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1. Introduction

Lie theory has its roots in the work of Sophus Lie, who studied certain
transformation groups that are now called Lie groups. His work led to
the discovery of Lie algebras. By now, both Lie groups and Lie algebras
have become essential to many parts of mathematics and theoretical
physics. In the meantime, Lie algebras have become a central object of
interest in their own right, not least because of their description by the
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Serre relations, whose generalizations have been very important. Now,
we focus on the use of Lie algebras in a field that is very unavailable and
present today in theoretical physics and in mathematics which was the
cohomology.
Generally, Lie algebra cohomology is just the cohomology of a particu-
lar kind of algebraic theory. There are analogous cohomology theories
for groups, associative algebras, and commutative rings. All these the-
ories can be unified by employing the notion of an injective resolution.
To broaden the scope further, we can employ category theory and re-
conceptualize Lie algebra cohomology as a functor from the category of
g-modules to the category of cochain complexes.
Lie algebra cohomology was first formalized by C.Chevalley and S.Eilenberg
in an influential paper, in 1948 [8]. The aim was to calculate the co-
homology, in the topological sense, of a compact Lie group by using
the finite-dimensional data of the corresponding Lie algebra. In this
they were inspired by an even earlier idea of Elie Cartan, who was the
first to announce that there was a connection between the topology of
a Lie group and the algebraic structure of the underlying Lie algebra
[9]. What makes this story particularly interesting is that Homologi-
cal Algebra, as a subject, was launched by the remarkable 1956 book
[10] by Cartan and Eilenberg called, oddly enough ”Homological Alge-
bra”. However, the Cartan involved this time is not Elie, but Henri, the
equally remarkable son of the very remarkable Elie. A survey of history
of homological algebra by Charles Weibel is available at the K-theory
archive [11].

In the last two decades, deformations of various types of structures
have assumed an ever increasing role in mathematics and physics. For
each such deformation problem a goal is to determine if all related defor-
mation obstructions vanish and many good techniques were developed
to determine when this is so. Deformations of Lie algebras with base and
versal deformations were already considered by Fialowski in 1986 [12].
In 1988, Fialowski [13] further introduced deformations whose base is a
complete local algebra Also, in [13], the notion of miniversal (or formal
versal) deformation was introduced in general, and it was proved that
under some cohomology restrictions, a versal deformation exists. Later,
Fialowski and Fuchs, using this framework, gave a construction for a
versal deformation.
In this article, we are interesting to the study of some differential coho-
mological structures H1 (g;M) where g is a (super) Lie algebras and M
is a g-module. We also study some related questions of deformations of
some g-modules. If M = End(V ) where V is a g-module then, according
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to Nijenhuis-Richardson, the space H1 (g; End(V )) classifies the infinites-
imal deformations of a g-module V and the obstructions to integrability
of a given infinitesimal deformation of V are elements of H2 (g; End(V )).
More generally, if h is a subalgebra of g, then the h-relative cohomology
H1 (g, h; End(V )) measures the infinitesimal deformations that become
trivial once the action is restricted to h (h-trivial deformations), while
the obstructions to extension of any h-trivial infinitesimal deformation
to a formal one are related to H2 (g, h; End(V )).
Let g be a Lie algebra and let M and N be two g−modules. It is
well-known that nontrivial extensions of g−modules:

0 → M → . → N → 0

are classified by the first cohomology group H1(g,Hom(N,M)) (see, e.g.,
[13]). Any 1−cocycle Λ generates a new action on M ⊕ N as follows:
for all g ∈ g and for all (a, b) ∈ M⊕N , we define g ∗ (a, b) := (g ∗ a +
Λ(b), g ∗ b).

The space of weighted densities of weight λ on R (or λ-densities for
short), denoted by:

Fλ =
{
fdxλ | f ∈ C∞(R)

}
, λ ∈ R,

is the space of sections of the line bundle (T∗R)⊗λ
. The Lie algebra

Vect(R) of vector fields Xh = h d
dx , where h ∈ C∞(R), acts by the Lie

derivative. Alternatively, this action can be written as follows:

Xh.(fdx
λ) = Lλ

Xh
(f)dxλ with Lλ

Xh
(f) = hf ′ + λh′f, (1.1)

where f ′, h′ are df
dx ,

dh
dx . Each bilinear differential operator A on R gives

thus rise to a morphism from Fλ ⊗Fν to Fµ, for any λ, ν, µ ∈ R, by
fdxλ⊗ gdxν 7→ A(f ⊗ g)dxµ. The Lie algebra Vect(R) acts on the space
Hom(Fλ ⊗Fν ,Fµ) = Dλ,ν;µ of these differential operators by:

Xh.A = Lµ
Xh

◦A−A ◦ L(λ,ν)
Xh

, (1.2)

where, L
(λ,ν)
Xh

is the Lie derivative on Fλ ⊗ Fν defined by the Leibnitz
rule:

L
(λ,ν)
Xh

(f ⊗ g) = Lλ
Xh

(f)⊗ g + f ⊗ Lν
Xh

(g).

