obtained some different point predictors such as maximum likelihood
predictors, best unbiased predictors and conditional median predictors,
for failure times of units censored in a progressively censored sample from
proportional hazard rate models, where the number of units removed
at each failure time follows a binomial distribution. The problem of
finding optimal censoring scheme in progressively Type-II censoring with
binomial removals, has been considered by Basiri and Beigi [13].

Motivated by these mentioned articles, the aim of this article is to
study the prediction problem in the two-sample case for predicting fu-
ture progressively Type-II censored order statistics based on observed
progressively Type-II censored order statistics, when the removals are
random variables. Two important distributions, namely binomial and
discrete uniform distributions, are considered for random removals.

The rest of the paper is organized as follows. At the beginning of Sec-
tion 2, we introduce the notations used throughout the paper. Then, we
construct the Bayesian point and interval predictors for future progres-
sively Type-II censored order statistics based on observed progressively
Type-II censored order statistics with random removal. Two distribu-
tions namely binomial and discrete uniform distributions are considered
for censoring scheme. The results are compared to each other through
a simulation study in Section 3. Finally, our results are applied to one
real data set in Section 4.

2. Main results

In this article, we consider one parameter Rayleigh distribution, de-
noted by Ray(θ), with the following probability density function (pdf)
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and cumulative distribution function (cdf)

f(x|θ) = 2θxe−θx2
, and F (x|θ) = 1− e−θx2

, x > 0, θ > 0, (2.1)

where
√
θ is the scale parameter.

Let x̃ = (x1:m1:n1 , · · · , xm1:m1:n1) be an observed progressively Type-
II right censored sample from a life test of size m1 from a sample of
size n1 with independent and identically distributed (iid) continuous

random variables and censoring scheme R̃ = (R1, R2, · · · , Rm1), where

Ri, (i = 1, · · · ,m1), are random variables independent on X̃, such
that

∑m1
i=1Ri = n1 − m1. Moreover, lifetimes have the one parame-

ter Rayleigh distribution with pdf and cdf as given by (2.1). With a
pre-determined number of removal of units from the test, say R1 =
r1, R2 = r2, · · · , Rm1 = rm1 , the conditional likelihood function, takes
the form (see, for example, Balakrishnan and Aggarwala [7])

L(θ, x̃|R̃ = r̃) = C

m1∏
i=1

f(xi|θ)(F̄ (xi|θ))ri

= C∗θm1

(
m1∏
i=1

xi

)
exp(−θT ), (2.2)

where F̄ (x|θ) = 1 − F (x|θ) is the reliability function of the X-sample,

T =
∑m1

i=1(1 + ri)x
2
i , C

∗ = 2m1C and C =

m1∏
j=1

(n1 −
j−1∑
i=1

ri − j + 1).

Independently, let Ys:m2:n2 be the sth future progressively Type-II
right censored order statistic from a life test of size m2 from a sam-
ple of size n2 from the same distribution and censoring scheme R̃′ =
(R′

1, R
′
2, · · · , R′

m2
), where R′

i, (i = 1, · · · ,m2), are random variables in-

dependent on Ỹ , such that
∑m2

i=1R
′
i = n2 − m2. Then, given R′

1 =
r′1, · · · , R′

s−1 = r′s−1 (with r′0 = 0), the marginal pdf of Ys:m2:n2 , (1 ≤
s ≤ m2) from the one parameter Rayleigh distribution, is given by (see,
for example, Balakrishnan and Aggarwala [7])

fYs:m2:n2 |R
′
1=r′1,··· ,R′

s−1=r′s−1
(y) = c′s−1

s∑
i=1

a′i,s(F̄ (y|θ))γ′
i−1f(y|θ)

= 2θyc′s−1

s∑
i=1

a′i,s exp{−θγ′iy
2}, y > 0,

(2.3)
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where γ′i = n2−i+1−
∑i−1

j=1 r
′
j , c

′
s−1 =

∏s
j=1 γ

′
j and a′i,s =

s∏
j=1,j ̸=i

1

γ′j − γ′i
,

1 ≤ i ≤ s ≤ m2. So, the marginal pdf of Ys:m2:n2 , (1 ≤ s ≤ m2) can
be evaluated by taking expectation on both sides (2.3) with respect to

R̃′ = (R′
1, R

′
2, · · · , R′

s−1). That is

fYs:m2:n2
(y) =

g(r′1)∑
r′1=0

g(r′2)∑
r′2=0

· · ·
g(r′s−1)∑
r′s−1=0

fYs:m2:n2 |R
′
1=r′1,··· ,R′

s−1=r′s−1
(y)

×P (R′
1 = r′1, · · · , R′

s−1 = r′s−1)

=

g(r′1)∑
r′1=0

g(r′2)∑
r′2=0

· · ·
g(r′s−1)∑
r′s−1=0

s∑
i=1

2θyc′s−1a
′
i,se

−θγ′
iy

2

×P (R′
1 = r′1, · · · , R′

s−1 = r′s−1), (2.4)

where g(r′i) = n2 −m2 −
∑i−1

j=0 r
′
j , i = 1, · · · , s− 1.

