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ABSTRACT. We consider the oscillator group equipped with a
bi-invariant Lorentzian metric. Some geometrical properties of
this space and the harmonicity properties of left-invariant vector
fields on this space are determined. In some cases, all these vector
fields are critical points for the energy functional restricted to
vector fields. Left-invariant vector fields defining harmonic maps
are also classified, and the energy of these vector fields is explicitly
calculated.
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1. INTRODUCTION

Suppose {P, X;...Xn, Y1..Y;n,Q} is a basis for Lie algebra g,,(\) =
{A1, ..., A\ } with brackets

[(Xi, V)] =0;5P,  [Q, X;]=NY;, [QY]=-NX; (11

The corresponding simply connected Lie group Gy, (A) = {A1, ..., A}
is called the oscillator group. The family of left-invariant Lorentzian
metrics ge, —1 < € < 1 on the oscillator group G,,(\) given in the basis
{P,X1..Xm, Y1..Y,,Q}, by
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e 0 1
Ge = 0 Iy, O . (12)
1 0 ¢

The oscillator group is defined as the semidirect product of the line
(time) with the Heisenberg group, with the action given by the dynam-
ics. Thus, it is not realized as a matrix group. It is a solvable group, but
not an exponential group. The oscillator groups, are not only of great im-
portance in Lorentzian geometry but also have a variety of applications
in other fields, such as Conformal Field Theory, WZWmodels (see [11])
and Supergravity. This group has many useful properties in both geom-
etry and physics. Levichev showed that the oscillator group equipped
with the Lorentzian bi-invariant metric is geometrically a Lorentzian
symmetric space and is physically related to an isotropic electromag-
netic field. The oscillator group has interesting properties both in terms
of differential geometry and physics (see, for example, [6] and the refer-
ences therein).

Up to our knowledge, no geometrical properties such as harmonicity
properties of invariant vector fields have been obtained yet for the os-
cillator group. Studying critical points of the energy associated with
vector fields is a practical goal in various fields. As an example by the
Reeb vector field ¢ of a contact metric manifold, one can see how the
criticality of such a vector field is linked to the geometry of the manifold
([12],[13]). Recently, it has been [8] proved that critical points of the en-
ergy functional restricted to vector fields, i.e., function E : X(M) — R,
are parallel vector fields. Moreover, in the same paper, it also has been
determined the tension field associated with a unit vector field V, and in-
vestigated the problem of determining when V' defines a harmonic map.
A Riemannian manifold admitting a parallel vector field is locally re-
ducible, and a pseudo-Riemannian manifold likewise admitting either
space-like or time-like parallel vector field is locally reducible too. This
leads us to consider different situations, where some interesting types of
non-parallel vector fields can be characterized in terms of harmonicity
properties. We may refer to the recent monograph [7] and reference [1]
for an overview of harmonic vector fields.

As for the contents, in Section 2, we give some preliminaries. In Sec-
tion 3, we investigate some geometric properties of the oscillator group.
Harmonicity properties of vector fields on the oscillator group will be
determined in Sections 4. Finally, the energy of all these vector fields is
explicitly calculated in Section 5.
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2. PRELIMINARIES

Let (M, g) be a compact Riemannian manifold and gs; be the Sasaki
metric on the tangent bundle T'M, then the energy of a smooth vector
field V : (M,g9) — (T'M, ¢°) on M is;

E(V) = —vol (M, g) + / IV V[2dv (2.1)

(M is compact; in the non-compact case, one works over relatively com-
pact domains see [4]). V : (M,g) — (T'M,g°) is said to define a
harmonic map if V is a critical point for the energy functional. The
Euler-Lagrange equations characterize vector fields V' defining harmonic
maps as the ones whose tension field §(V') = tr(V?V) vanishes. Conse-
quently, V' defines a harmonic map from (M, g) to (T M, ¢°) if and only
if

trlR(VV,V)]=0, V*'VV =0, (2.2)
where with respect to an orthonormal local frame {ey, ..., e, } on (M, g),
with ; = g(e;, e;) = £1 for all indices i, one has

VVV =3",6i(Ve, Ve,V — Vv..eV).
A smooth vector field V is said to be a harmonic section if and only
if it is a critical point of E(V) = (1/2) [,,||[VV|[*dv where E? is the
vertical energy. The corresponding Euler-Lagrange equations are given
by
V*VV =0, (2.3)

Let XP(M) = {V € X(M) : ||V||> = p?} and p # 0. Then, one can
con51der vector fields V' € X(M) which are critical points for the en-
ergy functional E|xp(yr), restricted to vector fields of the same constant
length. The Euler-Lagrange equations of this variational condition are
given by

V*VV is collinear to V. (2.4)

In the non-compact case, the condition (2.4) is taken as a definition of
critical points for the energy functional under the assumption p # 0,
that is, if V' is not light-like. If p = 0, then (2.4) is still a sufficient
condition so that V is a critical point for the energy functional F| X0(M)s
restricted to light-like vector fields ([4], Theorem 26).

