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1. Introduction

Harmonic maps between Riemannian manifolds were first introduced
by Eells and Sampson, in 1964. They showed that any map ϕ0 : (M, g) −→
(N,h) from any compact Riemannian manifold (M, g) into a Riemannian
manifold (N,h) with non-positive sectional curvature can be deformed
into a harmonic maps. This is so-called the fundamental existence the-
orem for harmonic maps, [2]. In view of physics, harmonic maps have
been studied in various fields of physics, such as super conductor, ferro-
magnetic material, liquid crystal, etc., [8, 9].
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Biharmonic maps, as an extension of harmonic maps, were first studied
by Jiang in 1986, [5]. In recent decade, many scholars have done re-
search on this topic. These maps play a key role in describing the model
of fluid dynamics and elasticity, [1, 3, 4, 12].
In 1981, Sacks and Uhlenbeck introduced the notion of Sacks-Uhlenbeck
harmonic maps. Let ψ : (M, g) −→ (P, ρ) be a smooth map between
Riemannian manifolds. The Sacks-Uhlenbeck energy functional of ψ for
α > 1, is denoted by Eα(ψ) and defined as follows:

Eα(ψ) :=

∫
M
(1+ | dψ |2)αdυg, (1.1)

where dυg is the volume element of (M, g) and | dψ | denotes the
Hilbert-Schmidt norm of the differential map dψ ∈ Γ(T ∗M × ψ−1TP )
with respect to g and ρ. Eα satisfies Morse theory and Ljusternik-
Schnirelman theory if α > 1. The critical points of Eα are called the
α-Sacks-Uhlenbeck harmonic maps. Sacks and Uhlenbeck used the crit-
ical maps sα of Eα, to derive an existence theory for harmonic maps
of orientable surfaces into Riemannian manifolds. They showed that
convergence of the critical points of Eα is sufficient to produce at least
one harmonic map of sphere into Riemannian manifold. Note that every
harmonic map from a sphere is in fact a conformal minimal immersion,
[11]. There have been extensive studies in this area (see for instance,
[6, 7, 10]).
In this paper, following the ideas in [5], we investigate Sacks-Uhlenbeck
biharmonic maps between Riemannian manifolds as an extension of
Sacks-Uhlenbeck harmonic maps. More precisely, we use the methods
provided in [5, 11] to study the new type of biharmonicity. Our main
results are included in Section 3. In particular, instability and non-
existence theorems for Sacks-Uhlenbeck biharmonic maps are given.
The organization of this paper is as follows. In section 2, the concepts
of harmonic, biharmonic maps are reviewed and some essential formulas
which are necessary for this paper are given. In the third section, the first
and second variation formulas for Sacks-Uhlenbeck biharmonic maps is
obtained. Then, the stability of Sacks-Uhlenbeck biharmonic maps from
a compact Riemannian manifold into an arbitrary Riemannian manifold
with constant positive sectional curvature is studied.

2. Preliminaries

In this section, we recall some basic concepts which will be used later.
For more details, see ([5, 11]). Let ψ : (M, g) −→ (P, ρ) be a smooth
map between Riemannian manifolds. Throughout this paper, we con-
sider (M, g) as a compact Riemannian manifold. Denote the Levi-Civita
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connections on M and P by ∇ and ∇P , respectively. Moreover, the in-
duced connection on the pullback bundle ψ−1TP is denoted by ∇ψ and

defined by ∇ψ
XW = ∇P

dψ(X)W, for any X ∈ χ(M) and W ∈ Γ(ψ−1TP ).

The energy functional of ψ is defined as follows

E(ψ) =
1

2

∫
M

| dψ |2 dυg. (2.1)

The corresponding Euler-Lagrange equation of the energy functional E
is given by

τ(ψ) := ∇ψ
eidψ(ei)− dψ(∇eiei) = 0, (2.2)

where {ei}mi=1 is a local orthonormal frame field on M (here henceforward
we sum over repeated indices). τ(ψ) is called the tension field of ψ. In
terms of the Euler-Lagrange equation, a map ψ is called harmonic if
τ(ψ) = 0, [2]. Furthermore, ψ is said to satisfy the conservation law if

ρ(τ(ψ), dψ(X)) = 0, (2.3)

for any X ∈ χ(M), [5].
Biharmonic maps ψ : (M, g) −→ (P, ρ) are critical points of the bienergy
functional

