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ABSTRACT. This paper is devoted to solve a class of differential
equation with simultaneously combining variable coefficients and
variable delays namely variable-delay differential equations (VD-
DEs). For this purpose, a numerical method is proposed in which
the unknown function and its derivative are approximated with
the basis of interpolating Multiquadric radial basis functions (MQ-
RBFs) at arbitrary collocation points. According to the existing
mechanism, the synchronization problem is recast to a system of
algebraic equations. In the other hand, the proposed method pro-
vides a very adjustable framework for approximation according to
the discretization and due to a board range of arbitrary nodes. Fi-
nally, some illustrative examples are given to verify the validity and
applicability of the new technique.
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1. INTRODUCTION

In examining a physical process from a mathematical point of view,
the assumption used for a large range of dynamical systems is that the
intended process behavior depends only on its current state. However,
there are situations where this assumption is not valid and the use of
a classical model in their analysis and design will result in poor perfor-
mance of these systems. In these cases, the influence of former state
system will also be considered on their behavior [24, 13, 14, 30] which
is referred to delay differential equations (DDEs). A generalization of
classic DDEs when the dynamics system is described by variable-delays
is considered as VDDEs. It is worth noting that the research on VDDEs
is completely new and numerical studies of these problems is still at an
early stage of growth. The reason to formulate and solve VDDEs has
recently been answered affirmatively turn into significant increasing of
these problems in life sciences [24]. In this paper, we intend to obtain a
new numerical approach for approximating the solution of the following
VDDE:

m

y(x) =~(z), n<z<x0

where the coefficient by(x) and the delays 0x(x) are given continuous

functions, k = 0,1,--- ,m, éx(z) > 0 for x > x¢ and 1 = infy,<z<z {7 —
dr(x)}. The initial data consists of a bounded and continuous function
~(z) on [n, zo].

Although, many computational methods have been proposed for solv-
ing DDEs, [25, 3, 19], only a small number of these methods have so far
been generalized for solving VDDEs. Asymptotic behavior of the so-
lutions to a differential equation with variable delays is considered in
[1, 4, 20, 28, 31]. But, most of the mentioned type of VDDEs have not
been analytical solutions; hence, numerical methods are needed to get
approximate solutions. In [21], the authors applied a matrix collocation
method to solve the differential equation (1.1) based on Morgan-Voyce
polynomials. In [23], the authors have used the method based on hybrid
Taylor and Lucas polynomials to solve this equation.

Getting through the techniques for finding solutions of differential
equations, RBFs is a relatively new technique. Many researchers have
come up with this technique because it has better accuracy, stability,
efficiency and simplicity of implementation over other methods, exem-
plified, RBF meshless method used by Liu et. al. in [18], Dehghan et. al.
in [5] and Ahmadi et. al. in [2]. In addition, the local RBF method has
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been investigated in [29] to solve the variable-order time fractional dif-
fusion equation. Also, RBF's are actively used for solving KdV equation
in [6, 8]. A local RBFs collocation method based on the MQ-RBFs for
solving nonlinear coupled Burgers equations is presented in [22]. Kumar
and Yadav in [15] provide RBF neural network techniques for solving
differential equations of various kinds. Some other work related to this
field may be found in [12, 7, 16]. The overall aim of this paper is us-
ing MQ-RBF collocation method to obtain the approximation solutions
of problem (1.1). With the suggested technique, the VDDEs (1.1) are
reformulated into a system of algebraic equations with discrete parame-
ters. To assess the quality of numerical solutions we applied the Gauss
elimination method for obtaining the unknown coefficients.

We cover this article with next subdivision. Preliminary concepts of
RBF and collocation method are given in section 2. The function ap-
proximation and the operational matrix of the derivatives, are discussed
in section 3. Also, we present the collocation scheme based on MQ-RBf
to solve problem (1.1) in this section. In section 4, several numerical
examples and comparisons between our results and those obtained by
other methods are intended for resolution. Conclusions are presented in
section 5.

2. RBF COLLOCATION METHOD

A collocation method based on RBFs interpolation has been intro-
duced to solve the VDDE (1.1).

