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Abstract. The golden ratio ϕ = 1+
√
5

2
= 1/61803398874... is the

root of the polynomial x2 − x − 1 = 0, and is the one of the im-
portant numbers in mathematics. The golden ratio is also used
in many fields of science. The golden ratio appears in some pat-
terns in nature, including the spiral arrangement of leaves and other
plant parts. In this paper, we present a sequence of golden numbers
{ϕn}n and study their properties.
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1. Introduction

The golden ratio is a special number equal to ϕ = 1+
√
5

2 . It appears many
times in geometry, art, architecture and other areas. Mathematicians
since Euclid have studied the properties of the golden ratio, including
its appearance in the dimensions of a regular pentagon and in a golden
rectangle, which may be cut into a square and a smaller rectangle with
the same aspect ratio. The golden ratio has also been used to analyze
the proportions of natural objects as well as man-made systems such as
financial markets.
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Definition 1.1. Let n ≥ 2 be a natural number. We define the golden
polynomials gn(x) by

gn(x) = xn −
n−1∑
k=0

xk.

Let Gn(x) = (x − 1)gn(x) = xn+1 − 2xn + 1. It is easy to see that
the roots of the polynomial gn(x) are the roots of the polynomial Gn(x)
else 1. We have G′

n(x) = xn−1((n + 1)x − 2n) = 0, so x = 0, x = 2n
n+1

are the roots of G′
n.

x 0 2n
n+1

(n even) G′
n(x) + 0 − 0 +

,
x 0 2n

n+1

(n odd) G′
n(x) − 0 − 0 +

SinceGn(0) = 1, Gn(1) = 0, Gn(2) = 1, G2n(−1) = −2 andG2n+1(−1) =

Figure 1. y = Gn(x)

4, if n = 2k then Gn(x) has only three real roots 1, ϕn and ψn such that
1 < ϕn < 2 and −1 < ψn < 0, and if n = 2k + 1 then Gn(x) has only
two real roots 1 and ϕn such that 1 < ϕn < 2, for every n ∈ N [see figure
??]. Hence if n = 2k, then gn(x) has only two real roots 1 < ϕn < 2 and
−1 < ψn < 0 and if n = 2k+1, then gn(x) has only one root 1 < ϕn < 2.
We call ϕn the n’th golden number for every n(n ≥ 2).

2. Golden polynomials

In this section we studied the properties of the golden polynomials
and golden numbers.

Remark 2.1. Let n ≥ 2 be a natural number and gn(x) be the golden
polynomial, then

(1)

gn(−1) =

{
1 n = 2k
−2 n = 2k + 1

(2) gn(0) = −1 < 0, gn(1) = 1− n < 0, gn(2) = 1 > 0.
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(3) If n = 2k then gn(x) has only two real roots 1 < ϕn < 2 and
−1 < ψn < 0.

(4) If n = 2k + 1 then gn(x) has only one root 1 < ϕn < 2.
(5) For every n ∈ N, n ≥ 2, 2n

n+1 < ϕn < 2, thus limn→∞ ϕn = 2.

(6) The sequence {ψ2n}n is a decreasing sequence and limn→ ψ2n =
−1.

Lemma 2.2. Let n ≥ 2 be a natural number. If ϕn is the n’th golden
number, then

(1) For every n ∈ N, n ≥ 2

ϕnn =
n−1∑
i=0

ϕin.

(2) Let n ≥ 2 be a natural number

ϕn+k
n =

n−1∑
i=0

ϕi+k
n ,

for every k ∈ N.
(3) For every n ∈ N, n ≥ 2

ϕn =

n−1∑
i=0

1

ϕin
, and

n∑
i=1

1

ϕin
= 1.

Proof. (1) Since ϕn is the root of the polynomial gn(x), ϕ
n
n =

∑n−1
i=0 ϕ

i
n

∀n ≥ 2.
(2) Multiply ϕnn =

∑n−1
i=0 ϕ

i
n by ϕkn to obtain the equality ϕn+k

n =∑n−1
i=0 ϕ

i+k
n .

(3) By the use of part (1), it is easy to see.
(4) By the use of part (1), it is easy to see.

□

Lemma 2.3. Let n ≥ 2 be a natural number and gn be the golden
polynomial.

(1) If x ̸= 2, 0, then gn+1(x)−gn(x)
gn(x)−gn−1(x)

≡ x, for every n ≥ 2.