For the space of tensor densities of weight λ, Fλ, viewed as a module
over the Lie algebra of smooth vector fields Vect(R), the classification
of nontrivial extensions

0 → Fµ → . → Fλ → 0,

leads Feigin and Fuks in [7] to compute the cohomology group H1
diff(Vect(R),Hom(Fλ,Fµ)).

Later, Ovsienko and Bouarroudj in [5] have computed the corresponding
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relative
cohomology group with respect to sl(2), namely

H1
diff(Vect(R), sl(2); Hom(Fλ,Fµ)).

Later, Bouarroudj in [4] has computed the corresponding relative
cohomology group with respect to sl(2), namely

H1
diff(Vect(R), sl(2); Hom(Fλ ⊗Fν ,Fµ)).

Moreover, it has computed the cohomology group

H1
diff(sl(2),Hom(Fλ ⊗Fν ,Fµ)).

If we restrict ourselves to the Lie algebra aff(1) which is isomorphic
to the Lie subalgebra of Vect(R) spanned by

{X1, Xx}
In this paper, we will compute the first differential cohomology group
H1

diff(aff(1),Dλ,ν;µ) and the analogue super structures. More precisely,
we compute the first differential cohomology spaces H1

diff(aff(1|1),Dλ,ν;µ)
where, Dλ,ν;µ is the
superspace of bilinear differential operators from Fλ ⊗ Fν to Fµ.

2. Definitions and Notation

2.1. The Lie superalgebra of contact vector fields on R1|1. We
define the superspace R1|1 in terms of its superalgebra of functions, de-
noted by C∞(R) and consisting of elements of the form:

F (x, θ) = f0(x) + f1(x)θ,

where, x is the even variable, θ is the odd variable (θ2 = 0) and
f0(x), f1(x) ∈ C∞(R). Even elements in C∞(R) are the functions
F (x, θ) = f0(x), the functions F (x, θ) = θf1(x) are odd elements. The
parity of homogenous elements F will be denoted |F |. We consider the
contact bracket on C∞(R) defined on C∞(R) by:

{F,G} = FG′ − F ′G− 1

2
(−1)|F |η(F )η(G),

Where, η = ∂
∂θ +θ ∂

∂x and η = ∂
∂θ −θ ∂

∂x . The superspace R
1|1 is equipped

with the standard contact structure given by the following 1-form:

α = dx+ θdθ.

Let Vect(R1|1) be the superspace of vector fields on R1|1:

Vect(R1|1) =
{
F0∂x + F1∂θ|Fi ∈ C∞(R1|1)

}
where, ∂θ stands for ∂

∂θ and ∂x stands for ∂
∂x , and consider the super-

space K(1) of contact vector fields on R1|1. That is, K(1) is the Lie
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superalgebra of conformal vector fields on R1|1 with respect to the 1-
form α:

K(1) =
{
X ∈ Vect(R1|1) | there exists H ∈ C∞(R1|1) such that, LX(α) = Hα

}
,

where, LX is the Lie derivative along the vector fieldX. In particular, we
have K(0) = Vect(R). Any contact vector field on R1|1 has the following
explicit form:

XH = H∂x −
1

2
(−1)|H|η(H)η, where H ∈ C∞(R1|1).

The bracket on K(1) is given by

[XF , XG] = X{F,G}.

2.2. The superalgebra aff(1|1). The Lie algebra aff(1) is realized as
superalgebra of the Lie algebra Vect(R) (see, e.g. [3]):

aff(1) = Span(X1, Xx).

Similarly, we now consider the affine Lie superalgebra as a subalgebra
of K(1):

aff(1|1) = Span(X1, Xx, Xθ).

The space of even elements is isomorphic to aff(1), while the space of
odd elements is two dimensional:

(aff(1|1))1 = Span(Xθ).

The new commutation relations are

[X1, Xx] = X1, [Xx, Xθ] = −1

2
Xθ,

[X1, Xθ] = 0, [Xθ, Xθ] =
1

2
X1.

2.3. The space of weighted densities on R1|1. We have analogous
definition of weighted densities in super setting with dx replaced by α.
The elements of these spaces are indeed (weighted) densities since all
spaces of generalized tensor fields have just one parameter relative K(1),
the value of Xx on the lowest weight vector (the one annihilated by Xθ).
From this point of view the volume element (roughly speaking, dx ∂

∂θ ) is

indistinguishable from α
1
2 . We denote by Fλ the space of all weighted

densities on R1|1 of weight λ:

Fλ =
{
F (x, θ)αλ | F (x, θ) ∈ C∞(R1|1)

}
.