2.1. RBF Definition. If the value of a function depends only on its
distance from the origin, then we have an RBF with real-valued, that
gives meaning ¢(x) = ¢(||z||), or a distance from another point like ¢, as
a center, in which ¢(z, c) = ¢(||z — ¢||) where ||.|| is the Euclidean norm,
as usual. Now, we define an approximation based on RBF's as follows.

Definition 2.1. Let ¢(r), » > 0, be an RBF function with distinct
centers xo, 1, - ,xy and the data f; = f(x;), i = 0,1,--- ,N. An
approximation based on RBF's takes the form:

N
s(z) =Y Xo(|lz - ill2), (2.1)
1=0

where \; are the unknown RBF coefficients are selected in such a way
that 8(%1) = fz

Some Types of RBFs: Commonly used types of RBFs include the
following forms in which r = ||z —x;|| and the shape parameter e controls
their flatness [11]:
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- Piecewise Smooth:

o o(r)=r3 Cubic RBF

o P(r)=1° Quintic RBF

o o(r) =1r%log(r) Tthin Plate spline (TPS) RBF

e o(r) = (1—7)"+p(r) Wendland functions where p is a
polynomial

Infinitely Smooth:

o o(r)=+/1 —1|— (er)? Multiquadric (MQ) RBF
o o(r)= [ Ese Inverse Quadratic (IQ) RBF
o o(r)= e (er)? Gaussian RBF

2.2. RBF Collocation Method. Now, we briefly introduce the RBF's
collocation method. Consider the following boundary value problem:

Lu=f inQ (2.2)

u=yg ond) (2.3)

in which © C R? d shows the dimension of the problem and L is a
linear differential operator. We distinguish in our notation center X =
{z1,...,2n} and the collocation points Z = {ay,...,an}. Then we have
the approximate solution of (2.2)-(2.3) in the form:

N
a(z) =3 Ao(lz — i), (2.4)
=1

where \;, i = 1,2, -+, N, are unknown coefficients that determined by
collocation, ¢ is a RBF, ||.|| is the Euclidean norm and z; is the centers
of the RBFs.

Now, let = divided into two subsets. One subset contains N centers,
=1, where Eq.(2.2) is enforced and the other subset contains Np centers,
Zo, where boundary conditions are enforced. The collection matrix,
obtained by applying the collection points in the differential equation
and boundary conditions, will be as follows:

Ar
A:
[AB]7

in which, A7 = Lé(|la — zj||)a=a,,04 € E1,2; € X, and Ap = Lo(||a —
Zj|)a=a;, & € Za, z; € X. The unknown coefficients \; will be obtained
by solving the linear system A\ = F', where F' is a vector included f(«;),
a; € E1, and g(a;), a; € Za.
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3. MAIN MATRIX RELATION AND METHOD OF SOLUTION

The main purpose of this paper is to obtain an approximate solution
for VDDE (1.1) based on the following MQ-RBF":

N
y(@) 2 yn(@) =Y Nellle — 1), (3.1)
j=1

where \;, j = 1,2,--- , N, are unknown coefficients that determined by
collocation method, ¢ is an RBF, ||.|| is the Euclidean norm, N is a
sufficient big constant. and z;, j = 1,2,--- , N are the centers of the
RBFs.

Now, we can rewrite the solution function (3.1) in the following matrix
form:

y(@) ~ yn(z) = AD(z), (32)
where A = [A1, A2, -+, An]| are the unknown coefficients and ®(z) =
[o1(z), p2(z),- -+, pn(x)]T. In addition, to approximate the delay term

in Eq. (1.1) we will have:
y(@ — (e Zw (e = 6x(2) — ;) = A®(@ — x(a)).  (33)
Also, for the matrix form of the first derivative 3 () we have:

N
z) =Y Nj¢ (lz = z5]) = A® (). (3-4)
j=1

For simplicity, without loss of generality we assume that
x —0p(x) <z, for k=2,3,---,p (3.5)
x —0p(x) >z, for k=p+1,---,m

