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Abstract. In this work, we study certain spectral properties of
the one dimensional Dirac systems on time scales, such as formally
self-adjointness, orthogonality of eigenfunctions, Green’s function,
the existence of a countable sequence of eigenvalues. Later, we give
an expansion formula in eigenfunctions for Dirac operators on time
scales. These results could provide an important contribution to
the spectral theory of such operators on time scales.
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1. Introduction

The study of dynamic equations on time scales is one of the new areas
in mathematics. The first results in this area were obtained by Hilger
[12]. Time scale calculus unites the studies of differential and difference
equations. The study of time scales has several important applications,
e.g. in the study of neural networks, heat transfer, insect population
models, and epidemic models [1]. We refer the reader to consult the
references [5], [8], [7], [11], [9], [15].
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Now let us consider the system(
0 −1
1 0

)
dy (x)

dx
+B (x) y (x) = λy (x) , x ∈ [a, b], (1.1)

where λ is a complex spectral parameter and

y (x) =

(
y1 (x)
y2 (x)

)
, B (x) =

(
p (x) 0
0 r (x)

)
(for almost all x ∈ [a, b]); the entries of the matrix B (x) are real-valued,
Lebesgue measurable and integrable functions on [a, b]. This system is
called the Dirac system in the literature. It is known that the system
(1.1) describes a relativistic electron in the electrostatic field (see [20]).

Dirac operators are in the class of the most important operators in
physics since these operators formulate the fundamental physics of real-
istic quantum mechanics. They predict the existence of antimatter and
describe the electron spin (see [19]).

In Equation (1.1), if the differential operator is replaced with the ∆-
difference operator (see Definition 2.2), then we obtain the Dirac system
on the time scale. There is not much research about the Dirac system on
time scales ([10, 13, 2, 3, 4]). Hence our study may fill an important gap
in this subject. In [10], the authors studied an eigenvalue problem for
the Dirac system with separated boundary conditions on an arbitrary
time scale. In [13], the author studied the non-autonomous linear Dirac
equation on a time scale containing the important discrete, continuous,
and quantum time scales. A representation of the solutions is estab-
lished via approximate solutions in terms of unknown phase functions
with the error estimates. In [2, 3], Allahverdiev et al. proved the exis-
tence of a spectral function for one dimensional singular Dirac system on
time scales. In [6], Anderson studied non-self-adjoint Hamiltonian sys-
tems on Sturmian time scales by defining Weyl–Sims sets, which replace
the classical Weyl circles with a matrix-valued M -function on suitable
cone-shaped domains in the complex plane. Furthermore, the author
characterized the realizations of the corresponding dynamic operator
and its adjoint, and then constructed their resolvents.

Now the organization of our work is as follows. In the second section,
some preliminary concepts related to time scales are presented for the
convenience of the reader. In the third section, we formulate a self-
adjoint Dirac operator. In the last section, we construct the associated
Green function of the Dirac system on the time scale.

2. Preliminaries

First, we note that, for more details in this section, we refer to [8, 9].
Now let T be a Sturmian time scale. The forward jump operator σ :
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T → T is defined by

σ (t) = inf {s ∈ T : s > t} , where t ∈ T

and the backward jump operator ρ : T → T is defined by

ρ (t) = sup {s ∈ T : s < t} , where t ∈ T.

Moreover, the graininess operators µσ : T → [0,∞) and µρ : T →
(−∞, 0] are defined by

µσ (t) = σ (t)− t

and

µρ (t) = ρ (t)− t,

respectively.

Definition 2.1. A point t ∈ T is left scattered if µρ (t) ̸= 0, and left
dense if µρ (t) = 0. A point t ∈ T is right scattered if µσ (t) ̸= 0 and
right dense if µσ (t) = 0.

Now let us consider the sets Tk, Tk and T∗ which are derived from
the time scale T as follows. If T has a left scattered maximum t1, then
Tk = T − {t1} , otherwise Tk = T. If T has a right scattered minimum
t2, then Tk = T− {t2} , otherwise Tk = T. Finally, T∗ = Tk ∩ Tk.

Definition 2.2. A function f on T is said to be ∆-differentiable at some
point t ∈ T if there is a number f∆(t) such that for every ε > 0 there is
a neighborhood U ⊂ T of t such that

|f(σ(t))− f(s)− f∆(t)(σ(t)− s)| ≤ ε|σ(t)− s|, where s ∈ U.