As a vector space, Fλ is isomorphic to C∞(R1|1), but, the Lie derivative
of the density Fαλ along the vector field XH in K(1) is now:

LXH
(Fαλ) = Lλ

XH
(F )αλ, with Lλ

XH
(F ) = LXH

(F ) + λH ′F.
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Or, if we put H(x, θ) = a(x) + b(x)θ, F (x, θ) = f0(x) + f1(x)θ,

Lλ
XH

(F ) = Lλ
a∂x(f0) +

1

2
bf1 +

(
L
λ+ 1

2
a∂x

(f1) + λf0b
′ +

1

2
f ′
0b
)
θ.

Especially, we have
Lλ
Xa

(f0) = Lλ
a∂x

(f0), Lλ
Xa

(f1θ) = θL
λ+ 1

2
a∂x

(f1),
and

Lλ
Xbθ

(f0) = (λf0b
′ + 1

2f
′
0b)θ, Lλ

Xbθ
(f1θ) =

1
2bf1.

(2.1)

Of course, for all λ, Fλ is a K(1)-module:

[Lλ
XF

,Lλ
XG

] = Lλ
[XF ,XG].

We thus obtain a one-parameter family of K(1)-modules on C∞(R1|1)
still denoted by Fλ.

2.4. Differential operators on weighted densities. A differential
operator on R1|1 is an operator on C∞(R1|1) of the following form (see,
e.g. [1, 2]) :

A =
ℓ∑

i=0

ai(x, θ)∂
i
x +

ℓ∑
i=0

bi(x, θ)∂
i
x∂θ.

Of course, any differential operator defines a linear mapping from Fλ to
Fµ for any λ, µ ∈ R, thus, the space of differential operators becomes a
family of K(1) and aff(1|1) modules denoted Dλ,µ for the natural action:

XH .A = Lµ
XH

◦A− (−1)|A||H|A ◦ Lλ
XH

.

Similarly, we consider a family of K(1)-modules on the space Dλ,ν;µ of
bilinear differential operators: A : Fλ ⊗ Fν → Fµ with the K(1)-action

XH .A = Lµ
XH

◦A− (−1)|A||H|A ◦ L(λ,ν)
XH

, (2.2)

where, L
(λ,ν)
XH

is the Lie derivative on Fλ ⊗ Fν defined by the Leibnitz
rule :

L
(λ,ν)
XH

(F ⊗G) = Lλ
XH

(F )⊗G+ (−1)|F ||H|F ⊗ Lν
XH

(G).

2.5. Cohomology. Let us first recall some fundamental from cohomol-
ogy theory [13]. Let g = g0 ⊕ g1 be a Lie superalgebra acting on a
superspace V = V0 ⊕ V1 and let h be a superalgebra of g.(If h is omit-
ted it assumed to be {0}.) The space of h-relative n-cochains of g with
values in V is the g-module

Cn(g, h;V ) := Homh(Λ
n(g/h);V ).

The coboundary operator δn : Cn(g, h;V ) −→ Cn+1(g, h;V ) is a g-map
satisfying δn ◦ δn−1 = 0. The kernel of δn denoted Zn(g, h;V ), is the
space h-relative n-cocycle, among them, the elements in the range on
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δn−1 are called h-relative n-coboundaries. We denote Bn(g, h;V ) the
space
of n-coboundaries.
By definition, the nth h-relative cohomology space in the quotient space

Hn(g, h;V ) = Zn(g, h;V )/Bn(g, h;V ).

We will only need the formula of δn(which will be simply denoted δ)

in degrees 0 and 1: for v ∈ C0(g, h;V ) = V h, δv(g) := (−1)p(g)p(v)g.v,
where,

V h = {v ∈ V |h.v = 0 for all h ∈ h},
and for Υ ∈ C0(g, h;V ),

δ(Υ)(g, h) := (−1)p(g)p(Υ)g.Υ(h)−(−1)p(h)(p(g)+p(Υ))h.Υ(g)−Υ([g, h]) for any g, h ∈ g.

3. Cohomology of aff(1) acting on Dλ,ν;µ

For the sake of simplicity, the elements fdxλ of Fλ will be denoted
f . Any 1-cochain c ∈ Z1

diff(aff(1),Dλ,ν;µ) should retains the following
general form:

c(Xh, f, g) =
∑
i,j

αi,jhf
(i)g(j) +

∑
i,j

βi,jh
′f (i)g(j).