In this paper, we want to predict the value of Ys:m2:n2 based on x̃ =
(x1:m1:n1 , · · · , xm1:m1:n1). To this end, in what follows, we consider two
cases for removing units from the test for both observed and future
sample, namely binomial and discrete uniform distributions.

2.1. Binomial distribution. Presume that an individual unit being
removed from the life test is independent of the others but with the
same probability p, (0 < p < 1), the number of units removed at each
failure time follows a binomial distribution such that

P (R1 = r1) =

(
n1 −m1

r1

)
pr1(1− p)n1−m1−r1 , r1 = 0, · · · , n1 −m1,

(2.5)
and

P (Ri = ri|R1 = r1, · · · , Ri−1 = ri−1)

=

(
n1 −m1 −

∑i−1
k=1 rk

ri

)
pri(1− p)n1−m1−

∑i
k=1 rk , (2.6)

for ri = 0, · · · , n1−m1−
∑i−1

k=1 rk, i = 2, · · · ,m1−1 and all the remaining
items, if there are some, are all removed from the test at them1-th failure
with probability one. So, from (2.5) and (2.6), it can be written that

P (R̃ = r̃) = P (R1 = r1)P (R2 = r2|R1 = r1) · · ·
×P (Rm1−1 = rm1−1|R1 = r1, · · · , Rm1−2 = rm1−2)

= A(R̃,m1, n1,m1)p
µ1(R̃,m1)(1− p)µ2(R̃,m1,n1,m1), (2.7)
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where

A(R̃,m, n, j) =
(n−m)!∏j−1

i=1 ri!(n−m−
∑j−1

i=1 ri)!
, (2.8)

µ1(R̃, j) =

j−1∑
i=1

ri, and µ2(R̃,m, n, j) = (j − 1)(n−m)−
j−1∑
i=1

(j − i)ri.

(2.9)

Therefore, using (2.2) and (2.7), the joint likelihood function of X̃ =

(X1:m1:n1 , · · · , Xm1:m1:n1) and R̃ = (R1, · · · , Rm) can be expressed as

L(θ, p; x̃, r̃) = L(θ, x̃|R̃ = r̃)P (R̃ = r̃)

= AL1(θ)L2(p), (2.10)

where A = C∗ (
∏m1

i=1 xi)A(R̃,m1, n1,m1) does not depend on the pa-
rameters θ and p and

L1(θ) = θm1 exp{−θT}, (2.11)

L2(p) = pµ1(R̃,m1)(1− p)µ2(R̃,m1,n1,m1). (2.12)

The conjugate prior distribution for θ and p are considered as follows

π1(θ) =
ba

Γ(a)
θa−1e−bθ, θ > 0, a, b > 0, (2.13)

and

π2(p) =
1

β(c, d)
pc−1(1− p)d−1, 0 < p < 1, c, d > 0, (2.14)

respectively, where Γ(·) and β(·, ·) are the complete Gamma and Beta
functions, respectively. Moreover, θ and p are assumed to be indepen-
dent. Thus, the joint prior distribution for θ and p is given by

π(θ, p) =
ba

Γ(a)β(c, d)
θa−1e−bθpc−1(1− p)d−1, θ > 0, 0 < p < 1,

(2.15)
for a, b, c, d > 0. Therefore, the joint posterior distribution of θ and p
will be obtained as

π(θ, p|x̃, r̃)

=
θa+m1−1e−θ(b+T )pc+µ1(R̃,m1)−1(1− p)d+µ2(R̃,m1,n1,m1)−1∫∞

0

∫ 1
0 θa+m1−1e−θ(b+T )pc+µ1(R̃,m1)−1(1− p)d+µ2(R̃,m1,n1,m1)−1dpdθ

=
(b+ T )a+m1θa+m1−1e−θ(b+T )pc+µ1(R̃,m1)−1(1− p)d+µ2(R̃,m1,n1,m1)−1

Γ(a+m1)β
(
c+ µ1(R̃,m1), d+ µ2(R̃,m1, n1,m1)

) ,

(2.16)

where µ1(·, ·) and µ2(·, ·, ·, ·) are defined in (2.9).
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On the other hand, the marginal pdf of Ys:m2:n2 , (1 ≤ s ≤ m2) from
(2.4) is obtained as

fYs:m2:n2
(y) =

g(r′1)∑
r′1=0

g(r′2)∑
r′2=0

· · ·
g(r′s−1)∑
r′s−1=0

s∑
i=1

2A(R̃′,m2, n2, s)θyc
′
s−1a

′
i,se

−θγ′
iy

2

×pµ1(R̃′,s)(1− p)µ2(R̃′,m2,n2,s), (2.17)

where A(·, ·, ·, ·), µ1(·, ·) and µ2(·, ·, ·, ·) are defined in (2.8) and (2.9),
respectively. So, the predictive density function for Ys:m2:n2 is given by
(see, for example, Dunsmore [15])

f∗
Ys:m2:n2

(y|x̃, r̃)