Analogously one may define the notion of ∇-differentiability of some
function using the backward jump ρ. One can show that (see [11])

f∆(t) = f∇(σ(t)), f∇(t) = f∆(ρ(t))

for continuously differentiable functions.

Let f : T → R be a function, and a, b ∈ T. If there exists a function
F : T → R such that F∆ (t) = f (t) for all t ∈ Tk, then F is a ∆-
antiderivative of f. In this case the integral is given by the formula∫ b

a
f (t)∆t = F (b)− F (a) for a, b ∈ T.

Analogously one may define the notion of ∇-antiderivative of some func-
tion.

Let L2
∆(T∗) be the space of all functions defined on T∗ such that

∥f∥ :=

(∫ b

a
|f (t)|2∆t

)1/2

< ∞.



198 B. P. Allahverdiev , Hüseyin Tuna

The space L2
∆(T∗) is a Hilbert space with the inner product (see [18])

(f, g) :=

∫ b

a
f (t) g (t)∆t, f, g ∈ L2

∆(T∗) .

Let a and b be fixed points in T with a ≤ b and a ∈ Tk, b ∈ Tk.
Now, we introduce a convenient Hilbert space H := L2

∆(T∗;E) (E :=
C2) of vector-valued functions, by using the inner product

⟨f, g⟩H :=

∫ b

a
(f(x), g(x))E∆t.

Let us consider the one dimensional Dirac systems on time scales:(
0 −∆
∆ 0

)(
y1
yρ2

)
+

(
p (t) 0
0 r (t)

)(
y1
y2

)
= λ

(
y1
y2

)
or

l (y) = λy, y =

(
y1
y2

)
, t ∈ T∗, (2.1)

l (y) :=

{
−∆yρ2 + p (t) y1
∆y1 + r (t) y2,

where ∆f(t) = f∆(t), yρ2(t) = y2(ρ(t)), λ is a complex eigenvalue
parameter, p (.) and r (.) are real-valued functions defined on T∗ and
p (.) , r (.) ∈ L1

∆ (T∗).

Theorem 2.3. For c1, c2 ∈ C, Equation (2.1) has a unique solution

Ψ(t, λ) =

(
Ψ1 (t, λ)
Ψ2 (t, λ)

)
in L2

∆ (T∗;E) which satisfies

Ψ1 (t0, λ) = c1,Ψ2 (t0, λ) = c1, λ ∈ C.

Proof. See the proof of Theorem 2.1 in [6]. �

3. Self-adjoint Dirac operator on time scales

In this section, we formulate a self-adjoint one dimensional Dirac op-
erator in H. We also give some spectral properties of these operators.

Now we consider the Dirac system on T∗ given by

l (y) :=

{
−∆yρ2 + p (t) y1
∆y1 + r (t) y2,

l (y) = λy, y =

(
y1
y2

)
, t ∈ T∗, (3.1)

with the boundary conditions

L1 (y) := k11y1 (a) + k12y
ρ
2 (a) = 0, (3.2)

L2 (y) := k21y1 (b) + k22y
ρ
2 (b) = 0, (3.3)
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where λ is a complex eigenvalue parameter, {kij}i,j=1,2 are arbitrary real

numbers such that k2i1 + k2i2 ̸= 0 (i = 1, 2), p (.) and r (.) are real-valued
functions defined on T∗ and p, r ∈ L1

∆ (T∗).

Theorem 3.1. The boundary-value problem defined by (3.1)-(3.3) is
formally self-adjoint on H.

Proof. First, we will prove the Green’s formula. Let y (.) , z (.) ∈ H.
Then, we have

⟨l(y), z⟩H − ⟨y, l(z)⟩H

=

∫ b

a
(−∆yρ2 + p (t) y1) z1∆t+

∫ b

a
(∆y1 + r (t) y2) z2∆t

−
∫ b

a
y1(−∆zρ2 + p (t) z1)∆t−

∫ b

a
y2(∆z1 + r (t) z2)∆t

= −
∫ b

a

[
(∆yρ2) z1 + y2(∆z1)

]
∆t+

∫ b

a

[
(∆y1) z2 + y1(∆zρ2)

]
∆t.