E2(ψ) =
1

2

∫
M

| τ(ψ) |2 dυg. (2.4)

The Euler- Lagrange equation associated to E2 is, [5]:

τ2(ψ) := −Jψ(τ(ψ)) = 0, (2.5)

where Jψ denotes the Jacobi operator of ψ on the sections of the pull-
back bundle ψ−1TP , defined by

Jψ(V ) := −∆ψV − tracegR
P (dψ, V )dψ, V ∈ Γ(ψ−1TP ), (2.6)

here RP (X,Y ) = [∇PX,∇PY ] − ∇P
[X,Y ] is the curvature operator on

P, and ∆ψ is the rough Laplacian on the sections of ψ−1TP which is
defined with respect to a local orthonormal frame field {ei} on M as
follows:

−∆ψV := ∇ψ
ei∇

ψ
eiV −∇ψ

∇eiei
V. (2.7)

Theorem 2.1. (the second variation formula of the bienergy functional,
see [5]) Let ψ : (M, g) −→ (P, ρ) be a biharmonic map, and {ψt} be
an arbitrary smooth variation of ψ such that ψ0 = ψ. suppose that
V = dψt

dt |t=0 . Then the second variation formula of 1
2E2(ψt) is given as

1

2

d2

dt2
|t=0 E2(ψt) =

∫
M
lψ(V )dυg, (2.8)
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where

lψ(V ) : =| −∆ψV −RP (dψ(ei), V )dψ(ei) |2

− ρ

(
V, (∇ψ

eiR
P )(dψ(ei), τ(ψ))V + (∇ψ

τ(ψ)R
P )(dψ(ei), V )dψ(ei)

+RP (τ(ψ), V )τ(ψ) + 2RP (dψ(ei), V )∇ψ
eiτ(ψ)

+ 2RP (dψ(ei), τ(ψ))∇ψ
eiV

)
. (2.9)

ψ is said to be stable biharmonic if d2

dt2
|t=0 E2(ψt) ≥ 0 for every

smooth variation {ψt} of ψ, [5]. In particular, ψ is called strongly stable
biharmonic if lψ(V ) is non-negative for every variational vector field V
along ψ.

3. Main Results

In this section, first of all, we find the first and second variation formu-
las of Sacks-Uhlenbeck bienergy functional for α > 1. Then, instability
and non-existence theorems for Sacks-Uhlenbeck biharmonic maps are
given.

Definition 3.1. A smooth map ψ : (M, g) −→ (P, ρ) is said to be α-
Sacks-Uhlenbeck biharmonic map if ψ is a critical point of the α-Sacks-
Uhlenbeck bienergy functional, Eα,2, defined as follows

Eα,2(ψ) :=

∫
M
(1+ | τ(ψ) |2)αdυg, (3.1)

where | τ(ψ) | denotes the Hilbert-Schmidt norm of the tension field of
ψ.

In the following theorem, we calculate the first variation formula cor-
responding to the α-Sacks-Uhlenbeck bienergy functional.

Theorem 3.2. (The first variation formula) Let ψ : (M, g) −→ (P, ρ)
be a smooth map, and ψt :M −→ P (−ϵ < t < ϵ) be a smooth variation
of ψ such that ψ0 = ψ. Then

d

dt
|t=0 Eα,2(ψt) =

∫
M
ρ(τα,2(ψ), V )dυg, (3.2)

where V = dψt
dt |t=0 and τα,2(ψ) is defined by

τα,2(ψ) : = −∆ψ[2α(1+ | τ(ψ) |2)α−1τ(ψ)]

− tracegR
P (dψ, 2α(1+ | τ(ψ) |2)α−1τ(ψ))dψ (3.3)
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Proof. Let Ψ :M × (−ϵ, ϵ) −→ P be a smooth map defined by Ψ(t, x) =
ψt(x). HereM×(−ϵ, ϵ) is equipped with the product metric. Denote the
induced connections on T (M × (−ϵ, ϵ)),Ψ−1TP and T ∗(M × (−ϵ, ϵ))⊗
Ψ−1TP by ∇̄,∇Ψ and ∇̃, respectively. Moreover, let X and ∂

∂t be
smooth vector fields on M and (−ϵ, ϵ), respectively. The canonical ex-
tension of ∂

∂t and X to M × (−ϵ, ϵ) are denoted by ∂
∂t and X again.