=

∫ 1

0

∫ ∞

0
fYs:m2:n2

(y)π(θ, p|x̃, r̃)dθdp

=

g(r′1)∑
r′1=0

g(r′2)∑
r′2=0

· · ·
g(r′s−1)∑
r′s−1=0

s∑
i=1

2A(R̃′,m2, n2, s)yc
′
s−1a

′
i,s(b+ T )a+m1

Γ(a+m1)β
(
c+ µ1(R̃,m1), d+ µ2(R̃,m1, n1,m1)

)
×
∫ ∞

0
θa+m1e−θ(b+T+γ′

iy
2)dθ

×
∫ 1

0
pµ1(c+µ1(R̃′,s)+µ1(R̃,m1)−1(1− p)d+µ2(R̃′,m2,n2,s)+µ2(R̃,m1,n1,m1)−1dp

= 2y

g(r′1)∑
r′1=0

g(r′2)∑
r′2=0

· · ·
g(r′s−1)∑
r′s−1=0

A(R̃′,m2, n2, s)c
′
s−1(a+m1)(b+ T )a+m1

×
β
(
c+ µ1(R̃′, s) + µ1(R̃,m1), d+ µ2(R̃′,m2, n2, s) + µ2(R̃,m1, n1,m1)

)
β
(
c+ µ1(R̃,m1), d+ µ2(R̃,m1, n1,m1)

)
×

s∑
i=1

a′i,s
(b+ T + γ′iy

2)a+m1+1
.



Prediction problem under progressively Type-II censoring 163

Moreover, the predictive posterior survival function of Ys:m2:n2 can be
written as

F̄ ∗
Ys:m2:n2

(y|x̃, r̃)

=

g(r′1)∑
r′1=0

g(r′2)∑
r′2=0

· · ·
g(r′s−1)∑
r′s−1=0

A(R̃′,m2, n2, s)c
′
s−1(b+ T )a+m1

×
β
(
c+ µ1(R̃′, s) + µ1(R̃,m1), d+ µ2(R̃′,m2, n2, s) + µ2(R̃,m1, n1,m1)

)
β
(
c+ µ1(R̃,m1), d+ µ2(R̃,m1, n1,m1)

)
×

s∑
i=1

a′i,s
γ′
i(b+ T + γ′

iy
2)a+m1

.

Interval Predictors. The Bayesian predictive bounds of a two-sided
equi-tailed 100(1−α)% prediction interval for Ys:m2:n2 , 1 ≤ s ≤ m2, can
be obtained through solving the following equations:

F̄ ∗
Ys:m2:n2

(L|x̃, r̃) = 1− α

2
, and F̄ ∗

Ys:m2:n2
(U |x̃, r̃) = α

2
, (2.18)

where L and U are the lower and upper bounds, respectively. Suppose
that ζYs:m2:n2 ,α

(x) is the upper quantile of the predictive density, i.e.

F̄ ∗
Ys:m2:n2

(
ζYs:m2:n2 ,α

(x̃)|x̃, r̃
)
= α,

then clearly we have

L = ζYs:m2:n2 ,1−α/2(x̃), and U = ζYs:m2:n2 ,α/2
(x̃).

In general, we do not have a closed-form expression for quantiles but
they can numerically be calculated using statistical software packages.
For the special case, s = 1, the minimum of the future sample, we have

ζY1:m2:n2 ,α
(x̃) =

√√√√ (b+ T )

n2

{(
1

α

) 1
a+m1

− 1

}
.

The predictive density function f∗
Ys:m2:n2

(y|x̃, r̃) is unimodal. So, the

100(1 − α)% highest posterior density prediction interval (HPD PI) of
the form (w1, w2), when s ≥ 2, can be derived by solving the following
equations simultaneously

F̄ ∗
Ys:m2:n2

(w1|x̃, r̃)− F̄ ∗
Ys:m2:n2

(w2|x̃, r̃) = 1− α (2.19)

and

f∗
Ys:m2:n2

(w1|x̃, r̃) = f∗
Ys:m2:n2

(w2|x̃, r̃). (2.20)
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Since the predictive density of Y1:m2:n2 is decreasing with respect to y,
the 100(1−α)% HPD prediction interval for Y1:m2:n2 takes the following
form 0,

√√√√ (b+ T )

n2

{(
1

α

) 1
a+m1

− 1

} .