Since

∆(z1 (t)y
ρ
2 (t)) = z1 (t) (∆yρ2 (t)) + (yρ2 (t))

σ
(∆z1 (t))

= ∆yρ2 (t) z1 (t) + y2 (t) (∆z1 (t))

and

∆(zρ2 (t)y1 (t)) = (∆zρ2 (t))y1 (t) + (zρ2 (t))
σ
(∆y1 (t))

= (∆zρ2 (t))y1 (t) + z2 (t)∆y1 (t) ,

we get

⟨l(y), z⟩H − ⟨y, l(z)⟩H = −
∫ b

a
∆
(
z1 (t)y

ρ
2 (t)

)
∆t+

∫ b

a
∆
(
y1 (t) z

ρ
2 (t)

)
∆t

=

∫ b

a
∆
[
y1 (t) z

ρ
2 (t)− z1 (t)y

ρ
2 (t)

]
∆t.

Let us define [y, z]t := y1 (t) z
ρ
2 (t)− z1 (t)y

ρ
2 (t) . Hence we obtain

⟨l(y), z⟩H − ⟨y, l(z)⟩H = [y, z]b − [y, z]a . (3.4)

We proceed to show that the operator L is formally self-adjoint. Let
y (.) , z (.) ∈ H. Then, we have

⟨l(y), z⟩H − ⟨y, l(z)⟩H = [y, z]b − [y, z]a .

From the boundary conditions (3.2) and (3.3), we get [y, z]b = 0 and
[y, z]a = 0. Consequently,

⟨l(y), z⟩H = ⟨y, l(z)⟩H. (3.5)

This completes the proof. �
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Corollary 3.2. All eigenvalues of the problem defined by (3.1)-(3.3)
are real. Further, if µ1 and µ2 are two different eigenvalues of the prob-
lem defined by (3.1)-(3.3), then the corresponding eigenfunctions v1 and
v2 are orthogonal.

Now let y (t) =

(
y1 (t)
y2 (t)

)
, z (t) =

(
z1 (t)
z2 (t)

)
∈ H. Then, we define

the Wronskian of y (t) and z (t) by

W (y, z) (t) = y1 (t) z
ρ
2 (t)− z1 (t) y

ρ
2 (t) .

Theorem 3.3. The Wronskian of any solution of Equation (3.1) is
independent of t.

Proof. Let y (t) and z (t) be two solutions of Equation (3.1). By Green’s
formula (3.4), we have

⟨l(y), z⟩Ht − ⟨y, l(z)⟩Ht = [y, z]t − [y, z]a ,

where Ht := L2
∆ (T∗

t ;E),T∗
t := T∗∩ [a, t]. Since l(y) = λy and l(z) = λz,

we have

⟨λy, z⟩Ht − ⟨y, λz⟩Ht = [y, z]t − [y, z]a ,(
λ− λ

)
⟨y, z⟩Ht = [y, z]t − [y, z]a .

Since λ ∈ R, we have [y, z]t = [y, z]a = W (y, z) (a) , i.e., the Wronskian
is independent of t. �
Corollary 3.4. If y (t) and z (t) are both the solutions of Equation
(3.1), then either W (y, z) (t) = 0 or W (y, z) (t) ̸= 0 for all t ∈ T∗.

Theorem 3.5. Any two solutions of Equation (3.1) are linearly depen-
dent if and only if their Wronskian is zero.

Proof. Let y (t) and z (t) be two linearly dependent solutions of Equation
(3.1). Then, there exists a constant c > 0 such that y (t) = c z (t) . Hence

W (y, z) (t) =

∣∣∣∣ y1 (t) yρ2 (t)
z1 (t) zρ2 (t)

∣∣∣∣ = ∣∣∣∣ cz1 (t) czρ2 (t)
z1 (t) zρ2 (t)

∣∣∣∣ = 0.

Conversely, if W (y, z) (t) = 0, then y (t) = c z (t) , i.e., y (t) and z (t)
are linearly dependent. �
Lemma 3.6. All eigenvalues of the problem defined by (3.1)-(3.3) are
simple from the geometric point of view.

Proof. Let µ be an eigenvalue with eigenfunctions z1 (t) and z2 (t) . From
the boundary condition (3.2), we have

W (z1, z2) (a) = z11 (a) z
ρ
22 (a)− z12 (a) z

ρ
21 (a) = 0.

