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ABSTRACT. The golden ratio ¢ = # = 1/61803398874... is the
root of the polynomial 2> — xz — 1 = 0, and is the one of the im-
portant numbers in mathematics. The golden ratio is also used
in many fields of science. The golden ratio appears in some pat-
terns in nature, including the spiral arrangement of leaves and other
plant parts. In this paper, we present a sequence of golden numbers
{¢n}n and study their properties.
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1. INTRODUCTION

The golden ratio is a special number equal to ¢ = 1+—2‘/3 It appears many
times in geometry, art, architecture and other areas. Mathematicians
since Euclid have studied the properties of the golden ratio, including
its appearance in the dimensions of a regular pentagon and in a golden
rectangle, which may be cut into a square and a smaller rectangle with
the same aspect ratio. The golden ratio has also been used to analyze
the proportions of natural objects as well as man-made systems such as
financial markets.
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Definition 1.1. Let n > 2 be a natural number. We define the golden
polynomials g, (z) by

n—1
gn(z) = 2" — Zxk
k=0
Let Gn(z) = (z — 1)gn(z) = 2" — 22" + 1. Tt is easy to see that
the roots of the polynomlal gn(x) are the roots of the polynomial G, ()
else 1. We have G’ (z) = 2" 1((n + )m—Qn)—O,soa:—O,x—nQ—fl
are the roots of GJ,.
2 2
x 0 T x 0 T
(n even) G, (z 0 — 0 + " (nodd)Gp(z)|— 0 — 0

Since G, (0) = 1 G ( ) =0, Gn(2) =1, Gan(—1) = —2 and Ganp1(—1) =

AR
2 I'Ir \’!

FIGURE 1. y = G,(x)

4, if n = 2k then G,,(z) has only three real roots 1, ¢,, and 1, such that
1< ¢p<2and —1 < ¢, <0, and if n = 2k + 1 then G, (z) has only
two real roots 1 and ¢, such that 1 < ¢,, < 2, for every n € N [see figure
??]. Hence if n = 2k, then g, (z) has only two real roots 1 < ¢,, < 2 and
—1 <9, < 0andif n = 2k+1, then g,(x) has only one root 1 < ¢,, < 2.
We call ¢,, the n’th golden number for every n(n > 2).

2. GOLDEN POLYNOMIALS
In this section we studied the properties of the golden polynomials

and golden numbers.

Remark 2.1. Let n > 2 be a natural number and g,(z) be the golden
polynomial, then

(1)
1 n =2k
9n(=1) :{ 2 n=2%+1

(2) gn(0)=—-1<0, go(1)=1—-n <0, go(2)=1>0.
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(3) If n = 2k then g,(x) has only two real roots 1 < ¢, < 2 and
-1 <y, <O.

(4) If n =2k + 1 then g,(x) has only one root 1 < ¢, < 2.

(5) For every n € N, n > 2, f—fl < ¢ < 2, thus limy, o0 Op = 2.

(6) The sequence {2, }, is a decreasing sequence and lim,,_, 19, =
—1.

Lemma 2.2. Let n > 2 be a natural number. If ¢, is the n’th golden
number, then

(1) For everyne N, n>2

n—1
Gn=> b

1=0

(2) Letn > 2 be a natural number
n—1

St =Y o,

=0

for every k € N.
(3) For everyne N, n>2

n—1 1 n 1
i=0 "™ i=1 "

Proof. (1) Since ¢, is the root of the polynomial g, (x), ¢ = E?:_Ol o
Vn > 2. '
(2) Multiply ¢ = Z?:_Ol #% by ¢% to obtain the equality ¢"+* =
Zn—ol ¢i+kz
1= n °
(3) By the use of part (1), it is easy to see.
(4) By the use of part (1), it is easy to see.
U

Lemma 2.3. Let n > 2 be a natural number and g, be the golden
polynomial.

(1) If x # 2,0, then % =z, for every n > 2.

(2) If x # 2,0, then lim,_, 9;:7(13) —
(4) If n>2, then
- 2=l g #+1
= r—1
gn(x)_{l_n r=1"
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Proof. (1) Let n > 2. We have

In+1(x) — gn(x) _ "t — ZZ:O ab — "+ ZZ;é z*
gn(2) = gn-1(x) @ — Pk —anol 4 300 ak
anrl(x _ 2)

- an(x —2)

€L,

for all x # 0, 2.
(2) Let n > 2. We have

Gn+1(2) — lim "t — ZZ:O *

lim b= _
n—oo g, (x) noo gn — S Lok
for all x # 0, 2.
(3) Let n > 3. We have
n n—2
gn1 () + agno (@) = " =Y Tt pa(en Tt =) et
k=0 k=0

n n—2
— pntl E :xk 4" — § karl
k=0 k=0

= (x4 1)gn(x).

(4) It is easy to see.
(]

Lemma 2.4. Let n > 2 be a natural number and g, be the golden
polynomial.

