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1. Introduction

Singularly perturbed differential-difference equations (SPDDEs) have
many applications in several fields like in the study of human pupil light
reflex [1] and the study of bistable mechanisms [2]. These equations
can also be used in the modeling of physiological processes or diseases
[3, 4, 5], neuronal variability and so on. The mathematical model of ob-
taining the expected time for the generation of action potentials in nerve
cells by random synaptic inputs in the dendrites can give rise to a first-
exit time problem. In Stein’s model, the distribution representing inputs
is taken as a Poisson process with exponential decay between synaptic
inputs[6]. If there are inputs that can be modeled as a Wiener pro-
cess with variance parameter σ and drift parameter µ, then the problem
for the expected first-exit time V , given the initial membrane potential
, can be formulated as a general boundary- value problem for linear
second-order differential-difference equation (DDE) [7]

σ2

2
V ′′(x)+(µ−x)V ′(x)+ωeV (x+τe)+ωV (x−τi)−(ωe+ωi)V (x) = −1,

(1.1)
with boundary condition V (x) ≡ 0 for x /∈ (x1, x2). Where the values
x = x1 and x = x2 correspond to the inhibitory reversal potential and
the threshold value of membrane potential for action potential gener-
ation, respectively. The first-order derivative term corresponds to ex-
ponential decay between synaptic inputs. The undifferentiated terms
correspond to excitatory and inhibitory synaptic inputs modeled as a
Poisson process with mean rates ωe and ωi , respectively, and generate
jumps in the membrane potential of amounts τe and τi , respectively,
which are small quantities and could be dependent on voltage. In the
past, less consideration had been given to the numerical solutions of
SPDDEs. But, in the recent years, there has been increasing attention
in the treatment of such problems. The study of such kind of boundary
value problems, first, was presented by Lange and Miura. [7, 8, 9, 10].
Then, many authors [11, 12, 13] solved SPDDEs with the aid of nu-
merical techniques. Kadalbajoo and Sharma [14] presented a numerical
scheme for the SPDDEs. But their study just includes the case when
the convection coefficient has the same sign throughout the domain and
the shifts are of o(ε). Using Taylor approximations, they could elimi-
nate the terms which involve the small shifts in the problem. In [15],
author has solved singularly perturbed turning point problem by using a
parameter-uniform method. An ε-uniform numerical method was used
for solving third order singularly perturbed delay differential equations
in [16]. In [17], the authors have used the higher order nonuniform
grids for singularly perturbed convection-diffusion-reaction problems. A
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meshless method is used in [18], for solving boundary layer’s SPDDE.
In this paper, we state a model problem for a general BVP for singu-
larly perturbed DDE including both types of shifts (negative as well as
positive shifts) on Ω ∈ (a0, b0)

εV ′′(x) + a(x)V ′(x)− b(x)V (x) + c(x)V (x− δ) + d(x)V (x+ η) = f(x),
(1.2)

Subject to interval conditions

V (x) = ψ(x) for a0 − δ 6 x 6 a0, (1.3)

V (x) = γ(x) for b0 6 x 6 b0 + η, (1.4)

where δ and η are delay and advance arguments respectively, 0 < ε≪ 1
and a(x), b(x), c(x),d(x),f(x), ψ(x) and γ(x) are sufficiently smooth
functions. When the shifts δ and η are both zero, the solution of the
corresponding ODE displays a layer behavior or turning point ( i.e. the
points of the domain where a(x) = 0) behavior depending upon the coef-
ficient of convection term, if a(x) does not change the sign or change the
sign on Ω. The solution generally blows up exponentially in the interior
turning point case. So obtaining the solution is more complicated than
the cases without interior turning points.
To possesses a unique solution exhibiting an interior layer, we consider
the following assumptions:

(i) a(0) = 0, a
′
(0) > 0.

(ii) b(x) ≥ b0 > 0 for all −1 ≤ x ≤ 1

(iii) |a′
(x)| ≥ |a′

(0)|
2

for all −1 ≤ x ≤ 1, which ensures that there is

no other turning pointin the domain.

