تعداد نشریات | 30 |
تعداد شمارهها | 467 |
تعداد مقالات | 4,522 |
تعداد مشاهده مقاله | 7,145,260 |
تعداد دریافت فایل اصل مقاله | 5,334,960 |
اثر جریمۀ تأخیر تأدیه بر کاهش معوقات بانکی؛ مطالعۀ موردی شعب بانک ملت مازندران. | ||
پژوهشنامه اقتصاد کلان Macroeconomics Research Letter | ||
دوره 14، شماره 28، اسفند 1398، صفحه 115-141 اصل مقاله (856.78 K) | ||
نوع مقاله: علمی | ||
شناسه دیجیتال (DOI): 10.22080/iejm.2020.16162.1677 | ||
نویسندگان | ||
فضل اله پورحسین باقری1؛ خسرو عزیزی* 2؛ یزدان نقدی3؛ سهیلا کاغذیان4 | ||
1دانشجوی دکتری اقتصاد، دانشگاه آزاد اسلامی واحد فیروزکوه.ایران | ||
2استادیار و عضو هیات علمی دانشگاه آزاد اسلامی واحد فیروزکوه، فیروزکوه، ایران | ||
3استادیار و عضو هیات علمی دانشگاه آزاداسلامی فیروزکوه، فیروزکوه، ایران | ||
4استادیار و عضو هیات علمی دانشگاه آزاد اسلامی فیروزکوه، فیروزکوه، ایران | ||
تاریخ دریافت: 09 اردیبهشت 1398، تاریخ بازنگری: 08 خرداد 1398، تاریخ پذیرش: 05 مرداد 1398 | ||
چکیده | ||
وجهالتزام بانکی، مبلغی مازاد بر مقدار وام است که در بانکداری اسلامی برای جریمۀ وامگیرنده در صورت دیرکرد در بازپرداخت تعیین میشود. هدف از این پژوهش بررسی اثر میزان جریمۀ دیرکرد بر احتمال بروز دیرکرد در بازپرداخت وام است. برای این منظور 19999 نفر از مشتریان شعب بانک ملت در استان مازندران که در فاصلۀ زمانی آذرماه 1391 تا آذرماه 1397 از یکی از این شعب اخذ وام کردهاند مورد بررسی قرار گرفتهاند. تعداد شعب مورد بررسی در این مطالعه شامل 68 عدد میشود. الگوی مورد استفاده در این پژوهش یک الگوی پروبیت با دادههای تابلویی یک طرفه است. به طوریکه یک بعد از دادهها نفرات مختلف گیرندۀ وام از شعب و بعد دیگر مختص به شعب بوده و بعد زمان در الگو لحاظ نشده است. نتایج برآورد حاکی از وجود رابطۀ منفی و معنیدار میان میزان جریمۀ دیرکرد و تأخیر در بازپرداخت هستند. همچنین برآوردها نشانگر اثر کاهندۀ درآمد، کسر از حقوق، پرداخت تقسیطی و سابقۀ دیرکرد بر بازپرداخت هستند. نتایج این پژوهش قابل کاربست در دیگر بانکها و شعب به منظور اخذ سیاستهای.مناسب در کاهش دیرکرد بازپرداخت هستند. همچنین برآیند بررسیها حاکی از همخوانی این مفهوم با آموزههای اسلامی است. | ||
کلیدواژهها | ||
وجهالتزام بانکی؛ شعب بانک ملت؛ استان مازندران؛ پانل پروبیت | ||
عنوان مقاله [English] | ||
The Effect of Delay Fine on Reducing Delay in Repayment of Loan; Study of Melat Bank’s Branches in Mazandaran | ||
نویسندگان [English] | ||
Fazlollah Porhosein Baghery1؛ Khosro Azizi2؛ Yazdan Naghdi3؛ Soheila Kaghazian4 | ||
1PhD student, Islamic Azad University, Firoozkuh Branch | ||
2Faculty member of Islamic َAzad ,University, Firoozkuh branch, Firoozkuh, Iran | ||
3Faculty member of Islamic Azad University, Firoozkuh Branch, Firoozkuh, Iran | ||
4Faculty member of Islamic Azad University, Firoozkuh Branch, Foroozkuh, Iran | ||
چکیده [English] | ||
Vajholtezam-e-Banki is the amount of money more than the amount of the loan which is defined in Islamic Banking as the fine for defaulting on a loan payment. The purpose of this study is to analyze the effect of delay fine on the probability of delay in repayment of loans. In order to do so, 19999 costumer in Melat Bank’s branches in the Mazandaran province between 2012 and 2018 were studied. The number of branches amounts to 68. The model devised in this study is a one way Panel – Probit. One dimension of the data will be the individuals and the other dimension will be the branches and the time dimension is not included in the model. The results suggest that there is a significant negative relationship between the fine and delay in repayment. Also, the estimations suggest the decreasing effect of income, salary reduction, dividend of payments, and history of delay on repayment. The results of this study are suitable to be devised as a policy complement in other banks and branches in order to take appropriate policy measures for the purpose of decreasing delay in repayment of loans. Also, the findings of the study indicate that this banking concept is in line with Islamic teachings. | ||
کلیدواژهها [English] | ||
Delay Fine, Melat Bank’s Branches, Mazandaran Province, Panel – Probit | ||
مراجع | ||