3. SOME GEOMETRIC PROPERTIES OF OSCILLATOR GROUP

We consider the special case {¢ = 0,m = 1}. So, the oscillator algebra
g has 4-generator P, X1, Y7, @ and Lie brackets

(X1, Y1]=P, [Q,X1]=Y1, [QY1]=—-X;. (3.1)
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Consider the biinvariant Lorentzian metric g on the oscillator group G
given in the basis {P, X1,Y7,Q}, by

000 1
010 0

9=10 0 1 0 (32)
1000

The components of the Levi-Civita connection are calculated using the
well known Koszul formula and are

0035 0
000 O
0 00 O
00 —3 0 00 0 0 (3:3)
o0 0 o0 oo -5 0
A?’_ooo%’A“_o%oo
00 0 O 0 0 0 O
We can determine the non-zero curvature components;
R(XlaQ)Xl - %Pu R(Yva)Yl - %P)
R(Qle)Q = %Xla R(Qa YYI)Q = %YI
Since R(X,Y,Z,W) = g(R(X,Y)Z,W) we have;
R(XlaQaXhQ) = R(vavaayi) = % (34)
Applying the Ricci tensor formula, we get;
0 0 00
0 0 0O
(ﬂij): 000 0 (35)
000 3

which is diagonal with eigenvalue r| = % By (3.5) and (3.2), pij # Agij
for some indices i, j, so G can not be an Einstein manifold.

We denote the scalar curvature by 7. Let Mg' be a pseudo-Riemannian
manifold of index ¢q. The Weyl conformal curvature tensor field C' of
type (1,3) of M is defined by

C(X,Y)Z=R(X,Y)Z - (A (QX A NY + X AQY)Z
+ormmmy X AY)Z,

where (X ANY)Z =<Y,Z > X— < X,Z >Y. It is well-known [2] that
for a conformally flat space, the curvature tensor can be completely
determined using the Ricci tensor. Moreover, if n > 4, then Mg is
conformally flat if and only if C' = 0.

(3.6)
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Proposition 3.1. The oscillator group equipped with bi-invariant
Lorentzian metric g described in (3.2) is conformally flat.

Proof. Since the scalar curvature is 7 = ) _.(pi, p;) (see [3]. p. 43), by
(3.5), 7 = i. Using (3.6) and (3.5) a straightforward calculation then
yields that C' = 0, as desired. O

The oscillator group equipped with bi-invariant Lorentzian metric g
is conformally flat, so we conclude that:

Corollary 3.2. The oscillator group equipped with bi-invariant
Lorentzian metric g described in (3.2) is conformally Einstein.

A D’ Atri space is defined as a Riemannian manifold (M, g) whose
local geodesic symmetries are volume-preserving. Let us recall that the
property of being a D’ Atri space is equivalent to the infinite number of
curvature identities called the odd Ledger conditions Logy1, k > 1 (see
[5]). In particular, the two first non-trivial Ledger conditions are:

Ly : (Vxp)(X, X) =0,

Ls: ", 1 R(X, B, X, By) (VX R)(X, Eo, X, By) =0, 7

where X is any tangent vector at any point m € M and {Ey,..., By} is
any orthonormal basis of T,, M. Here R denotes the curvature tensor
and p the Ricci tensor of (M, g), respectively, and n = dimM.

Thus, it is natural to start with the investigation of the oscillator group
satisfying the simplest Ledger condition Ls, which is the first approx-
imation of the D’ Atri property. This condition is called ”the class A
condition”. Equivalently Ledger condition Ls holds if and only if the
Ricci tensor is cyclic-parallel, i.e.

(Vxp)(Y, 2) + (Vyp)(Z, X) + (Vzp)(X,Y) = 0.

Proposition 3.3. The oscillator group equipped with bi-invariant
Lorentzian metric described in (3.2) is a D’ Atri space which its first
approzimation holds.