Then, we can rewrite the VDDE (1.1) as follows:
p

V@) @) — > byl — @) = bo(@) + 3 b))

k=p+1 k=2
y(xo) = (o). (3.6)
By substituting the relations (3.1)-(3.4) into problem (3.6), we have

A(I)/( )—bl Z bk A@ x—dk( +Zbk

k=p+1
A®(z0) = v(z0). (3.7)

Now, for solving the VDDE (1.1), we need to find the unknown coef-
ficients presented in (3.1). For this purpose, we used the collocation
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points x; = xg + ih, i = 1,2,--- N with h = (x5 — x9)/N. Based on
the above approximations and also by employing the collocation points
mentioned above, the dynamic equation (1.1) is transformed into the
following compact form:

YA =G (3.8)
where ¥ is a N x N matrix such that
plllei —2il),  i=1,
Vi =3 ¢ (lei — z50) = bu(za)e(llzi — z;51)
=2 hepi1 ok(@d) (2 — 0k (2i) — 5)), i =2,--- | N
forj=1,2,--- N and

v(z1)
bo(2) + D g br(22)y(22)
G = | bo(xs) + > %o bi(xs)v(x3)

bo(zn) + Ziz.g be(zN)V(@N) ] Ny

To solve system (3.8), we can adopt the Gauss elimination method to
find unknowns Ay, A9, ---, Ay. This will also give the approximation
solution (3.1).

3.1. Error estimation. Let us suppose that E(t) = y(z) — g(z) is the
error function where y(z) is the exact solution of the VDDE (1.1) and
g(z) is that the approximate solution of this equation that is given by
(3.1) . Therefore,

m

§ (x) = bo(x) = bi(2)ii(x) = Y br(@)f(@ — k() = Ri(x), x0 < <y
= (3.10)

y(z) — (@) = R2(z), n <o <o
Now, by subtracting (1.1) from (3.10), we have:

(y' =) (@) = bo(w) = bi(x)(y — §) () = > be(x)(y — §) (@ — Sp(2))

k=2
=—Ri(x), zo <z <ay
y() —y(z) = —Ra(z), n << (3.11)
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Now, the error function E(t) is established by the following equation:

E'(z) — bo(z) — by (2)E(x) — Zbk(:n)E(:L‘ —0p(z)) = Ri(x), vo < <xy
k=2

(3.12)
E(z) = Re(x), n<z<ux

in which, R;(t) and Ry(t) are known functions in the collocation points.
So, to find approximate error, we can follow the same method mentioned
in this section.

4. NUMERICAL EXAMPLES

In this section, some examples are given to demonstrate the accuracy
and efficiency of the proposed method. The shape parameter is chosen
as € = N/32. Here, the error between the exact solution y(x) and the
approximate solution §(t) , found using our method, namely the absolute
error and computed as follows:

Error{y(z), y(z)} = ly(z) = §(2)lloc, = € [xo,27].  (4.1)

Example 4.1. As an applicable problem, we consider the problem of
the effect of noise on light which is reflected from laser to mirror with a
constant delay as follows:

Y (@) =~ y(e) + —yl@)yle— 1), (42)

with the initial condition y(z) = 0.8, —1 < 2 < 0. Figure 1 illustrates
the optoelectronic device used by Saboureau et al. [27]. The feedback
operates on the pump of the laser by using part of the output light which
is injected into a photodetector connected to the pump. The delay of
the feedback is controlled by changing the length of the optical path.
Applying the RBF collocation method for this boundary problem leads
to the Figure 2.

Example 4.2. Consider the following VDDE:
2 (x) — zy(x) + a;e%zy(x —x?)=4e**, 0<z2<1 (4.3)

with the initial condition y(0) = 1. The exact solution of this problem
is y(z) = e2*. Figure 3 shows the behavior of the numerical solutions by
the proposed method for different values of NV together with the exact
solution of problem (4.3). The absolute error of this approximation is
shown in Figure 4. To evaluate the efficiency and performance of MQ-
RBFs, a comparison is made between the absolute errors obtained by our
method at x = 0.5 and different values of N with the latest results that
achieved by the Morgan-Voyce polynomials [21] in Table 1. Comparing
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FIGURE 1. Semiconductor laser subject to an optoelec-
tronic feedback.
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FIGURE 2. The numerical solution of Example 4.1 at dif-
ferent values of N with e = 0.1.

these results reveals that the accuracy of the RBFs collocation method
is higher than other methods.