So, for any integer k ≥ 0, we define the (k+1)-homogeneous component
of c by

c(Xh, f, g) =
∑

i+j=k+1

αi,jhf
(i)g(j) +

∑
i+j=k

βi,jh
′f (i)g(j).

The coboundary map δ is homogeneous, therefore, we easily deduce the
following lemma:

Lemma 3.1. Any 1-cochain c ∈ C1
diff(aff(1),Dλ,ν;µ) is a 1-cocycle if and

only if each of its homogeneous components is a 1-cocycle.

The following lemma gives the general form of any homogeneous 1-
cocycle.

Lemma 3.2. Up to a coboundary, any k-homogeneous 1-cocycle c ∈
Z1
diff(aff(1),Dλ,ν;µ) can be expressed as follows. For all f ∈ Fλ, g ∈ Fν

and for all Xh ∈ aff(1):

c(Xh, f, g) =
∑

i+j=k

βi,jh
′f (i)g(j), (3.1)

where βi,j are constants.
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Proof. Any (k + 1)-homogeneous 1-cocycle on aff(1) should retains the
following general form:

c(Xh, f, g) =
∑

i+j=k+1

αi,jhf
(i)g(j) +

∑
i+j=k

βi,jh
′f (i)g(j)

where, αi,j , βi,j are, a priori, functions.
Now, consider the 1-cocycle condition:

c([Xh1 , Xh2 ], f, g)− Lλ,ν;µ
Xh1

c(Xh2 , f, g) + Lλ,ν;µ
Xh2

c(Xh1 , f, g) = 0.

where f ∈ Fλ, g ∈ Fν and Xh1 , Xh2 ∈ aff(1).
A direct computation proves that we have

d

dx
(βi) = 0 and (αi,j = 0) if µ− λ− ν = k.

�
Theorem 3.3. The space H1

diff(aff(1),Dλ,ν;µ) has the following struc-
ture:

H1
diff(aff(1),Dλ,ν;µ) '

{
Rk+1 if µ = λ+ ν + k,

0 otherwise.
(3.2)

Lemma 3.4. Let c : Fλ ⊗Fν → Fµ be a bilinear differential operator
defined as follows. For all f ∈ Fλ and for all g ∈ Fν :

c(f, g) =
∑

i+j=k

cijf
(i)g(j)

where cij are constants. Then, for all Xh ∈ aff(1), we have

Lλ,ν;µ
Xh

c(f, g) = h′
∑

i+j=k(µ− λ− ν − i− j)cijf
(i)g(j).

Proof. Straightforward computation.By using (2.2). �

Proof. Now we are in position to prove Theorem 3.3. Any 1-cocycle on
aff(1) should retains the following general form:

c(Xh, f, g) =
∑

i+j=k

βi,jh
′f (i)g(j), (3.3)

where βi,j are constants.
the 1-cocycle condition reads as follows: for all f ∈ Fλ, for all g ∈ Fν

and for all Xh1 , Xh2 ∈ aff(1), we have

c([Xh1 , Xh2 ], f, g)− Lλ,ν;µ
Xh1

c(Xh2 , f, g) + Lλ,ν;µ
Xh2

c(Xh1 , f, g) = 0.

A direct computation, and by using Lemma 3.2, proves that the coeffi-
cient of the component f (i)g(j) in the 1-cocycle condition above is equal
to

µ− λ− ν − k = 0. (3.4)
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Now we are going to deal with trivial 1-cocycles, and show how the
general 1-cocycles can be eventually trivial. Any trivial 1-cocycle should
be of the forme

Lλ,ν;µ
Xh

c,

where, c is an operator c : Fλ ⊗ Fν → Fµ defined as c(f, g) =∑
i+j=kcijf

(i)g(j). By using
Lemma 3.4, we have

Lλ,ν;µ
X c = h′

∑
i+j=k

(µ− λ− ν − k)cijf
(i)g(j). (3.5)

If µ − λ − ν = k, the corresponding cohomology space is (k + 1)-
dimensional, generated by the 1-cocycles c0, c1, · · · , ck defined as follows:

c0(Xh, f, g) = β0h
′fgk, c1(Xh, f, g) = β1h

′f ′gk−1, · · · , ck(Xh, f, g) = βkh
′fkg.

(3.6)
�

4. Cohomology of aff(1|1) acting on Dλ,ν;µ

In this section, we will compute the ”differentiable” cohomology of the
Lie algebra aff(1|1) with coefficients in the space of bilinear differential
operators Dλ,ν;µ. Namely, we consider only cochains that are given by
differentiable maps.

Theorem 4.1. The space H1
diff(aff(1|1),Dλ,ν;µ) has the following struc-

ture:

H1
diff(aff(1|1),Dλ,ν;µ) '


R2k+1 if µ− λ− ν = k, k ∈ N,
R2k+2 if µ− λ− ν = k − 1

2 , k ∈ N∗.