Then, the set {z1 (t) , z2 (t)} is linearly dependent. �
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Now, our next goal is to determine the eigenvalues and the corre-
sponding eigenfunctions. Let

ϕ1 (t, λ) =

(
ϕ11 (t, λ)
ϕ12 (t, λ)

)
and ϕ2 (t, λ) =

(
ϕ21 (t, λ)
ϕ22 (t, λ)

)
be linearly independent solutions of (3.1) which satisfy the initial con-
ditions

ϕij (a, λ) = δij , i, j = 1, 2, λ ∈ C.
Then, every solution of Equation (3.1) has the form

y (t, λ) = K1ϕ1 (t, λ) +K2ϕ2 (t, λ) ,

where K1 and K2 do not depend on t. If we can find a nontrivial solution
of the linear system

K1L1 (ϕ1) +K2L1 (ϕ2) = 0,

K1L2 (ϕ1) +K2L2 (ϕ2) = 0,

then the solution y (t, λ) is called an eigenfunction of (3.1). Hence λ ∈ R
is an eigenvalue if and only if

ω (λ) =

∣∣∣∣ L1 (ϕ1) L1 (ϕ2)
L2 (ϕ1) L2 (ϕ2)

∣∣∣∣ = 0.

The function ω (λ) is called the characteristic determinant associated
with the Dirac system defined by (3.1)-(3.3). The eigenvalues of the
problem defined by (3.1)-(3.3) are the zeros of the function ω (λ) . On
the other hand, ω (λ) is an entire function in λ because ϕ1 (t, λ) and
ϕ2 (t, λ) are entire in λ for each fixed t ∈ T∗. Hence the eigenvalues of
the Dirac system defined by (3.1)-(3.3) are at most countable with no
finite limit points.

Theorem 3.7. All eigenvalues µn of the problem defined by (3.1)-(3.3)
are simple zeros of the function ω (λ) .

Proof. Let us define

θ1 (t, λ) =

(
θ11 (t, λ)
θ12 (t, λ)

)
and θ2 (t, λ) =

(
θ21 (t, λ)
θ22 (t, λ)

)
by

θ1 (t, λ) = L1 (ϕ2)ϕ1 (x, λ)− L1 (ϕ1)ϕ2 (t, λ) ,

θ2 (t, λ) = L2 (ϕ2)ϕ1 (x, λ)− L2 (ϕ1)ϕ2 (t, λ) . (3.6)

Then, θ1 (t, λ) and θ2 (t, λ) are solutions of (3.1) such that

θ1 (a, λ) =

(
k12
−k11

)
and θ2 (b, λ) =

(
k22
−k21

)
. (3.7)
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On the other hand, we have

W (θ1 (t, λ) , θ2 (t, λ))

= θ11 (t, λ) θ
ρ
22 (t, λ)− θρ12 (t, λ) θ21 (t, λ)

= (L1 (ϕ2)ϕ11 (t, λ)− L1 (ϕ1)ϕ21 (t, λ))

× (L2 (ϕ2)ϕ
ρ
12 (t, λ)− L2 (ϕ1)ϕ

ρ
22 (t, λ))

− (L1 (ϕ2)ϕ
ρ
12 (t, λ)− L1 (ϕ1)ϕ

ρ
22 (t, λ))

× (L2 (ϕ2)ϕ11 (t, λ)− L2 (ϕ1)ϕ21 (t, λ))

= L1 (ϕ2)L2 (ϕ1) (−ϕ11 (t, λ)ϕ
ρ
22 (t, λ) + ϕρ

12 (t, λ)ϕ21 (t, λ))

+ L1 (ϕ1)L2 (ϕ2) (ϕ11 (t, λ)ϕ
ρ
22 (t, λ)− ϕρ

12 (t, λ)ϕ21 (t, λ))

= (ϕ11 (t, λ)ϕ
ρ
22 (t, λ)− ϕρ

12 (t, λ)ϕ21 (t, λ))

× (L1 (ϕ1)L2 (ϕ2)− L1 (ϕ2)L2 (ϕ1))

= W (ϕ1 (t, λ) , ϕ2 (t, λ))ω (λ) = ω (λ) . (3.8)

Let λ0 be an eigenvalue of the problem defined by (3.1)-(3.3). Since λ0 is
a real number, θi (t, λ0) (i = 1, 2) can be taken to be real-valued. Then,
by (3.8), θ1 (t, λ0) and θ2 (t, λ0) are linearly dependent eigenfunctions.
Hence there exists a nonzero constant η0 such that

θ2 (t, λ0) = η0θ1 (t, λ0) .