Example 4.3. Consider the following VDDE with different delays in
the form

/

y (x) = (332—1-3:—l)e*x—xy(x—ln(a:+1))—e*x2y($—x2)+y(3}), 0<z<1
(4.4)
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Figure 3. Comparison of he exact and approximation
solutions with different choose of N for Example 4.2.

FIGURE 4. Absolute error of y(z) for Example 4.2.

TABLE 1. Comparison the absolute error at different
choices of N for Example 4.2.

N 3 4 12
This study  1.7456 x 10~*%  1.6743 x 107>  1.5826 x 10~°
Method in [21] 2.70441 x 107! 2.31845 x 1072 5.42593 x 1073

with the initial condition y(0) = 1. The exact solution of this problem is
y(z) = e~ . In Figure 5, we plotted the exact solution and the approx-
imated solution of y(z) for N = 16. As expected, we can observe that
the approximated solution converge to the exact values. The absolute
errors of the presented method for this example, shown in Figure 6. To
evaluate the efficiency and performance of the RBF collocation method
presented in Section 2 is better than those introduced in other litera-
tures, a comparison is made between the absolute errors obtained by our
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FiGure 5. Comparison of the exact and approximation

solutions for Example 4.3.

FIGURE 6. Absolute errors of y(x) for Example 4.3.

Comparison the absolute errors at different

TABLE 2.
choices of z for Example 4.3.

Method in [21]
0
2.86131 x 1073
3.17959 x 103
2.86876 x 1073
2.76306 x 1073
2.81276 x 1073

T This study

0 05784 x 1077

0.2 0.8001 x 10~ 7

0.4 0.7645 x 107

0.6 0.7092 x 10~ 7

0.8 0.6314 x 10~ 7
1 0.5218 x 107

method for N = 8 at different values of ¢t with results that achieved by

other researchers in Table 2.
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FiGUrE 7. Comparison of exact and approximation so-
lutions with different choose of N for Example 4.4.

FIGURE 8. Absolute error of y(z) for Example 4.4.

Example 4.4. Consider the VDDE with nonlinear variable-delay as
follows

Y (@) = @2+ 1)e™ —y(o — In(@?+1) —y(x), 0<a<2  (45)
with the initial condition y(0) = 1. The exact soluion of this problem
is y(x) = e™*. Applying the RBF collocation method for this variable-
delay problem with different values of N leads to Figure 7. The absolute

errors of the presented method for this example with N = 6, shown in
Figure 8. The accuracy of the MQ-RBF collocation method can be easily

concluded from the results reported in Table 3.
Example 4.5. Consider the time-varying delay system described by

Bl 1 e i et
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TABLE 3.

choices of = for Example 4.4.

Comparison the absolute error at different

x This study ~ Method in [21] Method in [23]
0 4.1327x 1077 5.55112 x 10~1° 6.70000 x 10~8
0.2 1.5456 x 1075 3.10453 x 1076  1.08938 x 102
0.4 9.7075 x 1077 2.03288 x 1076  2.09254 x 102
0.6 5.6447 x 107 1.09160 x 10=6  1.97319 x 102
0.8 2.2283 x 1077 4.48652 x 107  1.25567 x 102
1 4.9257 x 1078 1.14014 x 10~7  6.26909 x 103
1.2 25183 x 1077 5.72331 x 10~7 2.41340 x 1073
1.4 4.3048 x 10~7 9.17880 x 10~7 2.71723 x 1073
1.6 5.7571 x 1077 1.22873 x 107% 1.09889 x 10~2
1.8 6.4797 x 1077 1.43489 x 1076 8.32068 x 103
2 77180 x 1077 1.44145 x 1076 5.64328 x 1072

265

in which §1(z) = £, d2(z) = 2, y1(z) = ya(z) = u(z) = 0 for = € [-2,0]
and u(z) = 2z + 1 for x > 0. The exact solutions of problem (4.6) are:

1
0 0§$<§7
_) 7 2. 19 13 1 2
yi(x) = 163 — 5%+ 57" + 37 3=ST <3,
11 58 31,2, 1.3, 7.4, 1.5 2
162 ~ 3T T i ? T 9T + 7t +gr” s<w <1
and
2 1
T+ 0<z<g,
_ 5 72,23, 1.4 1 2
Ya(w) = ¢ g+ + go° + 50 + 52 3<z<3,
1 2002 , 20,3 , 29,4 1,5, 1,6 2
86 T ot gt Hrt — g+ <2< L

The absolute errors of the presented method for y;(x) and ya(z) with
different values of IV are shown in Figure 9. As can be seen, by increasing
the number of IV, the absolute error of the approximate solutions are
decreased.

5. CONCLUSION

In this work, we introduced a new technique based on the collocation
method to solve a class of VDDEs with variable coefficients and variable
delays. Our design uses the unknown variable as a linear combination
of the MQ-RBF'. In the next step, the context of these basis functions
for delay and derivative approximations, allow us to reduce the VDDE
to a system of algebraic equations for choosing the coefficients and pa-
rameters optimally. If the exact solution of the problem is not known,
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FIGURE 9. Absolute error of y;(z) and yo(x) with N =
5,15, 20 for Example 4.5.

by using this technique it is possible to estimate the error function and
also to reduce the error due to the residual function. It is seen that,
the accuracy improves, when N is increased. The numerical results
obtained from examples confirm the efficiency, accuracy, and high per-
formance of this scheme. In the future, this method will be extended to
high-order fractional differential-difference equations and their systems,
but some modifications are required. Most of the mentioned systems in
[9, 10, 26, 17] need to consider that delays and numerical methods are
highly recommended for these systems.

0.2




1]

Solving Non-Homogeneous Differential Equation with Variable Delays 267

REFERENCES

Ardjouni, A., & Djoudi, A. (2011). Fixed points and stability in linear neutral
differential equations with variable delays. Nonlinear Analysis: Theory, Methods
& Applications, 74(6), 2062-2070.

Ahmadi, N., Vahidi, A. R.,& Allahviranloo, T. (2017). An efficient approach
based on radial basis functions for solving stochastic fractional differential equa-
tions. Mathematical Sciences, 11(2), 113-118.

Aboodh, K. S., Farah, R. A., Almardy, I. A., & Osman, A. K. (2018). Solving
delay differential equations by Aboodh transformation method. International
Journal of Applied Mathematics & Statistical Sciences, 7(2), 55-64.

Dix, J. (2005). Asymptotic behavior of solutions to a first-order differential equa-
tion with variable delays. Computers & Mathematics with Applications, 50(10-
12), 1791-1800.

Dehghan, M., Abbaszadeh, M., & Mohebbi, A. (2015). An implicit RBF meshless
approach for solving the time fractional nonlinear sine-Gordon and Klein-Gordon
equations. Engineering Analysis with Boundary Elements, 50, 412-434.
Dehghan, M., & Shokri, A. (2007). A numerical method for KdV equation using
collocation and radial basis functions. Nonlinear Dynamics, 50(1-2), 111-120.
Dehghan, M., & Tatari, M. (2006). Determination of control parameter in a one-
dimensional parabolic equation using the method of radial basis functions. Math
Comput Model, 44, 1160-1168.

Dag, I., & Dereli, Y. (2008). Numerical solutions of KdV equation using radial
basis functions. Appl Math Model, 32, 535-546.

Dadkhah Khiabani, E., Ghaffarzadeh, H., Shiri, B., & Katebi, J. (2020). Spline
collocation methods for seismic analysis of multiple degree of freedom systems
with visco-elastic dampers using fractional models. Journal of Vibration and
Control, 1077546319898570.

Dadkhah, E., Shiri, B., Ghaffarzadeh, H., & Baleanu, D. (2019). Visco-elastic
dampers in structural buildings and numerical solution with spline collocation
methods. Journal of Applied Mathematics and Computing, 1-29.