0 otherwise.

The following 1-cocycles span the corresponding cohomology spaces:

Υi,j =
∑

i+j=k ai,jη
2
1(H)F (i)G(j) +

∑
i+j=k−1 bi,jη

2
1(H)η1(F

(i))η1(G
(j)),

Ψi,j =
∑

i+j=k ci,jη
2
1(H)η1(F

(i))G(j) +
∑

i+j=k di,jη
2
1(H)(−1)|F |F (i)η1(G

(j)).

(4.1)

4.1. Relationship between H1
diff(aff(1|1),Dλ,ν;µ) and H1

diff(aff(1),Dλ,ν;µ).
Before proving the theorem 4.1, we present here some results illustrat-
ing the analogy between the cohomology spaces in super and classical
settings.
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Proposition 4.2. 1. As a aff(1)-module, we have

Fλ ' Fλ ⊕Π(Fλ+ 1
2
) and aff(1|1) ' aff(1)⊕Π(H),

where, H is the subspace of F− 1
2
spanned by {dx−

1
2 } and Π is the change

of parity.
2. As a aff(1)-module, we have for the homogenous components of Dλ,ν;µ:

(Dλ,ν;µ)0 ' Dλ,ν;µ ⊕Dλ+ 1
2
,ν+ 1

2
;µ ⊕Dλ,ν+ 1

2
;µ+ 1

2
⊕Dλ+ 1

2
,ν;µ+ 1

2
, (4.2)

(Dλ,ν;µ)1 ' Π(Dλ,ν;µ+ 1
2
⊕Dλ+ 1

2
,ν;µ ⊕Dλ,ν+ 1

2
;µ ⊕Dλ+ 1

2
,ν+ 1

2
;µ+ 1

2
). (4.3)

Proof. 1. The first statement is immediately deduced from (2.1).
2. It is well known that is M = M0 ⊕ M1 and N = N0 ⊕ N1 are two
g-modules, where g is a (super)algebra, then Hom(M,N) is a g-module,
where the homogenous components are

Hom(M,N)0 = Hom(M0, N0)⊕Hom(M1, N1) andHom(M,N)1 = Hom(M0, N1)⊕Hom(M1, N0)

and the g-action on Hom(M,N) is given by

(X.A)(x) = X.(A(x))− (1)|A||X|A(X.x).

Moreover, if φ1 : M → M ′ and φ2 : N → N ′ are two g-isomorphisms,
then the map Ψ : Hom(M,N) → Hom(M ′, N ′) defined by

Ψ(A) = φ2 ◦A ◦ φ−1
1

is a g-isomorphism. In our situation, as a aff(1)-module, we have for the
homogeneous relative parity components:{

(Fλ ⊗ Fν)0 ' Fλ ⊗Fν ⊕Π(Fλ+ 1
2
)⊗Π(Fν+ 1

2
),

(Fλ ⊗ Fν)1 ' Π(Fλ+ 1
2
)⊗Fν ⊕Fλ ⊗Π(Fν+ 1

2
).

So, we deduce the two homogenous relative parity components of Dλ,ν;µ

as a aff(1)-module. In fact, we have the following isomorphisms:


Homdiff(Π(Fλ+ 1

2
)⊗Π(Fν+ 1

2
),Fµ) → Dλ+ 1

2
,ν+ 1

2
;µ, A 7→ A ◦ (Π⊗Π),

Homdiff(Fλ ⊗Π(Fν+ 1
2
),Π(Fµ+ 1

2
)) → Dλ,ν+ 1

2
;µ+ 1

2
, A 7→ Π ◦A ◦ (Id⊗Π),

Homdiff(Π(Fλ+ 1
2
)⊗Fν ,Π(Fµ+ 1

2
)) → Dλ+ 1

2
,ν;µ+ 1

2
, A 7→ Π ◦A ◦ (Π⊗ Id).

Homdiff(Fλ ⊗Fν ,Π(Fµ+ 1
2
)) → Π(Dλ,ν;µ+ 1

2
), A 7→ Π(Π ◦A),

Homdiff(Π(Fλ+ 1
2
)⊗Π(Fν+ 1

2
),Π(Fµ+ 1

2
)) → Π(Dλ+ 1

2
,ν+ 1

2
;µ+ 1

2
) A 7→ Π(Π ◦A ◦ (Π⊗Π),

Homdiff(Fλ ⊗Π(Fν+ 1
2
),Fµ) → Π(Dλ,ν+ 1

2
;µ), A 7→ Π(A ◦ (Id⊗Π)),

Homdiff(Π(Fλ+ 1
2
)⊗Fν ,Fµ) → Π(Dλ+ 1

2
,ν;µ), A 7→ Π(A ◦ (Π⊗ Id)).