From (3.6) and (3.7), we have

θ21 (a, λ0) = η0k12 = η0θ11 (a, λ) , θ22 (a, λ0) = −η0k11 = −η0θ12 (a, λ) .
(3.9)

If we take y (t) = θ2 (t, λ) and z (t) = θ2 (t, λ0) in (3.4), then we get

(λ− λ0)

∫ b

a
θ2 (t, λ) θ2 (t, λ0)∆t

= − (θ21 (a, λ) θ22 (a, λ0)− θ21 (a, λ0) θ22 (a, λ))

= − (θ21 (a, λ) (−η0θ12 (a, λ))− η0θ11 (a, λ) θ22 (a, λ))

= η0 (θ11 (a, λ) θ22 (a, λ)− θ12 (a, λ) θ21 (a, λ))

= η0W (θ1 (t, λ) , θ2 (t, λ)) = η0ω (λ) .

Since ω (λ) is an entire function in λ, we have

d

dλ
ω (λ) |λ0 := lim

λ→λ0

ω (λ)

λ− λ0
=

1

η0

∫ b

a
θ22 (t, λ0)∆t ̸= 0.

Consequently, λ0 is a simple zero of ω (λ) . �



Dirac Operators on Time Scales 203

4. Green’s function and eigenfunction expansion formula

In this section, we will investigate the solution of the nonhomogeneous
system

−∆yρ2 + {−λ+ p (t)} y1 = f1 (t) , (4.1)

∆y1 + {−λ+ r (t)} y2 = f2 (t) , (4.2)

where t ∈ T∗, which fulfills the boundary conditions

k11y1 (a) + k12y
ρ
2 (a) = 0, k211 + k212 ̸= 0, (4.3)

k21y1 (b) + k22y
ρ
2 (b) = 0, k221 + k222 ̸= 0, (4.4)

and

f (.) =

(
f1 (.)
f2 (.)

)
∈ H.

For this, we construct the Green’s function of the nonhomogeneous sys-
tem (4.1)-(4.4). We also obtain an eigenfunction expansion for the above
system.

Theorem 4.1. If λ is not an eigenvalue of the problem defined by (3.1)-
(3.3), then the nonhomogeneous system (4.1)-(4.4) is solvable for any
vector-valued function f (.) . Conversely if λ is an eigenvalue of the prob-
lem defined by (3.1)-(3.3), then the nonhomogeneous system (4.1)-(4.4)
is, generally unsolvable.

Proof. Let us define

G (t, s, λ) =


θ2(t,λ)θT1 (s,λ)

ω(λ) , a ≤ t ≤ s
θ1(t,λ)θT2 (s,λ)

ω(λ) , s < t ≤ b
(4.5)

which is called the Green’s matrix. We will show that the function

y (t, λ) =

∫ b

a
(G (t, s, λ) , f (s))E ∆s (4.6)

is the solution of the nonhomogeneous system (4.1)-(4.4).
By definition of the Green’s matrix, we have

G (t, s, λ)

=



1
ω(λ)

(
θ21 (t, λ) θ11 (s, λ) θ21 (t, λ) θ12 (s, λ)
θ22 (t, λ) θ11 (s, λ) θ22 (t, λ) θ12 (s, λ)

)
,

a ≤ t ≤ s,

1
ω(λ)

(
θ11 (t, λ) θ21 (s, λ) θ11 (t, λ) θ22 (s, λ)
θ12 (t, λ) θ21 (s, λ) θ12 (t, λ) θ22 (s, λ)

)
,

s < t ≤ b.
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From (4.6), we have

y1 (t, λ)

=
1

ω (λ)
θ21 (t, λ)

∫ t

a
(θ11 (s, λ) f1 (s) + θ12 (s, λ) f2 (s))∆s

1

ω (λ)
θ11 (t, λ)

∫ b

t
(θ21 (s, λ) f1 (s) + θ22 (s, λ) f2 (s))∆s, (4.7)

y2 (t, λ)