Related to the biological phenomena mentioned above, here we are in-
terested to present a numerical study. Our numerical study is based on
the multiquadric RBF collocation method developed by Kansa [19, 20],
as we know so far no one paid attention to developing that for solving
SPDDEs.
During the last decade, researchers have tried to develop a group of
meshless or meshfree methods which are based on radial basis func-
tions (RBFs). In particular, the multiquadric collocation method has
deserved much notification as a robust numerical method for the inter-
polation problems and solving differential equations [21, 22, 23, 24, 25].
This method has a notable benefit over traditional methods such as fi-
nite element, finite difference, and finite volume. Because it does not
need any meshes in the domain, and it approximates the solution utiliz-
ing the radial basis functions (RBFs) on a set of nodes scattered in the
problem domain.
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2. An outline of MQ RBF collocation method

2.1. MQ RBF. Given a set of N distinct points {xi ∈ ω, i = 1, . . . , N},
where ω is a bounded domain in Rd. These points are named centers.
An RBF is a function Φ(r; c), r = ∥x − xi∥2, whose value depends only
on the distance from some center points. There is a large class of RBF.
The basis function used by Hardy was the quadric surfaces

ϕ(r; c) =
√
c2 + r2, (2.1)

where c is a shape parameter. The RBF (2.1) is called the multiquadric
or MQ RBF. It has become common to redefine the MQ (2.1) by first

letting c =
1

ϵ
and neglecting the scaling factor

1

ϵ
, which result in

ϕ(r; ϵ) =
√
1 + ϵ2r2. (2.2)

Now, we employ the Integrate multiquadric RBF. Integrate RBF meth-
ods integrate the original RBF with respect to r, one or more times,
to get a new basis function in hope of restoring or even improving the
convergence of the RBF methods [26]. The notation ϕn(r) represent an
RBF that has been integrated (n > 0) n times with respect to r:

Φ
′′
(r) = ϕ(r) =

√
1 + ϵ2r2,

Φ
′
(r) = ϕ1(r) =

(ϵr
√
1 + ϵ2r2 + sinh−1(ϵr))

2ϵ
,

Φ(r) = ϕ2(r) =
(−2 + ϵ2r2)

√
1 + ϵ2r2 + 3ϵrsinh−1(ϵr)

6ϵ2
.

The integrated MQ basis functions are referred to as IMQ1 and IMQ2
to indicate how many times they have been integrated. Due to the
exponential convergence and superior performance of the IMQ2. Here,
the IMQ2 will be used.

2.2. Collocation method. Now, we shortly introduce the RBFs col-
location method. Let Ω ⊆ Rd, consider the following boundary value
problem (BVP)

Lu = f in Ω, (2.3)

u = g on ∂Ω, (2.4)

where L is a linear differential operator and d is the dimension of the
problem. For nonlinear operators, some kind of linearization will be
needed to seek the solution iteratively. We distinguish in our notation
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centers X = {x1, ..., xN} and the collocation points Ξ = {α1, ..., αN}.
We seek the approximate solution u (x) of (2.3) and (2.4) in the form

ũ(x) =
N∑
i=1

λiϕ(∥x− xi∥), (2.5)

where λi’s coefficients to be determined by collocation, ϕ is a radial
basis function, ∥.∥ is the Euclidean norm, and xi is the center of the
radial basis function. Now, let Ξ is divided into two subsets. One subset
contains NI centers, Ξ1, where Eq.(2.3) is enforced and the other subset
contains NB centers, Ξ2, where boundary conditions are enforced. The
collocation matrix that is obtained by matching the differential equation
and the boundary condition at the collocation points has the following
form:

A =

[
AI

AB

]
,

where AI = Lϕ(∥α − xj∥)α=αi ,αi ∈ Ξ1,xj ∈ X, and AB = Lϕ(∥α −
xj∥)α=αi , αi ∈ Ξ2, xj ∈ X. The unknown coefficients λi are determined
by solving the linear system Aλ = F , where F is a vector consisting
f(αi), αi ∈ Ξ1, and g(αi), αi ∈ Ξ2.