According to the above notations, we have

∇̄ ∂
∂t
ek − ∇̄ek

∂

∂t
= [

∂

∂t
, ek] = 0. (3.4)

Now, by considering the following equations

∇Ψ
∂
∂t

dΨ(ei)−∇Ψ
eidΨ(

∂

∂t
) = dΨ[

∂

∂t
, ei] = 0, (3.5)

and

∇Ψ
∂
∂t

dΨ(∇̄eiei)−∇Ψ
∇̄eiei

dΨ(
∂

∂t
) = dΨ[

∂

∂t
, ∇̄eiei] = 0, (3.6)

we get

∂

∂t
(1+ | τ(ψt) |2)α

= ρ(∇Ψ
ei∇

Ψ
eidΨ(

∂

∂t
)−∇Ψ

∇̄eiei
dΨ(

∂

∂t
), 2α(1+ | τ(ψt) |2)α−1τ(ψt))

+ ρ(RP (dΨ(
∂

∂t
), dΨ(ei))dΨ(ei), 2α(1+ | τ(ψt) |2)α−1τ(ψt)) (3.7)

Let Qt and Zt be two vector fields on M , defined by

g(Qt,W ) = ρ(∇Ψ
WdΨ(

∂

∂t
), 2α(1+ | τ(ψt) |2)α−1τ(ψt))

and

g(Zt,W ) = ρ(dΨ(
∂

∂t
), 2α∇Ψ

W [(1+ | τ(ψt) |2)α−1τ(ψt)])

for any W ∈ χ(M). By calculating the divergence of Qt and Zt, it can
be obtained that

div(Qt) = ρ(∇Ψ
ei∇

Ψ
eidΨ(

∂

∂t
)−∇Ψ

∇̄eiei
dΨ(

∂

∂t
), 2α(1+ | τ(ψt) |2)α−1τ(ψt))

+ ρ(∇Ψ
eidΨ(

∂

∂t
), 2α∇Ψ

ei [(1+ | τ(ψt) |2)α−1τ(ψt)]), (3.8)

and

div(Zt) = ρ(dΨ(
∂

∂t
),∇Ψ

ei∇
Ψ
ei [2α(1+ | τ(ψt) |2)α−1τ(ψt)]

−∇Ψ
∇̄eiei

[2α(1+ | τ(ψt) |2)α−1τ(ψt)])

+ ρ(∇Ψ
eidΨ(

∂

∂t
), 2α∇Ψ

ei [(1+ | τ(ψt) |2)α−1τ(ψt)]). (3.9)
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By (3.7), (3.8)and (3.9), we have

d

dt
Eα,2(ψt) |t=0

=

∫
M

∂

∂t
(1+ | τ(ψt) |2)α |t=0 dυg

=

∫
M

(
ρ(RP (dΨ(

∂

∂t
), dΨ(ei))dΨ(ei),

2α(1+ | τ(ψt) |2)α−1τ(ψt)) + div(Qt)− div(Zt)

+ ρ(dΨ(
∂

∂t
),∇Ψ

ei∇
Ψ
ei [2α(1+ | τ(ψt) |2)α−1τ(ψt)]

−∇Ψ
∇̄eiei

[2α(1+ | τ(ψt) |2)α−1τ(ψt)])

)
|t=0 dυg

=

∫
M

(
ρ(dΨ(

∂

∂t
),−∆Ψ[2α(1+ | τ(ψt) |2)α−1τ(ψt)])

+ div(Qt)− div(Zt) + ρ(RP (dΨ(
∂

∂t
), dΨ(ei))dΨ(ei),

2α(1+ | τ(ψt) |2)α−1τ(ψt))

)
|t=0 dυg

=

∫
M
ρ

(
V,−∆ψ[2α(1+ | τ(ψ) |2)α−1τ(ψ)]

−RP (dψ(ei), 2α(1+ | τ(ψt) |2)α−1τ(ψt)))dψ(ei)

)
dυg. (3.10)

By (3.3) and (3.10), it can be seen that

d

dt
Eα,2(ψt) |t=0=

∫
M
ρ(τα,2(ψ), V )dυg. (3.11)

This completes the proof. □

According to the theorem 3.2, the corresponding Euler-Lagrange equa-
tion of α -Sacks-Uhlenbeck Bienergy functional, Eα,2 , is given by