=
1

ω (λ)
θ22 (t, λ)

∫ t

a
(θ11 (s, λ) f1 (s) + θ12 (s, λ) f2 (s))∆s

1

ω (λ)
θ12 (t, λ)

∫ b

t
(θ21 (s, λ) f1 (s) + θ22 (s, λ) f2 (s))∆s. (4.8)

From (4.7), it follows that

y∆1 (t, λ)

=
1

ω (λ)
θ∆21 (t, λ)

∫ t

a
(θ11 (s, λ) f1 (s) + θ12 (s, λ) f2 (s))∆s

+
1

ω (λ)
θ∆11 (t, λ)

∫ b

t
(θ21 (s, λ) f1 (s) + θ22 (s, λ) f2 (s))∆s

+
1

ω (λ)
W (θ1, θ2) f2 (t)

= − 1

ω (λ)
{−λ+ r (t)} θ22 (t, λ)

∫ t

a
(θ11 (s, λ) f1 (s) + θ12 (s, λ) f2 (s))∆s

− 1

ω (λ)
{−λ+ r (t)} θ12 (t, λ)

∫ b

t
(θ21 (s, λ) f1 (s) + θ22 (s, λ) f2 (s))∆s

+ f2 (t)

= −{−λ+ r (t)} 1

ω (λ)
θ22 (t, λ)

∫ t

a
(θ11 (s, λ) f1 (s) + θ12 (s, λ) f2 (s))∆s

− {−λ+ r (t)} 1

ω (λ)
θ12 (t, λ)

∫ b

x
(θ21 (s, λ) f1 (s) + θ22 (s, λ) f2 (s))∆s

+ f2 (t) = −{−λ+ r (t)} y2 (t) + f2 (t) .

The validity of (4.1) is proved similarly. Hence the function y (t, λ) in
(4.6) is the solution of the system (4.1)-(4.2). We check at once that
(4.6) satisfies the boundary conditions (4.3)-(4.4). �

Theorem 4.2. The Green’s matrix defined by the formula (4.5) has the
following properties:
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i) The Green’s matrix G (t, s, λ) is unique, i.e., if there exists an-

other Green’s matrix G̃ (t, s, λ) for the nonhomogeneous system (26)-

(29), then G (t, s, λ) = G̃ (t, s, λ) in L2
∆ (T∗ × T∗;E) .

ii) G (t, s, λ) is continuous at the point (a, a) .
iii) G (t, s, λ) = G (s, t, λ) .
iv) Let λ0 be a zero of ω (λ) . Then λ0 can be a simple pole of the

matrix G (t, s, λ) . Therefore, we have

G (t, s, λ) =
−υ (t) υ (s)

λ− λ0
+ G̃ (t, s, λ) ,

where G̃ (t, s, λ) is an analytic function of λ in the neighborhood of λ0

and υ (t) is a normalized eigenfunction corresponding to λ0.

Proof. Since the proof is similar to that of Sturm-Liouville equations on
time scales (see [7]), we omit it. �

We next prove the existence of a countable sequence of eigenvalues of
l with no finite limit points. Later, we will prove that the correspond-
ing eigenfunctions form an orthonormal basis of H. Hence we need the
following definition and theorems.

Definition 4.3. A complex-valued function M (t, s) of two variables
with a ≤ t, s ≤ b is called the ∆−Hilbert-Schmidt kernel if∫ b

a

∫ b

a
|M (t, s)|2∆t∆s < +∞.

Theorem 4.4. ([17]) If

∞∑
i,k=1

|aik|2 < +∞, (4.9)

then the operator A defined by the formula

A {xi} = {yi} ,

where

yi =
∞∑
k=1

aikxk, i = 1, 2, ... (4.10)

is compact in the sequence space l2.

Theorem 4.5 (Hilbert-Schmidt). Let A be a compact self-adjoint oper-
ator mapping a Hilbert space H into itself. Then there is an orthonor-
mal system φ1, φ2, ... of eigenvectors of A, with corresponding nonzero
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eigenvalues λ1, λ2, ..., such that every element x ∈ H has a unique rep-
resentation of the form

x =
∑
n

cnφn + x′,

where x′ satisfies the condition Ax′ = 0. Moreover,

Ax =
∑
n

λncnφn

and
lim
n→∞

λn = 0

in the case where there are infinitely many nonzero eigenvalues ([14]).