3. Application of the MQ RBF collocation method

In this section, we are interested in solving singularly perturbed dif-
ferential difference equation (1.2) by the MQ RBF collocation method.
For this purpose, we rewrite the equations (1.2)-(1.4) as follows

εV ′′(x) + a(x)V ′(x)− b(x)V (x) + d(x)V (x+ η) = f(x)− c(x)ψ(x− δ),
(3.1)

a0 < x 6 a0 + δ,

εV ′′(x) + a(x)V ′(x)− b(x)V (x) + c(x)V (x− δ) + d(x)V (x+ η) = f(x),
(3.2)

a0 + δ < x < b0 − η,

εV ′′(x) + a(x)V ′(x)− b(x)V (x) + c(x)V (x− δ) = f(x)− d(x)γ(x+ η),
(3.3)

b0 − η 6 x < b0,

V (a0) = ψ(a0), (3.4)

V (b0) = γ(b0). (3.5)



A method based on the meshless approach... 215

Then, we choose N equally spaced nodes , i = 1, 2, · · · , N in Ω̄ and
approximate the solution of equation (1.2) by

V N (x) =
N∑
i=1

λiΦ(∥x− xi∥) + λN+1 + λN+2x. (3.6)

Using the collocation method to ensure that the approximation satisfies
in equations (3.1)-(3.5), one obtains the following linear system with
unknown coefficients λ1, λ2, ..., λN+1, λN+2:

N∑
j=1

{εΦ′′(rij) + a(xi)Φ
′(rij)− b(xi)Φ(rij) + d(xi)Φ(∥xi + η − xj∥)}λj+

(d(xi)− b(xi))λN+1 + (a(xi)− b(xi)xi + d(xi)(xi + η))λN+2 = f(xi)−
c(xi)ψ(xi − δ), a0 < xi 6 a0 + δ, (3.7)

N∑
j=1

{εΦ′′(rij) + a(xi)Φ
′(rij)− b(xi)Φ(rij) + c(xi)Φ(∥xi − δ − xj∥)+

d(xi)Φ∥xi + η − xj∥}λj + (c(xi) + d(xi)− b(xi))λN+1 + (c(xi)(xi − δ)+

d(xi)(xi + η)− b(xi)xi + a(xi))λN+2 = f(xi), a0 < xi < b0 − η,
(3.8)

N∑
j=1

{εΦ′′(rij) + a(xi)Φ
′(rij)− b(xi)Φ(rij) + c(xi)Φ(∥xi − δ − xj∥)}λj+

(c(xi)− b(xi))λN+1 + (c(xi)(xi − δ)− b(xi)xi + a(xi))λN+2 = f(xi)−
d(xi)γ(xi + η), b0 − η 6 xi < b0, (3.9)

N∑
j=1

λjΦ(r1j) + λN+1 + λN+2 a0 = ψ(a0), (3.10)

N∑
j=1

λjΦ(rNj) + λN+1 + λN+2 b0 = γ(b0), (3.11)

where rij = ∥xi−xj∥. The above system has N equations and N+2 un-
knowns. To obtain the N+2 unknown coefficients λ1, λ2, ..., λN+1, λN+2

, we force two supplementary collocation conditions at x1 and x2 in (3.7)
and (3.9), respectively, to get a (N +2)× (N +2) system of linear equa-
tions for the λj . Next, this system must be solved to obtain the unknown
coefficients. So, we have used the Gaussian elimination method to solve
such a system. Following, we will be using an algorithm introduced by
Driscoll and Heryudono [27]. The idea is to monitor the residual R to
the differential equation at midpoints and iteratively refine the point set
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until R drops below some User-defined threshold. The reader is referred
to the original paper for details.
Remark that this provides the solution in the form of a function that
can be evaluated everywhere in [a0, b0]. Not additional interpolation is
required.

4. Error Estimation

Let us call e(x) = V (x) − Ṽ (x) as the error function. Where V (x)

is the exact solution of (1.2)-(1.4) and Ṽ (x) is approximation of V (x) .
Hence,

εṼ ′′(x) + a(x)Ṽ ′(x)− b(x)Ṽ (x) + c(x)Ṽ (x− δ) + d(x)Ṽ (x+ η)− f(x) = R(x),

a0 < x < b0, (4.1)

Ṽ (x)− ψ(x) = R1(x), a0 − δ 6 x 6 a0, (4.2)

Ṽ (x)− γ(x) = R2(x), b0 6 x 6 b0 + η, (4.3)