τα,2(ψ) = −∆ψ[2α(1+ | τ(ψ) |2)α−1τ(ψ)]

− tracegR
P (dψ, 2α(1+ | τ(ψ) |2)α−1τ(ψ))dψ = 0 (3.12)

τα,2(ψ) is called the α-Sacks-Uhlenbeck bitension field of ψ. In terms
of the Euler-Lagrange equation, a map ψ is called α-Sacks-Uhlenbeck
biharmonic map if τα,2(ψ) = 0. The map ψ is called non-trivial α-Sacks-
Uhlenbeck biharmonic if ψ is an α-Sacks-Uhlenbeck biharmonic map but
τ(ψ) ̸= 0.
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Theorem 3.3. (the second variation formula of α-Sacks-Uhlenbeck bi-
energy functional) Let ψ : (M, g) −→ (P, ρ) be a critical point of Sacks-
Uhlenbeck bienergy functional for α > 1. Moreover, let {ψt} be an arbi-
trary smooth variation of ψ such that ψ0 = ψ. Then, the second variation
formula of Eα,2(ψt) is given as follows:

d2

dt2
|t=0 Eα,2(ψt)

=

∫
M

2α(1+ | τ(ψ) |2)α−1lψ(V ) + ρ

(
V, Sα,ψ(V )τ2(ψ)

−2α∆(1+ | τ(ψ) |2)α−1Jψ(V )−∆Sα,ψ(V )τ(ψ)

+2∇ψ
grad (Sα,ψ(V ))τ(ψ) + 2∇ψ

2α grad (1+|τ(ψ)|2)α−1J
ψ(V )

−4αRP (dψ(grad (1+ | τ(ψ) |2)α−1), V )τ(ψ)

)
dυg, (3.13)

where V = dψt
dt |t=0, Sα,ψ(V ) := 2α d

dt |t=0 (1+ | τ(ψt) |2)α−1 and lψ(V )
is defined by (2.9).

Proof. According to the notations used in the proof of theorem 3.2 and
considering the equations (3.2) and (3.12), together with the assumption
that ψ is a critical point of Sacks-Uhlenbeck bienergy functional for
α > 1, we have

d2

dt2
Eα,2(ψt)

∣∣∣∣
t=0

= 2α

∫
M

〈
dΨ(

∂

∂t
),∇Ψ

∂
∂t

{
∇Ψ
ek
∇Ψ
ek
[(1+ | τ(ψt) |2)α−1(eidΨ)(ei)]

−∇Ψ
∇̄ekek

[(1+ | τ(ψt) |2)α−1(∇̃eidΨ)(ei)]

−RP (dΨ(ek), (1+ | τ(ψt) |2)α−1(∇̃eidΨ)(ei))dΨ(ek)

}〉∣∣∣∣
t=0

dυg,

(3.14)
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where <,> is the inner product on Ψ−1TP, with respect to g and ρ. By
calculating the right hand side of (3.14) , we obtain:

d2

dt2
Eα,2(ψt)

∣∣∣∣
t=0

=2α

∫
M

〈
dΨ(

∂

∂t
),

(
ek(ek((1+ | τ(ψt) |2)α−1))∇Ψ

∂
∂t

[(∇̃eidΨ)(ei)]

−(∇̄∇̄ekek
(1+ | τ(ψt) |2)α−1)∇Ψ

∂
∂t

[(∇̃eidΨ)(ei)]

)
+2ek(1+ | τ(ψt) |2)α−1∇Ψ

∂
∂t

∇Ψ
ek
[(∇̃eidΨ)(ei)]

+2ek(
∂(1+ | τ(ψt) |2)α−1

∂t
)∇Ψ

ek
[(∇̃eidΨ)(ei)]

+

(
ek(ek(

∂(1+ | τ(ψt) |2)α−1

∂t
))[(∇̃eidΨ)(ei)]

−(∇̄∇̄ekek
(
∂(1+ | τ(ψt) |2)α−1

∂t
))[(∇̃eidΨ)(ei)]

)
+
∂(1+ | τ(ψt) |2)α−1

∂t

(
∇Ψ
ek
∇Ψ
ek
[(∇̃eidΨ)(ei)]

−∇Ψ
∇̄ekek

[(∇̃eidΨ)(ei)]−RP (dΨ(ek), (∇̃eidΨ)(ei))dΨ(ek)