Point Predictors. First, we recall that if Z1, Z2, . . . , Zm are iid ran-
dom variables from the standard exponential distribution, then (see for
example, Balakrishnan and Aggarwala [7], p. 19)

Ws:m:n
d
=

s∑
l=1

Zl

n−
∑l−1

k=0 rk − l + 1
, (2.21)

where Ws:m:n denotes the sth progressively Type-II right censored order

statistic from the standard exponential distribution and
d
= stands for

identical in distribution. So, from (2.21), we can write

E(Ws:m:n) = g(s,m, n), where g(s,m, n) =
s∑

l=1

1

n−
∑l−1

k=0 rk − l + 1
.

(2.22)
The point predictor for Ys:m2:n2 , 1 ≤ s ≤ m2, under squared error loss
(SEL) function is (details are given in the appendix)

Ŷs:m2:n2 = (b+ T )
1
2β

(
a+m1 −

1

2
,
1

2

) g(r′1)∑
r′1=0

g(r′2)∑
r′2=0

· · ·
g(r′s−1)∑
r′s−1=0

A(R̃′,m2, n2, s)

×
β
(
c+ µ1(R̃′, s) + µ1(R̃,m1), d+ µ2(R̃′,m2, n2, s) + µ2(R̃,m1, n1,m1)

)
β
(
c+ µ1(R̃,m1), d+ µ2(R̃,m1, n1,m1)

)
×k(s,m2, n2), (2.23)

where A(·, ·, ·, ·), µ1(·, ·) and µ2(·, ·, ·, ·) are defined in (2.8) and (2.9) and

k(s,m2, n2) =
1

2
c′s−1

s∑
i=1

a′i,s

γ′i
3
2

. (2.24)

Since in many real applications, no prior knowledge is available about
the distribution of the parameters, we may take a = b = c = d ≈ 0, i.e.
the Jeffrey’s non-information prior for θ. So, we have

Ŷs:m2:n2 = T
1
2Q, (2.25)
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where

Q = β

(
m1 −

1

2
,
1

2

) g(r′1)∑
r′1=0

g(r′2)∑
r′2=0

· · ·
g(r′s−1)∑
r′s−1=0

A(R̃′,m2, n2, s)

×
β
(
µ1(R̃′, s) + µ1(R̃,m1), µ2(R̃′,m2, n2, s) + µ2(R̃,m1, n1,m1)

)
β
(
µ1(R̃,m1), µ2(R̃,m1, n1,m1)

)
×k(s,m2, n2), (2.26)

and A(·, ·, ·, ·), µ1(·, ·) and µ2(·, ·, ·, ·) are defined in (2.8) and (2.9).
It is easy to show that X2

i:m1:n1
, i = 1, · · · ,m1, are the correspond-

ing progressively Type-II censored order statistics from the exponential
distribution with parameter θ. So, conditioned on {R̃ = r̃}, T has the
gamma distribution with parameters m1 and θ, i.e. (see, for example,
Balakrishnan and Aggarwala [7], p. 17)

T |R̃ = r̃ ∼ Γ(m1, θ).

Therefore

E(Ŷs:m2:n2) =
Q

θ1/2
Γ(m1 + 1/2)

Γ(m1)
, and E((Ŷs:m2:n2)

2) =
m1Q

2

θ
,

and consequently

V ar(Ŷs:m2:n2) =
1

θ
Q2

{
m1 −

(
Γ(m1 + 1/2)

Γ(m1)

)2
}
.

Moreover, from (2.17) we can write

E(Ys:m2:n2) =
1

θ1/2
Ψ1, and E((Ys:m2:n2)

2) =
1

θ
Ψ2,

where

Ψ1 = Γ(
1

2
)

g(r′1)∑
r′1=0

g(r′2)∑
r′2=0

· · ·
g(r′s−1)∑
r′s−1=0

A(R̃′,m2, n2, s)p
µ1(R̃′,s)(1− p)µ2(R̃′,m2,n2,s)

×k(s,m2, n2), (2.27)

Ψ2 =

g(r′1)∑
r′1=0

g(r′2)∑
r′2=0

· · ·
g(r′s−1)∑
r′s−1=0

A(R̃′,m2, n2, s)p
µ1(R̃′,s)(1− p)µ2(R̃′,m2,n2,s)

×g(s,m2, n2), (2.28)

and k(·, ·, ·) and g(·, ·, ·) are defined as in (2.24) and (2.22). So, we find
that

V (Ys:m2:n2) =
1

θ

{
Ψ2 −Ψ2

1

}
.
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Thus, we can consider mean squared prediction error (MSPE) of the

obtained point predictor Ŷs:m2:n2 which is computed to be

MSPE(Ŷs:m2:n2) = E
(
Ŷs:m2:n2 − Ys:m2:n2

)2
=

1

θ

{
m1Q

2 +Ψ2 − 2QΨ1
Γ(m1 +

1
2)

Γ(m1)

}
.