�



aff(1|1) acting on the space of bilinear differential operators 315

Proposition 4.3. Any 1-cocycle Υ ∈ Z1
diff(aff(1|1);Dλ,ν;µ), is decom-

posed into (Υ′,Υ′′) in Hom(aff(1);Dλ,ν;µ)⊕Hom(H;Dλ,ν;µ). Υ′ and Υ′′

are
solutions of the following equations:

Υ′([Xg1 , Xg2 ])− Lλ,ν;µ
Xg1

Υ′(Xg2) + Lλ,ν;µ
Xg2

Υ′(Xg1) = 0, (4.4)

Υ′′([Xg, Xθ])− Lλ,ν;µ
Xg

Υ′′(Xθ) + Lλ,ν;µ
Xθ

Υ′(Xg) = 0, (4.5)

Υ′([Xθ, Xθ]) + 2Lλ,ν;µ
Xθ

Υ′′(Xθ) = 0. (4.6)

where, g, g1, g2 ∈ R1[x].

Proof. The equations (4.4), (4.5) and (4.6) are equivalent to the fact
that Υ is a 1-cocycle. For any XF , XG ∈ aff(1|1),

δΥ(XF , XG) := (−1)|F ||Υ|Lλ,ν;µ
XF

Υ(XG)−(−1)|G|(|F |+|Υ|)Lλ,ν;µ
XG

Υ(XF )−Υ([XF , XG]) = 0.

�

Now, in order to compute H1
diff(aff(1|1),Dλ,ν;µ), we need first to de-

scribe the aff(1)-relative cohomology space H1
diff(aff(1|1), aff(1),Dλ,ν;µ).

So, we shall need the following description of some aff(1)-invariant map-
pings.

Lemma 4.4. Let

A : H×Fλ ×Fν → Fµ, (hdx
− 1

2 , fdxλ, gdxν) 7→ A(h, f, g)dxµ

be a trilinear differential operator. If a is aff(1)-invariant then

µ = λ+ ν − 1

2
+ k, where k ∈ N.

and the following relation holds

Ak(h, f, g) =
∑

i+j=k

γi,jhf
(i)g(j)dxλ+ν− 1

2
+k.

Proof. Any trilinear differential operator A : H × Fλ × Fν → Fµ can
be expressed as

Ak(h, f, g) =
∑

i+j=k

γi,jhf
(i)g(j),

where, the γi,j are smooth functions.The invariance property of A with
respect any vector fields XF reads:

F (A(h, f, g))′+µF ′A(h, f, g) = A(Fh′−1

2
F ′h, f, g)+A(h, Ff ′+λF ′f, g)+A(h, f, Fg′+νF ′g).

(4.7)
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The invariance with respect the vector field X1 = ∂x yields that A must
be expressed with constant coefficients. Consider terms in F ′hf (i)g(j) in
(4.7), we get

µ = λ+ ν − 1

2
+ k.

�

Lemma 4.5. The 1-cocycle Υ is a coboundary for aff(1|1) if and only
if its restriction to aff(1) is a coboundary for aff(1).

Proof. It is easy to see that if Υ is a coboundary for aff(1|1) then its
restriction to aff(1) is a coboundary for aff(1). Now, assume that, Υ′ is

a coboundary for aff(1), that is, there existe Ã ∈ Dλ,ν;µ such that for all
g polynomial in the variable x with degree at most 1

Υ(Xg) = Lλ,ν;µ
Xg

Ã. By replacing Υ by Υ− δÃ, we can suppose that

Υ |aff(1)= 0. But, in this case, the map Υ is aff(1)-invariant must satisfy,
for g polynomial with degree 0 or 1, the following equation

Lλ,ν;µ
Xg

Υ(Xθ)−Υ([Xg, Xθ]) = 0, (4.8)

Lλ,ν;µ
Xθ

Υ(Xθ) + Lλ,ν;µ
Xθ

Υ(Xθ) = 0, (4.9)

where g ∈ R2[X] .
1) If Υ is an even 1-cocycle then Υ is decomposed into four trilinear
maps: 

Π(H)⊗Π(Fλ+ 1
2
)⊗Fν → Fµ,

Π(H)⊗Fλ ⊗Π(Fν+ 1
2
) → Fµ,

Π(H)⊗Fλ ⊗Fν → Π(Fµ+ 1
2
),

Π(H)⊗Π(Fλ+ 1
2
)⊗Π(Fν+ 1

2
) → Π(Fµ+ 1

2
).