(2) If x ̸= 2, 0, then limn→∞
gn+1(x)
gn(x)

= x.

(3) If n ≥ 3, then gn+1(x) = (x+ 1)gn(x)− xgn−1(x)
(4) If n ≥ 2, then

gn(x) ≡
{
xn − xn−1

x−1 x ̸= 1

1− n x = 1
.
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Proof. (1) Let n ≥ 2. We have

gn+1(x)− gn(x)

gn(x)− gn−1(x)
=
xn+1 −

∑n
k=0 x

k − xn +
∑n−1

k=0 x
k

xn −
∑n−1

k=0 x
k − xn−1 +

∑n−2
k=0 x

k

=
xn+1(x− 2)

xn(x− 2)
≡ x,

for all x ̸= 0, 2.
(2) Let n ≥ 2. We have

lim
n→∞

gn+1(x)

gn(x)
= lim

n→∞

xn+1 −
∑n

k=0 x
k

xn −
∑n−1

k=0 x
k

= x,

for all x ̸= 0, 2.
(3) Let n ≥ 3. We have

gn+1(x) + xgn−1(x) = xn+1 −
n∑

k=0

xk + x(xn−1 −
n−2∑
k=0

xk)

= xn+1 −
n∑

k=0

xk + xn −
n−2∑
k=0

xk+1

= (x+ 1)gn(x).

(4) It is easy to see.
□

Lemma 2.4. Let n ≥ 2 be a natural number and gn be the golden
polynomial.

(1) If n is an odd number, then (see Figure ??, part A),{
gn+1(x) > gn(x) x > 2 or x < 0
gn+1(x) < gn(x) 0 < x < 2

,

and if n is an even number, then (see Figure ??, part B){
gn+1(x) > gn(x) x > 2
gn+1(x) < gn(x) x < 2

.

(2) If n ≥ 2, then gn+2(x)− gn(x) = xng1(x).
(3) If n is an odd number, then (see Figure ??, part C){

gn+2(x) < gn(x) x < −1 or 0 < x < 2
gn+2(x) > gn(x) −1 < x < 0 or x > 2

,

and if n is an even number, then (see Figure ??, part D){
gn+2(x) < gn(x) −1 < x < 2
gn+2(x) > gn(x) x < −1 or x > 2

.
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Figure 2. compare gn, gn+1 and gn, gn+2

Proof. (1) Statement (1) is trivial because gn+1(x)−gn(x) = xn+1(x−
2).

(2) Let n ≥ 2 be a natural numer.

gn+2(x)− gn(x) = xn+2 −
n+1∑
k=0

xk − xn +

n−1∑
k=0

xk

= xn+2 − xn+1 − 2xn = xng1(x).

(3) Statement (3) is trivial because gn+2(x)−gn(x) = xn(x2−x−1).
□

The sequence {ϕn}n is a bounded and increasing sequence.

Proof. Since 2n
n+1 < ϕn < 2 and Gn(x) is an increasing function on the

interval ( 2n
n+1 , 2) and Gn+1(x) < Gn(x), so ϕn < ϕn+1 < 2. □
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Lemma 2.5. The number ϕn is an irrational number, ∀n ≥ 2

Proof. Let ϕn = pn
qn
, (pn, qn) = 1. Therefore

(
pn
qn

)n −
n−1∑
k=0

(
pn
qn

)k = 0.

So

(pn)
n −

n−1∑
k=0

(pn)
k(qn)

n−k = 0.

Hence,

qn|(pn)n =⇒ qn|pn =⇒ qn = 1.

But if qn = 1, then ϕn = pn, thus (pn)
n −

∑n−1
k=0(pn)

k = 0, this means
that pn|1 or pn = 1 which is a contradiction. □

Theorem 2.6. If {Fk}∞k=0 is a sequence of positive real numbers that
for every k ≥ 1 have

Fk+n = Fk+n−1 + Fk+n−2 + ...+ Fk, (2.1)

then

lim
k→∞

Fk+1

Fk
= ϕn.

Proof. Let limk→∞
Fk+1

Fk
= a. Since Fk+n = Fk+n−1 +Fk+n−2 + ...+Fk,

so

Fk+n

Fk
=
Fk+n−1

Fk
+
Fk+n−2

Fk
+ ...+

Fk

Fk
.