2.2. Uniform distribution. Now, suppose that the number of units
removed at each failure time follows a discrete uniform distribution such
that

P (R1 = r1) =
1

n1 −m1 + 1
, r1 = 0, · · · , n1 −m1, (2.29)

and

P (Ri = ri|R1 = r1, · · · , Ri−1 = ri−1) =
1

n1 −m1 −
∑i−1

j=1 rj + 1
,

(2.30)

for ri = 0, · · · , n1 − m1 −
∑i−1

k=1 rk, i = 2, · · · ,m1 − 1, and all the
remaining items, if there are some, are all removed from the test at
the m1-th failure with probability one. So, relations (2.29) and (2.30)
provide

P (R̃ = r̃) = B(R̃,m1, n1,m1), (2.31)

where

B(R̃,m, n, j) =

j−1∏
i=1

1

n−m−
∑i−1

k=1 rk + 1
. (2.32)

Now using (2.2) and (2.31), we can write the full likelihood function as

L(θ; x̃, r̃) = BL1(θ), (2.33)

where B = C∗ (
∏m1

i=1 xi)B(R̃,m1, n1,m1) does not depend on the pa-
rameter θ and L1(θ) is defined as in (2.11). Based on the conjugate
prior distribution for θ considered as (2.13), the posterior distribution
of θ will be obtained as

π(θ|x̃, r̃) = (b+ T )a+m1θa+m1−1e−θ(b+T )

Γ(a+m1)
.

On the other hand, the marginal pdf of Ys:m2:n2 , (1 ≤ s ≤ m2) from
(2.4) can be expressed as

fYs:m2:n2
(y) =

g(r′1)∑
r′1=0

g(r′2)∑
r′2=0

· · ·
g(r′s−1)∑
r′s−1=0

s∑
i=1

2B(R̃′,m2, n2, s)θyc
′
s−1a

′
i,se

−θγ′
iy

2

,
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where B(·, ·, ·, ·) is defined in (2.32). Then, the predictive density func-
tion for Ys:m2:n2 can be obtained by

f∗
Ys:m2:n2

(y|x̃, r̃) =

g(r′1)∑
r′1=0

g(r′2)∑
r′2=0

· · ·
g(r′s−1)∑
r′s−1=0

s∑
i=1

2B(R̃′,m2, n2, s)yc
′
s−1a

′
i,s(b+ T )a+m1

Γ(a+m1)

×
∫ ∞

0
θa+m1e−θ(b+T+γ′

iy
2)dθ

= 2y

g(r′1)∑
r′1=0

g(r′2)∑
r′2=0

· · ·
g(r′s−1)∑
r′s−1=0

B(R̃′,m2, n2, s)c
′
s−1(a+m1)(b+ T )a+m1

×
s∑

i=1

a′i,s
(b+ T + γ′iy

2)a+m1+1
.

Finally, the predictive posterior survival function of Ys:m2:n2 can be writ-
ten as

F̄ ∗
Ys:m2:n2

(y|x̃, r̃) =

g(r′1)∑
r′1=0

g(r′2)∑
r′2=0

· · ·
g(r′s−1)∑
r′s−1=0

B(R̃′,m2, n2, s)c
′
s−1(b+ T )a+m1

×
s∑

i=1

a′i,s
γ′
i(b+ T + γ′

iy
2)a+m1

. (2.34)

Upon substituting (2.34) into (2.18), (2.19) and (2.20), the Bayesian
predictive bounds of a two-sided equi-tailed 100(1 − α)% interval and
the 100(1− α)% HPD PI for Ys:m2:n2 , 1 ≤ s ≤ m2, can be obtained.

It is important to note that for the special case, s = 1, the result
based on discrete uniform distribution is the same as the one for binomial
distribution.

The point predictor for Ys:m2:n2 , 1 ≤ s ≤ m2, under SEL function is
given by

Ŷs:m2:n2 = (b+ T )
1
2β

(
a+m1 −

1

2
,
1

2

) g(r′1)∑
r′1=0

g(r′2)∑
r′2=0

· · ·
g(r′s−1)∑
r′s−1=0

B(R̃′,m2, n2, s)

×k(s,m2, n2),

where B(·, ·, ·, ·) and k(·, ·, ·) are defined in (2.32) and (2.24), respectively.
Assuming a = b ≈ 0, we find

Ŷs:m2:n2 = T
1
2Q′, (2.35)
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where

Q′ = β

(
m1 −

1

2
,
1

2

) g(r′1)∑
r′1=0

g(r′2)∑
r′2=0

· · ·
g(r′s−1)∑
r′s−1=0

B(R̃′,m2, n2, s)k(s,m2, n2), (2.36)

and B(·, ·, ·, ·) is defined in (2.32). Also, we can write

V ar(Ŷs:m2:n2) =
1

θ
Q′2

{
m1 −

(
Γ(m1 + 1/2)

Γ(m1)

)2
}
.