Agrawal, S. P., Rezaee, Z., & Pak, H. S. (2006). Continuous Improvement: An Activity-Based Model. Management Accounting Quarterly, 7(3), 14. Ahangaran, M. & Molakarimi, F. (2001). Theological and Legal Study of Fine. Journal of Islamic Economic. 40(10), 179 – 208. (in Persian). Ahmadvand, V. (2004). Effects and Regulations of Defining Fine for Delay and Default in Iran’s Law in Comparison with Britain. Mesbah. 53. (in Persian). Angbazo, L. (1997). Commercial bank net interest margins, default risk, interest-rate risk, and off-balance sheet banking. Journal of Banking & Finance, 21(1), 55-87. Bergerès, A. S., d'Astous, P., & Dionne, G. (2015). Is there any dependence between consumer credit line utilization and default probability on a term loan? Evidence from bank-customer data. Journal of Empirical Finance, 33, 276-286. Borujerdi, H. (2008). Comprehensive Shiei Verses. Vol 18. Tehran. Green Culture. (in Persian). Chen, Y. Q., Zhang, J., & Ng, W. W. (2018, July). Loan Default Prediction Using Diversified Sensitivity Undersampling. In 2018 International Conference on Machine Learning and Cybernetics (ICMLC) (Vol. 1, pp. 240-245). IEEE. Duffie, D., Saita, L., & Wang, K. (2007). Multi-period corporate default prediction with stochastic covariates. Journal of Financial Economics, 83(3), 635-665. Eskini, R. (1992). Discource on International Law. Tehran. Sepehr. (in Persian). Ghalich, V. (2015). New Methods for Overcoming the Challenges of Delay in Banking without Interest. The 26th Conference of Islamic Banking. (in Persian). Ghari Ibn Eid, M.A. (2005). The Problems of Islamic Banks and Their Solutions. Translation by Gholamreza Mesbahi Moghadam. Islamic Economics. 5(20). (in Persian). Global Set of Islamic Encyclopedia. The new Information and Search. https://cgie.org.ir. (in Persian). Golpaygani, M. (1985). Makma-ol-Vasayel. Vol 2. 2nd Edition. Dar-ol-Qoran-e-Karim. (in Persian). Jiang, C., Wang, Z., Wang, R., & Ding, Y. (2017). Loan default prediction by combining soft information extracted from descriptive text in online peer-to-peer lending. Annals of Operations Research, 1-19. Jiménez, G., Ongena, S., Peydró, J. L., & Saurina, J. (2009). Credit Availability. Identifying Balance-Sheet Channels with Loan Applications. mimeo. Katuzian, N. (2003). The Responsibility of Production Flaws. Tehran University’s Publications. (in Persian). Khazai, M. (2010). Theological – Legal Study of Delay Fine. Fadak. 1(4), 75 – 91. (in Persian). Makarem Shirazi, N. (2006). Response to the Letter 5/619//56/d dated 9/10/1996, Legal Commission of Majles. (in Persian). Molakarimi, F. (2015). The Study of Methods for Overcoming the Challenge of Delay in Banking without Interest in Iran with Emphasis on Islamic Banks’ Experience. The 26th Conference of Islamic Banking. (in Persian). Mousavi Bojnourdi, M. & Omran Zadeh, A. (2016). The Delay Damage in Theology and Law with Focus on Imam Khomeini’s Thoughts. Matin. 18(73), 15 – 34. (in Persian). Mousavian, S.A. (2006). Theological – Legal Study of Delay Fine in Iran. Theology and Law. (in Persian). Nazarpour, M. Molakarimi, F. Mehrabi, L. (2016). Substitutes for Delay Fine in Banking without Interest in Iran. Applicable Economic Studies of Iran. 5(19), 241 – 267. (in Persian). Qian, M., & Hu, F. (2019, April). An Empirical Study on Prediction of the Default Risk on P2P Lending Platform. In IOP Conference Series: Materials Science and Engineering (Vol. 490, No. 6, p. 062048). IOP Publishing. Rezai, M. (2001). Theological – Legal Study of Delay Fine. Islamic Economics. 2(6). (in Persian). Sadough. (1992). Islamic Encyclopedia. (in Persian). Sadathosseini, S. H. (2017). Credit limits of Vajho-l-Tezam from a “amount” point of view in financial liabilities. Theology and Islamic Law Studies. 9(17): 131 – 156. (in Persian). Salami, H. Ensan, E. (2018). Decomposition of the impact of effective variables on agricultural loan default among different non-current liabilities. Iranian Economic Studies. 23(76): 185 – 217. (in Persian). Stein, R. M. (2005). The relationship between default prediction and lending profits: Integrating ROC analysis and loan pricing. Journal of Banking & Finance, 29(5), 1213-1236. Taskhiri, M. (2005). Punishment in Law. Feghh-e-Ahle Beit. 35. (in Persian). Tiwari, A. K. (2018). Machine learning application in loan default prediction. Machine Learning, 4(5). Tsai, M. C., Lin, S. P., Cheng, C. C., & Lin, Y. P. (2009). The consumer loan default predicting model–An application of DEA–DA and neural network. Expert Systems with applications, 36(9), 11682-11690. | ||
آمار تعداد مشاهده مقاله: 739 تعداد دریافت فایل اصل مقاله: 593 |