εV ′′(x) + a(x)V ′(x)− b(x)V (x) + c(x)V (x− δ) + d(x)V (x+ η)− f(x) = 0,

a0 < x < b0, (4.4)

V (x)− ψ(x) = 0, a0 − δ 6 x 6 a0, (4.5)

V (x)− γ(x) = 0, b0 6 x 6 b0 + η. (4.6)

By subtracting eqs. (4.4)-(4.6) from eqs. (4.1)-(4.3), we have

ε(V ′′(x)− Ṽ ′′(x)) + a(x)(V ′(x)− Ṽ ′(x))− b(x)(V (x)− Ṽ (x))+

c(x)(V (x− δ)− Ṽ (x− δ)) + d(x)(V (x+ η)− Ṽ (x+ η))− f(x) = −R(x),
a0 < x < b0. (4.7)

V (x)− Ṽ (x) = −R1(x), a0 − δ 6 x 6 a0, (4.8)

V (x)− Ṽ (x) = −R2(x), b0 6 x 6 b0 + η. (4.9)

Now, the error function e(x) is satisfying below equation:

εe′′(x)+a(x)e′(x)−b(x)e(x)+c(x)e(x−δ)+d(x)e(x+η) = −R(x), a0 < x < b0

e(x) = −R1(x); a0 − δ 6 x 6 a0

e(x) = −R2(x); b0 6 x 6 b0 + η

Since the function R(x) is known, so to find e(x), we follow a similar
method introduced in section 3.
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5. Numerical experiments

In this section, two examples are provided to demonstrate the accu-
racy and efficiency of the suggested method. The accuracy of the RBFs
solution depends heavily on the choice of a parameter C in radial basis
function. We use shape Parameter cj = 0.815dj [28], for the IMQ2 basis,

where dj is the distance from jth point to its nearest neighbor. We use
User-defined thresholds θc = 1e− 10 and θr = 1e− 6 in the RSM algo-
rithm for the first example and θc = 1e− 8 and θr = 1e− 4 for the next
example. The computation is carried out using 16 digits precision. All
codes were written in Matlab 2012a on a 2.30 MHz Alpha Machine with
4GB RAM. Since the exact solutions are not known for the considered
examples, we devise double mesh principle [29] for reporting the errors
as follows:

EN
ε = max

06i6N
|V i

N − V 2i
2N |.

where V i
N and V 2i

2N are the numerical solutions by taking N and 2N
points, respectively.

Example 5.1. [30]
Consider the following problem with turning point at x = 0.5

εV ′′(x) + 2(x− 0.5) [(1 + 0.3121)(x− 0.5)]V ′(x)−
[
4

3
+ 0.2764(x− 0.5)

]
V (x)+

0.2V (x− δ) +
1

8
V (x+ η) = x, x ∈ (0, 1), (5.1)

and under interval conditions

V (x) = 0, −δ 6 x 6 0, (5.2)

V (x) = 0, 1 6 x 6 1 + η (5.3)

Example 5.2. [30]
In this example, we consider the following singularly perturbed differential-
difference equation with turning point at x = 0.5

εV ′′(x) + (x− 0.5) [3 + 4(x− 0.5)]V ′(x)− 2V (x) + 4(x− 0.5)2V (x− δ)+

V (x+ η) = 1, x ∈ (0, 1), (5.4)

and under interval conditions

V (x) = 0, −δ 6 x 6 0, (5.5)

V (x) = 0, 1 6 x 6 1 + η (5.6)

TABLE
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Figure 1. The numerical solution of example 5.1 for
δ = 0, ε = 0.0001.

Figure 2. The numerical solution of example 5.1 for
η = 0, ε = 0.0001.

Table 1. Maximum double mesh error and condition
number δ = 0.4 andη = 0.2for example 5.1

ε 1 10−1 10−2 10−3 10−4 10−5

N 219 278 246 258 356 823
condition number 9.6672e+ 7 7.3312e+ 07 1.4326e+ 08 1.4374e+ 09 1.6193e+ 10 8.6453e+ 11

Error 4.1029e− 09 1.7766e− 08 3.0649e− 08 4.1071e− 08 4.4940e− 08 2.8904e− 08

Table 2. Maximum double mesh error and condition
number δ = 0.4 andη = 0.6 for example 5.2

ε 1 10−1 10−2 10−3 10−4 10−5

N 67 62 62 116 245 489
condition number 1.1124e+ 06 1.2569e+ 06 7.1005e+ 06 1.6042e+ 08 2.5505e+ 09 1.4634e+ 11

Error 9.2548e− 07 2.4228e− 06 2.4935e− 06 1.0661e− 06 1.1823e− 06 3.7634e− 06
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Figure 3. The numerical solution of example 5.2 for
δ = 0, ε = 0.0001.