Moreover, from (2.34) we can write

V (Ys:m2:n2) =
1

θ

{
Ψ′

2 −Ψ
′2
1

}
,

where

Ψ′
1 = Γ(

1

2
)

g(r′1)∑
r′1=0

g(r′2)∑
r′2=0

· · ·
g(r′s−1)∑
r′s−1=0

B(R̃′,m2, n2, s)k(s,m2, n2),(2.37)

Ψ′
2 =

g(r′1)∑
r′1=0

g(r′2)∑
r′2=0

· · ·
g(r′s−1)∑
r′s−1=0

B(R̃′,m2, n2, s)g(s,m2, n2), (2.38)

and k(·, ·, ·) and g(·, ·, ·) are defined as in (2.24) and (2.22).

Therefore, the MSPE of the obtained point predictor Ŷs:m2:n2 can be
computed as

MSPE(Ŷs:m2:n2) =
1

θ

{
m1Q

′2 +Ψ′
2 − 2Q′Ψ′

1

Γ(m1 +
1
2)

Γ(m1)

}
. (2.39)

3. Simulation study

In this section, a simulation study is carried out in order to assess the
performances of the results in Section 2. To do this, first, we assume
binomial distribution for the censoring scheme. Based on the algorithm
proposed by Balakrishnan and Sandhu [9], we have used the following
algorithm. In all cases we have taken a = b = c = d ≈ 0.

Algorithm 3.1. Take θ = 1 and suppose (1 − α), s, m1, m2, n1, n2

and p are all given. Then:

(1) Generate values of ri, (i = 1, · · · ,m1) and r′i, (i = 1, · · · ,m2)
from

ri ∼ Bin(n1−m1−
i−1∑
j=1

rj , p), rm1 = n1−m1−
m1−1∑
j=1

rj , i = 1, 2, · · · ,m1−1,
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r′i ∼ Bin(n2−m2−
i−1∑
j=1

r′j , p), rm2 = n2−m2−
m2−1∑
j=1

r′j , i = 1, 2, · · · ,m2−1.

(2) Generate m1 and m2 independent Uniform (0, 1) random vari-
ables W1, . . . ,Wm1 and W ′

1, . . . ,W
′
m2

.

(3) Set Vi = W

1

i+
∑m1

j=m1−i+1
rj

i for i = 1, · · · ,m1 and V ′
i = W ′

i

1

i+
∑m2

j=m2−i+1
r′
j

for i = 1, · · · ,m2.
(4) Take Ui = 1 −

∏m1
j=m1−i+1 Vj for i = 1, · · · ,m1 and U ′

i = 1 −∏m2
j=m2−i+1 V

′
j for i = 1, · · · ,m2.

(5) SetXi:m1:n1 = F−1(Ui) for i = 1, · · · ,m1 and Yi:m2:n2 = F−1(U ′
i)

for i = 1, · · · ,m2, where F−1(·) is the inverse cumulative distri-
bution function of the Rayleigh distribution.

(6) Obtain the 100(1−α)% equi-tailed PI, the 100(1−α)% HPD PI
and the point predictor for Ys:m2:n2 based onX1:m1:n1 , . . . , Xm1:m1:n1 ,
by using (2.18), (2.19), (2.20) and (2.25), respectively.

(7) Repeat the Steps 1-6 for K = 10000 times and let Ŷs:m2:n2(i),
L(i) and U(i) be the point predictor, the lower bound and the
upper bound of the PIs obtained from Step 6 in the ith iteration,
i = 1, . . . ,K. Also, let Ys:m2:n2(i) be the sth progressive order
statistic of a sample of size m2 and X1:m1:n1(i), . . . , Xm1:m1:n1(i)
be the sample of size m1 generated in Step 5 in the ith itera-
tion. Then, calculate the mean point predictors (MPPs), the
estimated MSPEs (EMSPEs), the average widths (AWs) of the
PIs, and the coverage probabilities (CPs) of the PIs by using

the relations Ỹs:m2,n2 =
1

K

K∑
i=1

Ŷs:m2:n2(i), EMSPE(Ŷs:m2:n2) =

1
K

∑K
i=1

(
Ŷs:m2:n2(i) − Ys:m2:n2(i)

)2
, AW =

1

K

K∑
i=1

(U(i)− L(i)),

and CP =
1

K

K∑
i=1

I(U(i)−L(i))(Ys:m2:n2(i)), respectively, where IA(·)

is the indicator function, i.e. IA(x) = 1 if x ∈ A and IA(x) = 0,
otherwise.