Proof. In Ledger condition Ls,
Vipik = — > (€5 Bijip + €xBiktptj)s

where B;j;;, components can be obtained by using the relation V.e; =
Zk 5jBijk€k: with E; = g(ei,ei) = =1 for all indices i. But lell =
Vaopoa = V3pss = 0, hence the Ricci tensor is cyclic-parallel, and the
first approximation of the D’ Atri property holds. O

A pseudo-Riemannian manifold which admits a parallel degenerate dis-
tribution is called a Walker manifold. Walker spaces were introduced
by Arthur Geoffrey Walker, in 1949. The existence of such structures
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causes many interesting properties for the manifold with no Riemann-
ian counterpart. Walker also determined standard local coordinates for
these kinds of manifolds [14, 15].

Proposition 3.4. Let G be the oscillator group equipped with o bi-
invariant Lorentzian metric g described in (3.2), then (G, g) admits in-
variant parallel degenerate line field D with the generator {P}.

Proof. Set X = aP+bX;1+cY1+dQ € g and suppose that D = span(X)
is an invariant null parallel line field. Then, the following equations must
satisfy for some parameters wi,...,wy

VpX =wi X, Vx, X =wX, VyX=wsX, VoX =uwsX.

By straight forward calculations, we conclude that the following equa-
tions must satisfy

wia=0, wb=0, wiec=0, wd=0,
wb=0, wed=0, —wsa+ le= 0, —wocH+ lg= 0,
w3c=0, w3d=0, —wsa— ib =0, —w3b+ id =0,
wga =0, w4d=0, —wy4b— %c =0, —wyc+ ;b =0.
X is null, hence X must satisfy g(X, X) = 2ad+b*+c? = 0 described in
(3.2). By solving the above system of equations, we obtain that X = aP.

It means that b=c=d = 0. O

4. HARMONICITY OF VECTOR FIELDS ON OSCILLATOR GROUP

In this section, we investigate the harmonicity of invariant vector fields
on the oscillator group equipped with bi-invariant Lorentzian metric g
described in (3.2).

Theorem 4.1. Let G be the oscillator group equipped with bi-invariant
Lorentzian metric g described in (3.2) and V = aej +beg +ces+dey € g
be a left-invariant vector field on G for some real constants a, b, c,d, then
the following conditions are equivalent:

(1) V defines a harmonic map;

(2) V' is harmonic;

(3) V' is a critical point for the energy functional restricted to vector
fields of the same length;

(4) V = aey + bu + ces, that is, b = —d.

Proof. We can construct an orthonormal frame field {ej, es, €3, €4} with
respect to g;

e1=—-P+ X1, e2=X1+Q, e3=Y), eq=—-P+X1+0Q,
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with ey, es, e space-like and e4 time-like. We get;

[617 62} = —eg, [617 63] = €2 — €4, [ela 64] = —€s3, (4 1)
[627 63} = —e€y, [637 64] =e1. ’

The connection components are;

1 1 1 1
v6162 = —5€3, v6163 = 562 ; 5647 v61€4 = _563a
Ve,1 = —35¢€3, Ve,€3 = —35¢€1, 192
Voo 1,200 Voo 1 Voo, -l (42)
e3€1 = —5€2 + 5€4, e3€2 = 3€1, e3€4 = 5€1,
1 1
Ve €1 = 5és, Ve,€3 = —3€1.

while V¢,e; = 0 in the remaining cases.

Set w = ey — esq. Then, from (4.2) we get V.,u = 0 for all indices
i. Therefore, u is a parallel light-like vector field. Finding a light-
like parallel vector field is an important issue that lacks Riemannian
interpretation, and represents a class of pseudo-Riemannian manifolds
that illustrate the great differences between Riemannian and pseudo-
Riemannian spaces.

For an arbitrary left-invariant vector field V' = aey 4+ bea +ce3 +des € g
we can now use (4.2) to calculate V.,V for all indices i. We get

Ve,V =—3(b+d)es + 3cu, Ve,V = —%cel—k %aeg,
Ve,V =35(b+d)er — 5au, Ve,V =—jcer + zaes.

where the special role of u = ey — e4 is clear. We can now calculate
Ve, Ve,V for all indices i. We obtain

(4.3)

Ve, Ve,V = —%(b—}—d)u, Ve, Ve,V = —%(ael—f—ceg), (4.4)

VesVes V= —3(b+d)u, Ve Ve,V =—;(aer + ces). ’
And for Vy, .,V for all indices i

Vv, eV=Vy,e,V=Vy_e,V=Vy, eV =0 (4.5)

Thus, we find

V*VV =36i(Ve, Ve,V = Vy, o, V) = —5(b + d)u. (4.6)
Thus, condition (2.3) is satisfied if and only if b = —d. It means that, V'
is harmonic if and only if b = —d. The condition (2.4) is again equivalent
to b = —d. Because, if V*VV is collinear to V, then, by (4.6), either
b= —d, or V is collinear to u = e3 — e4, which again implies b = —d.