Let us denote by DL the linear set of all vectors y (.) ∈ H such that
∆y (t) is a continuous function on T∗, l(y) ∈ H and L1 (y) = 0, L2 (y) =
0. We define the operator L on DL by the equality Ly = l(y). It is
clear that the operator L has the same eigenvalues of the Dirac problem
defined by (3.1)-(3.3). Without loss of generality, we can assume that
λ = 0 is not an eigenvalue. Then, kerL = {0} . Thus the solution of the
problem (Ly) (t) = f (t) , f (.) ∈ H is given by

y (x) =

∫ b

a
(G (t, s) , f (s))E ∆s,

where

G (t, s) = G (t, s, 0) =

 − θ2(t)θT1 (s)
W (θ1,θ2)

, a ≤ t ≤ s

− θ1(t)θT2 (s)
W (θ1,θ2)

, s < t ≤ b.
(4.11)

Theorem 4.6. G (t, s) defined by (4.11) is a ∆−Hilbert-Schmidt kernel.

Proof. By the upper half of the formula (4.11), we have∫ b

a
∆t

∫ t

a
∥G (t, s)∥2∆s < +∞;

and by the lower half of (4.11), we have∫ b

a
∆t

∫ b

t
∥G (t, s)∥2∆s < +∞

since the inner integral exists and is a linear combination of the products
θ1i (x) θ2k (t) (i, k = 1, 2), and these products belong to H because each
of the factors belongs to H. Then, we obtain∫ b

a

∫ b

a
∥G (t, s)∥2∆t∆s < +∞. (4.12)

�
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Theorem 4.7. The operator K defined by the formula

(Kf) (x) =

∫ b

a
(G (t, s) , f (s))E ∆s

is compact and self-adjoint.

Proof. Let ϕi = ϕi (s) , i = 1, 2, ... be a complete, orthonormal basis of
H. Since G (t, s) is a Hilbert-Schmidt kernel, we can define

xi = ⟨f, ϕi⟩H =

∫ b

a
(f (s) , ϕi (s))E ∆s,

yi = ⟨g, ϕi⟩H =

∫ b

a
(g (s) , ϕi (s))E ∆s,

aik =

∫ b

a

∫ b

a
(G (t, s)ϕi(t), ϕk (s))E ∆t∆s.

Then, H is mapped isometrically into l2. Consequently, our integral
operator transforms into the operator defined by the formula (4.10) in
the space l2 by this mapping, and the condition (4.12) is translated
into the condition (4.9). By Theorem 4.4, this operator is compact.
Therefore, the original operator is compact.

Let f, g ∈ H. As G (t, s) = G (s, t) and G (t, s) is a real matrix-valued
function defined on T∗ × T∗, we have

⟨Kf, g⟩H =

∫ b

a
((Kf) (t) , g (t))E ∆t

=

∫ b

a

∫ b

a
(G (t, s) f (s) , g (t))E ∆s∆t

=

∫ b

a

(
f (s) ,

∫ b

a
G (s, t) g (t)∆t

)
E

∆s

= ⟨f,Kg⟩H.
Thus we have proved that K is self-adjoint. �
Theorem 4.8. The eigenvalues of the operator L form an infinite se-
quence {λn}∞n=1 of real numbers which can be ordered such that

|λ1| < |λ2| < ... < |λn| < ... → ∞ as n → ∞.

The set of all normalized eigenfunctions of L forms an orthonormal basis
for H.

Proof. By Theorems 4.5 and 4.7, K has an infinite sequence of non-zero
real eigenvalues {ξn}∞n=1 with limn→∞ ξn = 0. Then,

|λn| =
1

|ξn|
→ ∞ as n → ∞.
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Furthermore, let {χn}∞n=1 denote an orthonormal set of eigenfunctions
corresponding to {ξn}∞n=1 . Thus we have (y ∈ H, Ky = f, y = Lf,
Lχn = λnχn, n = 1, 2, ...)

y = Lf =

∞∑
n=1

⟨y, χn⟩Hχn =

∞∑
n=1

⟨Lf, χn⟩Hχn

=

∞∑
n=1

⟨f, Lχn⟩Hχn =

∞∑
n=1

λn⟨f, χn⟩Hχn.

�
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