Now, assume the censoring scheme follows a discrete uniform distribu-
tion. The steps of Algorithm 3.1 can be used except Step 1 that should
be modified as:
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(1) Generate values of ri, (i = 1, · · · ,m1) and r′i, (i = 1, · · · ,m2)
from

ri ∼ DU

0, · · · , n1 −m1 −
i−1∑
j=1

rj

 , rm1 = n1−m1−
m1−1∑
j=1

rj , i = 1, 2, · · · ,m1−1,

r′i ∼ DU

0, · · · , n2 −m2 −
i−1∑
j=1

r′j

 , rm2 = n2−m2−
m2−1∑
j=1

r′j , i = 1, 2, · · · ,m2−1.

Based on Algorithm 3.1, we have computed the values of MPPs, EM-
SPEs, AWs and CPs for different values of s and p when, 1− α = 0.95,
m1 = m2 = 5, and n1 = n2 = 10. In order to achieve computational
results, the steps in Algorithm 3.1 have been implemented in MATLAB
software. The results are tabulated in Table 1. From Table 1 we can see
that by increasing values of s the values of MPPs, i.e. Ŷs:m2:n2 , increase,
as we expect. Also, the values of AWs and EMSPEs are increasing with
respect to s, when the other components are held fixed. As we would
expect, the AWs of HPD PIs are smaller than the corresponding AWs
of the equi-tailed PIs. Moreover, the coverage probabilities, CPs, are
near the nominal confidence level 0.95 for both HPD and equi-tailed
PIs. The results for binomial distribution when p = 0.5 and discrete
uniform distribution are near for most cases. Generally, we observe that
the type of distribution of random removals does not have a very effect
on the results.

Table 1. Values of MPPs, EMSPEs, AWs and CPs of %95 equi-

tailed (ET) and HPD PIs for different values of s and p when n1 = n2 =

10 and m1 = m2 = 5.

HPD PIs ET PIs
Distribution p s MPP EMSPE AW CP AW CP

Binomial 0.1 1 0.2950 0.0256 0.6221 0.9490 0.6685 0.9530
3 0.6175 0.0520 0.9086 0.9510 0.9595 0.9450

5 0.9339 0.1082 1.2713 0.9430 1.3622 0.9420

0.5 1 0.2959 0.0259 0.6241 0.9530 0.6706 0.9490

3 0.7321 0.0773 1.1103 0.9500 1.1797 0.9560
5 1.3222 0.2510 1.9066 0.9360 2.0428 0.9450

0.9 1 0.2953 0.0247 0.6229 0.9490 0.6693 0.9540
3 0.8157 0.0982 1.2310 0.9440 1.3050 0.9460

5 1.4835 0.2792 2.0441 0.9535 2.1745 0.9500

Uniform 1 0.2971 0.0265 0.6265 0.9505 0.6732 0.9510

3 0.7261 0.0797 1.1006 0.9500 1.1692 0.9560
5 1.3352 0.2363 1.9191 0.9535 2.0556 0.9510
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Table 2. The censoring schemes obtained by Dey and Dey [14].

number p scheme

[1] 0.2 (3,3,0,1,0,1,0,0,0,0,0,0,0,0,0)
[2] 0.5 (4,2,2,0,0,0,0,0,0,0,0,0,0,0,0)
[3] 0.7 (7,0,1,0,0,0,0,0,0,0,0,0,0,0,0)
[4] 0.9 (5,2,1,0,0,0,0,0,0,0,0,0,0,0,0)

4. Real example

In this section, the theoretical results of the paper are illustrated with
an example.

Example 1. In this example, we consider the data which represent the
number of million revolutions before failure for each of 23 ball bearings
in a life test originally reported by Leiblein and Zelen [17]. These failure
times are

0.1788, 0.2892, 0.3300, 0.4152, 0.4212, 0.4560, 0.4848, 0.5184,

0.5196, 0.5412, 0.5556, 0.6780, 0.6864, 0.6864, 0.6888, 0.8412,

0.9312, 0.9864, 1.0512, 1.0584, 1.2792, 1.2804, 1.7340.

Dey and Dey [14] used these data set to provide progressive Type-II
censoring from the Rayleigh distribution using binomial removal scheme.
They considered different values for p to generate several removal schemes
for m = 15. The censoring schemes obtained by Dey and Dey [14] are
shown in Table 2.

Table 3. Values of Ŷs:m2:n2 , MSPEs and %95 equi-tailed (ET) and

HPD PIs with their length for different values of s when n2 = 10, m2 = 5

and R̃′ = (2, 2, 1, 0, 0).