Now, using (4.3), we find
1
R(v61V> V)€1 =0, R(Vezva V)€2 = é(b + d) (061 - ae3)7
1
R(Ve,V,V)es =0, R(Ve,V,V)es = é(b + d)(ce; — aes).

Next, suppose now that b = —d, that is, V = ae; 4+ bu + cez. Then,
R(V.,V,V)e; = 0 for all indices i. Therefore,
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trlR(V.V,V)]=>,eR(V,V,V)e; =0,

with €; = g(e;, e;) = %1 for all indices i. Thus, condition (2.2) is satisfied
if and only if b = —d. (]

Therefore, left-invariant vector fields defining a harmonic map form
a three-parameter family. As |lae; + bu + ces||> = a® + ¢? such vector
fields are either space-like or light-like.
A vector field V is geodesic if Vy/V = 0, and is Killing if Ly g = 0, where
L denotes the Lie derivative. Parallel vector fields are both geodesic and
Killing, and vector fields with these special geometric features often have
particular harmonicity properties [9, 10].

Proposition 4.2. Let G be the oscillator group equipped with bi-
invariant Lorentzian metric g described in (3.2) and V € g be a left-
invariant vector field on G, then V is geodesic. Moreover, V is Killing
too.

Proof. Suppose that V' = ae; + bey + ces + dey € g, using (4.3), it is
clear ViV = 0. So, V is geodesic.

Because g is fixed and bi-invariant, for an arbitrary left-invariant vector
field V € g, we have

Lyvg=0. (4.7)

However, for V' = aey + bes + ces + dey € g using (4.3) and the relation
(Lxg)(Y,Z) =g(VyX,Z)+ g(Y,VzX) simply results Ly g = 0. O

Also, about harmonicity properties of invariant vector fields, the os-
cillator groups display some particular features. The main geometrical
reasons for the special behavior of these groups are the existence of a
parallel light-like vector field.

We have the following classification result which emphasizes once again
the special role played by the parallel vector field w.

Theorem 4.3. Let V = aey + bes + ces + deq € g be a left-invariant
vector field on the oscillator group, then the following conditions are
equivalent:
(1) V is geodesic;
(2) V is Killing;
(3) V is parallel if and only if a = ¢ = b—d = 0, that is, V is
collinear to u.

Proof. Conditions (1) and (2) are straight results of Proposition 4.2.
Using (4.3), V.,V for all indices i, is collinear to V' if and only if a =
c=b—d=0. So, V is parallel if and only if a = ¢ =b—d = 0, that is,
V is collinear to u. O
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5. THE ENERGY OF VECTOR FIELDS ON OSCILLATOR GROUP

We calculate explicitly the energy of a vector field V' € g on the
oscillator group. This allows us to determine some critical values of
the energy functional on the oscillator group. We shall first discuss
geometric properties of the map V defined by a vector field V' € g.

Proposition 5.1. Let G be the oscillator group, V = aei + bea + ces +
dey € su(2) be a left-invariant vector field on the oscillator group for
some real constants a, b, c,d. Denote by D a relatively compact domain
of G and by Ep(V) the energy of V|p. The energy of V is;

Ep(V) = (2+ (b + d)?)vol(D).

Proof. Let G be the oscillator group. Consider a local orthonormal basis
{e1,e2,e3,e4} of vector fields. Then, locally,

HVVHQ = Z?:l Eig(vei‘/v veiv)7

with &; = g(e;,e;) = £1 for all indices i. Let V' € g be a left-invariant
vector field on the oscillator group, then (4.3) easily yields

IVV][? = 5(b+d)>.

The conclusion follows from the expression of E(V) and the fact that
|[VV]|? is constant. O

We already know from Theorem 4.3 which vector fields in g on the
oscillator group are critical points for the energy functional. Taking into
account the Proposition (5.1), we then have the following.

Theorem 5.2. Let G be the oscillator group, then 2vol(D) is the abso-
lute minimum value of the energy functional Ep. Such a minimum is
attained by all vector fields V = aeq + bu + ce3 € g.

Proof. By Proposition 5.1, Ep(V) = (2 + (b + d)?)vol(D). Therefore,
Ep(V) = 2vol(D) if and only if b = —d. Thus, among vector fields of
the same length, the ones with b = —d minimize the energy. O
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