Thus,

Fk+n

Fk+n−1
× Fk+n−1

Fk+n−2
× . . .× Fk+1

Fk
=
Fk+n−1

Fk+n−2
× Fk+n−2

Fk+n−3
× . . .× Fk+1

Fk
+ . . .+

Fk

Fk
,

therefore if k → ∞, then an = an−1 + . . .+ a+ 1. Since ϕn is uniqe, so
a = ϕn. □

Theorems ?? and Remark ?? (5) yield the following theorem.

Theorem 2.7. Let F : N× N0 −→ R≥0 be a function such that

F (k, n) = F (k, n− 1) + F (k, n− 2) + . . .+ F (k, 0),

for every k ∈ N and n ∈ N0, then

lim
n→∞

lim
k→∞

F (k + 1, n)

F (k, n)
= 2.
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Proof. It follows from Theorem ?? and Remark ??. □

Theorem 2.8. Suppose that b0 and bN are two fixed complex num-
bers.Then there is not polynomial with the complex coefficients p(z) such
that g3(z)p(z) ≡ bNz

N + b0.

Proof. Let p(z) =
∑n

k=0 akz
k, an ̸= 0, N = n+ 3 and

q(z) = p(z)(z3 − z2 − z − 1) = bNz
N + b0.

Therefore, q′(z) = NbNz
N−1 and

z|q(m)(z) (2.2)

for every 1 ≤ m ≤ n+ 2. On the other hand we have

q′(z) = (3z2 − 2z − 1)p(z) + (z3 − z2 − z − 1)p′(z) (2.3)

q′′(z) = (6z − 2)p(z) + 2(3z2 − 2z − 1)p′(z) + (z3 − z2 − z − 1)p′′(z).
(2.4)

Also we have

q(m)(z) = m(m− 1)(m− 2)p(m−3)(z) +
m(m− 1)

2
(6z − 2)p(m−2)(z)

(2.5)

+m(3z2 − 2z − 1)p(m−1)(z) + (z3 − z2 − z − 1)p(m)(z)

for every 3 ≤ m ≤ n, and

q(n+1)(z) = (n+ 1)n(n− 1)p(n−2)(z) +
(n+ 1)n

2
(6z − 2)p(n−1)(z)

(2.6)

+ (n+ 1)(3z2 − 2z − 1)p(n)(z),

q(n+2)(z) = (n+ 2)(n+ 1)np(n−1)(z) +
(n+ 2)(n+ 1)

2
(6z − 2)p(n)(z)

(2.7)

and

q(n+3)(z) = (n+ 3)(n+ 2)(n+ 1)p(n)(z). (2.8)

By the using of (??), have z|q(m)(z) for all 1 ≤ m ≤ n + 2, and by the
use of (??) we have

−a0 − a1 = 0 =⇒ a1 = −a0. (2.9)

By the using of (??), we have

−2a0 − 2a1 − 2a2 = 0
a1=−a0=⇒ a2 = 0, a1 = −a0. (2.10)
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So n ̸= 2. Now, we consider two cases:
Case 1: Let n = 1. In this case p(z) = a1z − a1 and

(z3 − z2 − z − 1)(a1z − a1) = b4z
4 + b0.

So,

(z3 − z2 − z − 1)(a1z − a1) = a1(z
4 − 2z3 + 1),

and

a1(z
4 − 2z3 + 1) = b4z

4 + b0,

which is a contradiction.
Case 2: Let n ≥ 3. By the using of (??), we get

m(m− 1)(m− 2)(m− 3)!am−3 +
m(m− 1)

2
(−2)(m− 2)!am−2

+m(−1)(m− 1)!am−1 −m!am = 0,

for every 3 ≤ m ≤ n. So,

m!am−3 −m!am−2 −m!am−1 −m!am = 0.

Hence,

am = am−3 − am−2 − am−1, (2.11)

for every 3 ≤ m ≤ n, and by the use of (??) we have

(n+ 1)n(n− 1)(n− 2)!an−2 +
n(n+ 1)

2
(−2)(n− 1)!an−1 − (n+ 1)n!an = 0.

Thus,

an = an−2 − an−1. (2.12)

Also by the use of (??) have

(n+ 2)(n+ 1)n(n− 1)!an−1 +
(n+ 2)(n+ 1)

2
(−2)n!an = 0

or

an = an−1. (2.13)

Finally from Relations (??), (??), (??) we conclude that the coefficients
a2, a3, ..., an are the multiple of each others. Since a2 = 0, a2 = a3 =
... = an = 0, which is a contradiction. □
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