HPD PIs ET PIs

Scheme s Ŷs:m2:n2 MSPE PIs Length PIs Length

1 1 0.2839 0.0228 (0, 0.5686) 0.5686 (0.0497, 0.6386) 0.5889
3 0.6460 0.4279 (0.2447, 1.0919) 0.8472 (0.2832, 1.1547) 0.8715

5 1.1433 1.3404 (0.4776, 1.9436) 1.4660 (0.5541, 2.0908) 1.5367

2 1 0.2829 0.2280 (0, 0.5667) 0.5667 (0.0495, 0.6364) 0.5869

3 0.6653 0.4454 (0.2493, 1.1299) 0.8806 (0.2898, 1.1966) 0.9068

5 1.2144 1.4820 (0.5058, 2.0532) 1.5474 (0.5832, 2.1962) 1.6130

3 1 0.2782 0.0228 (0, 0.5572) 0.5572 (0.0487, 0.6257) 0.5770
3 0.6605 0.4015 (0.2469, 1.1228) 0.8759 (0.2873, 1.1894) 0.9021

5 1.2145 1.3457 (0.5071, 2.0468) 1.5397 (0.5833, 2.1858) 1.6025

4 1 0.2818 0.0228 (0, 0.5645) 0.5645 (0.0493, 0.6339) 0.5846

3 0.6681 0.2388 (0.2498, 1.1356) 0.8858 (0.2906, 1.2030) 0.9124

5 1.2263 0.7644 (0.5114, 2.0685) 1.5571 (0.5886, 2.2098) 1.6212
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For the purpose of illustrating the methods discussed in this paper,
we use the censoring schemes in Table 2 to construct an observed pro-
gressively Type-II censored sample. Moreover, for the future sample we
assume n2 = 10, m2 = 5 and R̃′ = (2, 2, 1, 0, 0) that has been generated

from the binomial distribution. Values of Ŷs:m2:n2 , MSPEs and %95
equi-tailed (ET) and HPD PIs with their length for different values of

s when n2 = 10, m2 = 5 and R̃′ = (2, 2, 1, 0, 0) have been computed
and are presented in Table 3. Both HPD and equi-tailed PIs contain

the point predictor Ŷs:m2:n2 . For all cases, the HPDs are of the short-
est length than that of the equi-tailed prediction intervals. Again we
can observe that the values of MSPE and the length of both HPD and
equi-tailed prediction intervals are increasing in s.
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5. Appendix

From (2.18), the point predictor for Ys:m2:n2 , 1 ≤ s ≤ m2, under SEL
function is given by

Ŷs:m2:n2 =

g(r′1)∑
r′1=0

g(r′2)∑
r′2=0

· · ·
g(r′s−1)∑
r′s−1=0

s∑
i=1

A(R̃′,m2, n2, s)c
′
s−1a

′
i,s(b+ T )a+m1

Γ(a+m1)β
(
c+ µ1(R̃,m1), d+ µ2(R̃,m1, n1,m1)

)
×
∫ ∞

0

∫ ∞

0
2y2θa+m1e−θ(b+T+γ′

iy
2)dydθ

×
∫ 1

0
pµ1(c+µ1(R̃′,s)+µ1(R̃,m1)−1(1− p)d+µ2(R̃′,m2,n2,s)+µ2(R̃,m1,n1,m1)−1dp

=

g(r′1)∑
r′1=0

g(r′2)∑
r′2=0

· · ·
g(r′s−1)∑
r′s−1=0

s∑
i=1

A(R̃′,m2, n2, s)c
′
s−1a

′
i,s

(b+ T )a+m1

Γ(a+m1)

×
β
(
c+ µ1(R̃′, s) + µ1(R̃,m1), d+ µ2(R̃′,m2, n2, s) + µ2(R̃,m1, n1,m1)

)
β
(
c+ µ1(R̃,m1), d+ µ2(R̃,m1, n1,m1)

) Γ(32)

γ
′3/2
i

×
∫ ∞

0
θa+m1−3/2e−θ(b+T )dθ

=

g(r′1)∑
r′1=0

g(r′2)∑
r′2=0

· · ·
g(r′s−1)∑
r′s−1=0

s∑
i=1

A(R̃′,m2, n2, s)c
′
s−1a

′
i,s(b+ T )1/2

×
β
(
c+ µ1(R̃′, s) + µ1(R̃,m1), d+ µ2(R̃′,m2, n2, s) + µ2(R̃,m1, n1,m1)

)
β
(
c+ µ1(R̃,m1), d+ µ2(R̃,m1, n1,m1)

)
×

1
2Γ(

1
2)Γ(a+m1 − 1

2)

Γ(a+m1)γ
′3/2
i

= (b+ T )
1
2β

(
a+m1 −

1

2
,
1

2

) g(r′1)∑
r′1=0

g(r′2)∑
r′2=0

· · ·
g(r′s−1)∑
r′s−1=0

A(R̃′,m2, n2, s)

×
β
(
c+ µ1(R̃′, s) + µ1(R̃,m1), d+ µ2(R̃′,m2, n2, s) + µ2(R̃,m1, n1,m1)

)
β
(
c+ µ1(R̃,m1), d+ µ2(R̃,m1, n1,m1)

)
×1

2
c′s−1

s∑
i=1

a′i,s

γ′i
3
2

.
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