The equation (4.7) is nothing but the aff(1)-invariance property of these
maps. Therfore, the expressions of these maps are given by Lemma 4.4,
in fact, the change of parity functor Π commutes with the aff(1)-action.
So, we must have µ = λ+ν+k, where k+1 ∈ N, otherwise, the operator
Υ is identically the zero map.More precisely:
If µ = λ+ ν + k, where k ∈ N∗, we have

Υk(Xhθ)(θf, g) =

k∑
i=0

aihf
(i)g(k−i) (4.10)

Υk(Xhθ)(f, θg) =
k∑

i=0

bihf
(i)g(k−i) (4.11)
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Υk(Xhθ)(f, g) = θ
k+1∑
i=0

cihf
(i)g(k−i+1) (4.12)

Υk(Xhθ)(θf, θg) = θ
k∑

i=0

dihf
(i)g(k−i) (4.13)

The maps Υk must satisfy the equation (4.8). More precisely, the maps
Υk must satisfy the following four equation

θ(Υk(Xθ)(θf, g))
′ + 2Υk(Xθ)(

1

2
f, g)− 2Υk(Xθ)(θf,

1

2
θg′) = 0,

θ(Υk(Xθ)(f, θg))
′ + 2Υk(Xθ)(

1

2
θf ′, θg) + 2Υk(Xθ)(f,

1

2
g) = 0,

∂θ(Υk(Xθ)(f, g)) + 2Υk(Xθ)(
1

2
θf ′, g) + 2Υk(Xθ)(f,

1

2
θg′) = 0,

∂θ(Υk(Xθ)(θf, θg)) + 2Υk(Xθ)(
1

2
f, θg)− 2Υk(Xθ)(θf,

1

2
g) = 0.

By a direct , but very hard , computation we show that Υk is a cobound-
ary.
2) Similarly, if Υ is an odd 1-cocycle then Υ is decomposed into four
components: 

Π(H)⊗Fλ ⊗Fν → Fµ,
Π(H)⊗Π(Fλ+ 1

2
)⊗Π(Fν+ 1

2
) → Fµ,

Π(H)⊗Π(Fλ+ 1
2
)⊗Fν → Π(Fµ+ 1

2
),

Π(H)⊗Fλ ⊗Π(Fν+ 1
2
) → Π(Fµ+ 1

2
).

The equation (4.7) is nothing but the aff(1)-invariance property of these
maps. Therfore, the expressions of these maps are given by Lemma 4.4.
So, we must have µ = λ+ν+k− 1

2 , where k ∈ N, otherwise, the operator
Υ is identically the zero map. If µ = λ + ν + k − 1

2 , where k ∈ N, we
show, as in the previous case that Υ is coboundary. �

4.2. Proof of Theorem 4.1.

Proof. The first cohomology space H1
diff(aff(1|1),Dλ,ν;µ) is decomposed

into odd and an even subspaces:

H1
diff(aff(1|1),Dλ,ν;µ) = H1

diff(aff(1|1),Dλ,ν;µ)0 ⊕H1
diff(aff(1|1),Dλ,ν;µ)1.

We compute each part separetly.
1. Let Υ be a non trivial even 1-cocycle for aff(1|1) in Dλ,ν;µ. The
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restriction of Υ on aff(1) is with values in (Dλ,ν;µ)0 which is isomorphic,
as aff(1)-module, to

Dλ,ν;µ ⊕Dλ+ 1
2
,ν+ 1

2
;µ ⊕Dλ,ν+ 1

2
;µ+ 1

2
⊕Dλ+ 1

2
,ν;µ+ 1

2
,

the restriction of Υ on Π(H) is with values in (Dλ,ν;µ)1 which is isomor-
phic, as aff(1)-module, to

Π(Dλ,ν;µ+ 1
2
⊕Dλ+ 1

2
,ν;µ ⊕Dλ,ν+ 1

2
;µ ⊕Dλ+ 1

2
,ν+ 1

2
;µ+ 1

2
).

Hereafter, F = f0 + f1θ and G = g0 + g1θ where f0, f1, g0, g1 ∈ C∞(R).
The restriction of Υ on aff(1) is given by

Υ |aff(1)= A0 +A1 + ...+Ak,

where,

A0(Xh, F,G) = β01c01(Xh, f0, g0)+β02c02(Xh, f1, g1)+θβ03c03(Xh, f1, g0)+θβ04c04(Xh, f0, g1),

A1(Xh, F,G) = β11c11(Xh, f0, g0)+β12c12(Xh, f1, g1)+θβ13c13(Xh, f1, g0)+θβ14c14(Xh, f0, g1),