Figure 4. The numerical solution of example 5.1 for ε = 0.0001.

Figure 5. The numerical solution of example 5.2 for ε = 0.0001.
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Figure 6. The numerical solution of example 5.2 for
η = 0, ε = 0.0001.

Table 3. Maximum double mesh error and condition
number δ = 0.4 andη = 0.4 for example 5.1

ε 1 10−1 10−2 10−3 10−4 10−5

N 220 304 250 246 340 812
condition number 9.6084e+ 07 7.4826e+ 07 2.7152e+ 08 2.6427e+ 09 3.2992e+ 10 6.7549e+ 11

Error 5.2294e− 09 909686e− 09 2.1576e− 08 3.5343e− 08 3.5997e− 08 3.6412e− 07

Table 4. Maximum double mesh error and condition
number δ = 0.1 andη = 0.2 for example 5.2

ε 1 10−1 10−2 10−3 10−4 10−5

N 84 81 89 135 304 705
condition number 1.3760e+ 06 1.6907e+ 06 1.2369e+ 07 1.8561e+ 08 1.1871e+ 10 2.8245e+ 11

Error 5.5738e− 07 8.0986e− 07 2.2758e− 06 1.8824e− 06 1.6348e− 06 2.1759e− 06

Table 5. Maximum double mesh error and condition
number δ = 0.2 andη = 0.1 for example 5.1

ε 1 10−1 10−2 10−3 10−4 10−5

N 22 274 273 231 346 779
condition number 1.0071e+ 08 7.6722e+ 07 1.7690e+ 08 1.5609e+ 09 2.0149e+ 10 4.5486e+ 11

Error 4.7502e− 09 2.2302e− 08 3.6247e− 08 4.4338e− 08 5.0160e− 08 3.1013e− 08

Table 6. Maximum double mesh error and condition
number δ = 0.2 andη = 0.1 for example 5.2

ε 1 10−1 10−2 10−3 10−4 10−5

N 81 83 89 142 287 670
condition number 1.3303e+ 06 1.5048e+ 06 7.4858e+ 06 1.1838e+ 08 7.2471e+ 09 2.8346e+ 11

Error 7.6704e− 07 1.6981e− 06 2.0527e− 06 1.1613e− 06 1.6922e− 06 3.8664e− 06
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6. Discussion

In this paper, we present the MQ RBF collocation method combined
with the Residual Subsampling algorithm by Driscoll Heryudono for
node adaptivity for solving singularly perturbed differential–difference
equations including positive as well as negative shifts in the reaction
term. Two numerical examples have been carried out. We start by N=15
equidistance node θc = 1e − 10 and θr = 1e − 6 for first example,θc =
1e − 8 and θr = 1e − 4 for next example and Shape parameter cj =

0.815dj , where dj is the distance from jth point to its nearest neighbor.
The shape parameters are adjusted after each iteration to prevent the
condition number for different values. Numerical results show that the
present method has high accuracy for different values of ε, δ and η.
Moreover, the implementation of the method is straightforward to code.
The effect of shift on the solution of the problem has been investigated
by drawing the diagram of the numerical solution for different values of
shifts. Figures 1 and 3 show the numerical solutions for examples 5.1
and 5.2, respectively, when the problem has only a positive shift. Figures
2 and 4 also represent the numerical solutions for examples 5.1 and 5.2,
respectively, when the problem has only a negative shift. The effect of
mixed type of shift on the solution has been demonstrated in figures
5 and 6. As the diagrams show, the interior layer shifts in accordance
with the changes in advance and delay. Double mesh error and condition
number of the linear system obtained from the collocation method are
tabulated in tables 1-6. We recognize from the Tables that condition
number for all cases is less than 1016, hence the roundoff error of the
16-digits computation is not the cause for the deterioration of solution.
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