(1) If n is an odd number, then (see Figure 77, part A),

In+1(z) > gn(x) =>20rz<0
gnt1(x) < gn(zx) 0<z<2 ’

and if n is an even number, then (see Figure 77, part B)

{ Int1(7) > gn(x) 2 >2
In+1(z) < gn(z) <2’

(2) If n > 2, then gny2(x) — gn(x) = 2"g1(x).
(3) If n is an odd number, then (see Figure 7?7, part C)

gnt2(x) < gn(x) < —-1lor0<z <2
gnt2(x) > gn(x) —1<z<0orz>2"’

and if n is an even number, then (see Figure 77, part D)

gnt2(x) < gn(zx) —1<z<2
gni2(x) > gn(x) < —-1orx>2"
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FIGURE 2. compare g, gn+1 and gn, gni2

Proof. (1) Statement (1) is trivial because g, 11(z)—gn(z) = 2" (z—
2).
(2) Let n > 2 be a natural numer.

n+1 n—1
gn+2(x)_gn(m):xn+2_zxk_xn+zxk
k=0 k=0

=" "t 2" = 2" (2).
(3) Statement (3) is trivial because gnio(x) —gn(x) = 2™ (22 —2x—1).
(]
The sequence {¢y, }, is a bounded and increasing sequence.
Proof. Since f—fl < ¢n < 2 and G () is an increasing function on the
interval (n2—]:1, 2) and Gpy1(z) < Gp(x), 80 ¢ < Ppp1 < 2. O
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Lemma 2.5. The number ¢, is an irrational number, Vn > 2

Proof. Let ¢, = 22 (py, qn) = 1. Therefore

an’
p S
n\n ni\k
—)" — —)*=0.
G =3
So
n—1
(Pn)" = (pn)(@n)" " =0
k=0
Hence,

0| (Pn)" = qulpn = ¢ = 1.

But if ¢, = 1, then ¢, = py, thus (p,)™ — Z;é (pn)* = 0, this means
that py|1 or p, = 1 which is a contradiction. O

Theorem 2.6. If {F}}72, is a sequence of positive real numbers that
for every k > 1 have

Fein=Frpn1+ Fepn2+ ... + Fy, (2.1)
then

. Fr
1 — = ¢,.
Jm = =

Proof. Let limy_, FHl = a. Since Fyy1n = Fron_1+ Frono+ ... + Fx,
SO

F Fr.,_ Fr.,_ F
k+n _ k+n—1 + k+n—2 ++7k
Fy. Ey, Ey, Fy.
Thus,
Fhin X Frin X ... X Frp = Frin X Fiin—2 X ... X P +...
Frin-1  Fiin—2 F, Frin—o  Fiin—s Fy,

therefore if k — oo, then a” = a" ' 4 ... 4+ a + 1. Since ¢, is uniqe, so
a = ¢p. O

Theorems ?7 and Remark ?? (5) yield the following theorem.
Theorem 2.7. Let F': N x Ng — R>¢ be a function such that
F(k,n)=F(k,n—1)+ F(k,n—2)+...4+ F(k,0),
for every k € N and n € Ny, then



Golden numbers 95

Proof. 1t follows from Theorem 7?7 and Remark 77?. (]

Theorem 2.8. Suppose that by and by are two fixed complex num-
bers. Then there is not polynomial with the complex coefficients p(z) such
that g3(2)p(z) = by + bo.

Proof. Let p(z) = > 1_gaxz*, an #0, N =n+ 3 and
q(2) = p(2) (2> — 22 — 2 — 1) = b 2™ + by.
Therefore, ¢'(z) = Nbyz"V "1 and

2lq"™(z2) (2.2)
for every 1 < m < n 4+ 2. On the other hand we have
q(2) = (32" =22 = 1)p(2) + (z° — 2> — 2 — )P (2) (2.3)

q"(z) = (62 — 2)p(z) + 2(322 —22—1)p'(2) + (23 — 22—z 1)p"(2).

Also we have
m(m — 1)

d™)(z) = m(m = 1)(m = 2p" (=) + T

(62 — 2)p™2)(2)
+m(32% = 22 — Dp" D (2) + (28 — 2% — 2 — 1)p™(z)
for every 3 < m < n, and

n+1)n

(") = (n+ Dl — 1p2(z) + D 6 ppnn)

+(n+ 1)(322 — 2z — l)p(”)(z),

(n+2)(n+1)

(62 = 2 (2)

(2.7)

¢ (2) = (n+2)(n + Dnp"V(z) +

and
" (2) = (n+3)(n+2)(n + 1)p™ (2). (2.8)

By the using of (??), have z|¢(™)(z) for all 1 < m < n + 2, and by the
use of (?7) we have

—ag— a1 =0 = a; = —ap. (2.9)
By the using of (?7), we have

—2&0 — 2&1 — 2&2 =0 al;ao ag = 0, a; = —ap. (2.10)
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So n # 2. Now, we consider two cases:
Case 1: Let n = 1. In this case p(z) = a1z — a; and

(23 =22 — 2 = 1)(a12 — a1) = byz* + by.
So,
(23— 22—z —1)(a1z —a1) = a1 (z* — 223 + 1),
and
ar(zt =223 +1) = by + by,

which is a contradiction.
Case 2: Let n > 3. By the using of (?7), we get

m(m — 1)

m(m —1)(m —2)(m — 3)lam_3 + 5

(=2)(m — 2)!am—2
+m(—1)(m — 1)!am—1 — mlay, =0,
for every 3 < m < n. So,
mlam—3 — mlay,—o — mlay,—1 — mla,, = 0.
Hence,
Am = Qm-3 — Q-2 — Gm—1, (2.11)
for every 3 < m < n, and by the use of (??) we have

(n+1)

(n+ Dn(n —1)(n — 2)lan_s + = 5 (=2)(n = Dla_y — (n+ nla, = 0.

Thus,
Gp = Qp—2 — Qp_1- (2.12)
Also by the use of (??) have

n+2)(n+1)

(n+2)(n+ n(n — a1 + 5

(—=2)nla, =0
or
Gp = Qp_1. (2.13)

Finally from Relations (??), (?7?), (??) we conclude that the coefficients
as, ag, ..., a, are the multiple of each others. Since as = 0, as = ag =
... = ay = 0, which is a contradiction. U
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