Ak(Xh, F,G) = βk1ck1(Xh, f0, g0)+βk2ck2(Xh, f1, g1)+θβk3ck3(Xh, f1, g0)+θβk4ck4(Xh, f0, g1),

where, c0i , c1i, ... ,cki are as thase defined in H1(aff(1),Dλ,ν;µ) and
β0i, β1i, ..., βki in R.
The restriction of Υ on Π(H) is given by

Υ |Π(H)=
∑

i+j=k r1,i,jf
(i)
1 g

(j)
0 +

∑
i+j=k r2,i,jf

(i)
0 g

(j)
1

+θ
[∑

i+j=k+1 r3,i,jf
(i)
0 g

(j)
0 +

∑
i+j=k r4,i,jf

(i)
1 g

(j)
1

]
By the 1-cocycle relation:

δΥ(Xh, Xθ)(F,G) = 0, we prove that

r1,i,j(µ− λ− ν − k)− 1
2(βj4 − βj2 − βj1) = 0

r2,i,j(µ− λ− ν − k)− 1
2(βj3 − βj1 + βj2) = 0

r3,i,j(µ− λ− ν − k)− 1
2(2βj1 − βj3 − βj4) = 0

r4,i,j(µ− λ− ν − k)− 1
2(2βj2 + βj3 − βj4) = 0

where i, j ∈ {0, ..., k}.

From Lemma 4.5 that the dimension of H1
diff(aff(1|1),Dλ,ν;µ) is equal

to the number of parameters βjl where l ∈ {1, 2, 3, 4}.
Thus we have dimH1

diff(aff(1|1),Dλ,ν;µ) = 2k + 1.
2. Let Υ be a non trivial odd 1-cocycle for aff(1|1) in Dλ,ν;µ.

The restriction of Υ on aff(1) is with values in (Dλ,ν;µ)1 which is iso-
morphic, as aff(1)-module, to

Π(Dλ,ν;µ+ 1
2
⊕Dλ+ 1

2
,ν;µ ⊕Dλ,ν+ 1

2
;µ ⊕Dλ+ 1

2
,ν+ 1

2
;µ+ 1

2
).
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the restriction of Υ on Π(H) is with values in (Dλ,ν;µ)0 which is isomor-
phic, as aff(1)-module, to

Dλ,ν;µ ⊕Dλ+ 1
2
,ν+ 1

2
;µ ⊕Dλ,ν+ 1

2
;µ+ 1

2
⊕Dλ+ 1

2
,ν;µ+ 1

2
,

Hereafter, F = f0+f1θ and G = g0+g1θ ,where, f0, f1, g0, g1 ∈ C∞(R).
The restriction of Υ on aff(1) is given by

Υ |aff(1)= B0 +B1 + ...+Bk,

where,

B0(Xh, F,G) = γ01c03(Xh, f1, g0)+γ02c04(Xh, f0, g1)+θγ03c01(Xh, f0, g0)+θγ04c02(Xh, f1, g1),

B1(Xh, F,G) = γ11c13(Xh, f1, g0)+γ12c14(Xh, f0, g1)+θγ13c11(Xh, f0, g0)+θγ14c12(Xh, f1, g1),

Bk(Xh, F,G) = γk1ck3(Xh, f1, g0)+γk4ck2(Xh, f0, g1)+θγk3ck1(Xh, f0, g0)+θγk4ck2(Xh, f1, g1),

where, c0i , c1i, ... ,cki are as thase defined in H1(aff(1),Dλ,ν;µ) and γ0i,
γ1i, ..., γki in R.
The restriction of Υ on Π(H) is given by

Υ |Π(H)=
∑

i+j=k q1,i,jf
(i)
0 g

(j)
0 +

∑
i+j=k−1 q2,i,jf

(i)
1 g

(j)
1

+θ
[∑

i+j=k+1 q3,i,jf
(i)
1 g

(j)
0 +

∑
i+j=k q4,i,jf

(i)
0 g

(j)
1

]
By the 1-cocycle relation:

δΥ(Xh, Xθ)(F,G) = 0, we prove that

q1,i,j(µ− λ− ν − k + 1
2)−

1
2(γj3 + γj2 + γj1) = 0

q2,i,j(µ− λ− ν − k + 1
2)−

1
2(γj4 − γj1 + γj2) = 0

q3,i,j(µ− λ− ν − k + 1
2)−

1
2(2γj1 + γj3 − γj4) = 0

q4,i,j(µ− λ− ν − k + 1
2)−

1
2(2γj2 + γj3 + γj4) = 0

where i, j ∈ {0, ..., k}.

From Lemma 4.5 that the dimension of H1
diff(aff(1|1),Dλ,ν;µ) is equal

to the number of parameters γjl where l ∈ {1, 2, 3, 4}.
Thus we have dimH1

diff(aff(1|1),Dλ,ν;µ) = 2k + 2.
�
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