Fasshauer, G., & McCourt, M. (2015). Kernel-based approximation methods
using Matlab (Vol. 19). World Scientific Publishing Company.

Franke C, Schaback R. Convergence order estimates of meshless collocation meth-
ods using radial basis functions. Adv Comput Math 1998;8:381-99.

Gopalsamy, K. (2013). Stability and oscillations in delay differential equations
of population dynamics (Vol. 74). Springer Science & Business Media.
Ghassabzadeh, F. A., & Soradi-Zeid, S. Numerical Method for Approximate
Solutions of Fractional Differential Equations with Time-Delay.

Kumar, M., & Yadav, N. (2011). Multilayer perceptrons and radial basis func-
tion neural network methods for the solution of differential equations: a survey.
Computers & Mathematics with Applications, 62(10), 3796-3811.

Kazemi, B. F., & Ghoreishi, F. (2013). Error estimate in fractional differential
equations using multiquadratic radial basis functions. Journal of Computational
and Applied Mathematics, 245, 133-147.

Karamali, G., & Shiri, B. (2018). Numerical solution of higher index DAEs using
their TAE’s structure: Trajectory-prescribed path control problem and simple
pendulum. Caspian Journal of Mathematical Sciences (CJMS), 7(1), 1-15.



268

(18]

(19]

20]

(21]

22]

Soradi-Zeid , Akhavan

Liu, Q., Mu, S., Liu, Q., Liu, B., Bi, X., Zhuang, P., ... & Gao, J. (2018). An
RBF based meshless method for the distributed order time fractional advection-
diffusion equation. Engineering Analysis with Boundary Elements, 96, 55-63.
Li, X., Li, H., & Wu, B. (2019). Piecewise reproducing kernel method for linear
impulsive delay differential equations with piecewise constant arguments. Ap-
plied Mathematics and Computation, 349, 304-313.

Olach, R. (2013). Positive periodic solutions of delay differential equations. Ap-
plied Mathematics Letters, 26(12), 1141-1145.

Ozel, M., Tarakgi, M., & Sezer, M. (2018). A numerical approach for a nonhomo-
geneous differential equation with variable delays. Mathematical Sciences, 12(2),
145-155.

Sarler, B., Vertnik, R., & Kosec, G. (2012). Radial basis function collocation
method for the numerical solution of the two-dimensional transient nonlinear
coupled Burgers equations. Applied Mathematical Modelling, 36(3), 1148-1160.
Savasaneril, N. B., & Sezer, M. (2017). Hybrid Taylor-Lucas collocation method
for numerical solution of high-order pantograph type delay differential equations
with variables delays. Appl. Math. Inf. Sci, 11, 1795-1801.

Smith, H. L. (2011). An introduction to delay differential equations with appli-
cations to the life sciences (Vol. 57). New York: Springer.

Shampine, L. F., & Thompson, S. (2009). Numerical solution of delay differential
equations. In Delay Differential Equations (pp. 1-27). Springer, Boston, MA.
Shiri, B., & Baleanu, D. (2019). System of fractional differential algebraic equa-
tions with applications. Chaos, Solitons & Fractals, 120, 203-212.

Saboureau, P., Foing, J. P.; & Schanne, P. (1997). Injection-locked semicon-
ductor lasers with delayed optoelectronic feedback. IEEE Journal of Quantum
Electronics, 33(9), 1582-1591.

Wang, H. (2004). Positive periodic solutions of functional differential equations.
Journal of Differential Equations, 202(2), 354-366.

Wei, S., Chen, W., Zhang, Y., Wei, H., & Garrard, R. M. (2018). A local radial
basis function collocation method to solve the variable-order time fractional dif-
fusion equation in a two-dimensional irregular domain. Numerical Methods for
Partial Differential Equations, 34(4), 1209-1223.

Zeid, S. S. (2019). Approximation methods for solving fractional equations.
Chaos, Solitons & Fractals, 125, 171-193.

Zhang, B. (2005). Fixed points and stability in differential equations with variable
delays. Nonlinear Analysis: Theory, Methods & Applications, 63(5-7), €233-¢242.