)
+(1+ | τ(ψt) |2)α−1∇Ψ

∂
∂t

(
∇Ψ
ek
∇Ψ
ek
[(∇̃eidΨ)(ei)]−∇Ψ

∇̄ekek
[(∇̃eidΨ)(ei)]

−RP (dΨ(ek), (∇̃eidΨ)(ei))dΨ(ek))

)〉∣∣∣∣
t=0

dυg. (3.15)

Noting that

∇Ψ
∂
∂t

dΨ(ei)−∇Ψ
eidΨ(

∂

∂t
) = dΨ([

∂

∂t
, ei]) = 0. (3.16)

By ( [5], Eq. 23, pp. 214) and (3.16) we have

∇Ψ
∂
∂t

[(∇̃eidΨ)(ei)] |t=0=
∑
i

{
(∇̃ei∇̃eidΨ)(

∂

∂t
)− (∇̃∇̄eiei

dΨ)(
∂

∂t
)

−RP (dΨ(ei), dΨ(
∂

∂t
))dΨ(ei)

}∣∣∣∣
t=0

=Jψ(V ). (3.17)
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Furthermore

ek[(1+ | τ(ψt) |2)α−1]∇Ψ
∂
∂t

∇Ψ
ek
[(∇̃eidΨ)(ei)]

∣∣∣∣
t=0

=ek[(1+ | τ(ψt) |2)α−1]

{
RP (dΨ(

∂

∂t
), dΨ(ek))[(∇̃eidΨ)(ei)]

+∇Ψ
ek
∇Ψ

∂
∂t

[(∇̃eidΨ)(ei)] +∇Ψ
[ ∂
∂t
,ek]

[(∇̃eidΨ)(ei)]

}∣∣∣∣
t=0

=RP (V, dψ(grad ((1+ | τ(ψ) |2)α−1)))τ(ψ)

+∇ψ
grad((1+|τ(ψ)|2)α−1)

Jψ(V ). (3.18)

By (2.9) and (3.17), the latter term of (3.15) can be obtained as follows∫
M
(1+ | τ(ψt) |2)α−1

〈
dψ(

∂

∂t
),∇Ψ

∂
∂t

(
∇Ψ
ek
∇Ψ
ek
[(∇̃eidΨ)(ei)]

−∇Ψ
∇̄ekek

[(∇̃eidΨ)(ei)]

−RP (dΨ(ek), [(∇̃eidΨ)(ei)])dΨ(ek)

)〉∣∣∣∣
t=0

dυg

=

∫
M
(1+ | τ(ψ) |2)α−1lψ(V )dυg. (3.19)

Substituting formulas (3.17)-(3.19) into (3.15), we get (3.13). This com-
pletes the proof of the theorem. □

Definition 3.4. Let ψ : (M, g) −→ (P, ρ) be an α- Sacks-Uhlenbeck
biharmonic map and {ψt} be a smooth variation of ψ such that ψ0 = ψ.
Set

Iψ
α,2

(V, V ) :=
d2

dt2
|t=0 Eα,2(ψt), (3.20)

where V = dψt
dt |t=0. The map ψ is called stable α-Sacks-Uhlenbeck

biharmonic map if Iψ
α,2

(V, V ) ≥ 0, for every variational vector fields V
along ψ.

Remark 3.5. Let Id : (P, ρ) −→ (P, ρ) be an identity map. By (2.9)
and (3.13) and noting that τ(Id) = 0, it can be concluded that Id is
stable α-Sacks-Uhlenbeck biharmonic. In other words, Id is an absolute
minimum of the α-Sacks-Uhlenbeck bienergy functional.

Theorem 3.6. Let ψ : (M, g) −→ (P, ρ) be a non-trivial α-Sacks-
Uhlenbeck biharmonic map satisfying (2.3), and let (P, ρ) be a Riemann-
ian manifold with a constant positive sectional curvature K. Assume
that ψ is biharmonic. Then, ψ is unstable α-Sacks-Uhlenbeck bihar-
monic map.
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Proof. By (2.9) and (3.13), and considering that P is a constant sectional
curvature manifold, i.e., ∇PRP = 0, it can be obtained that

d2

dt2

∣∣∣∣
t=0

Eα,2(ψt)

=2α

∫
M
(1+ | τ(ψ) |2)α−1

∣∣∣∣−∆ψV − tracegR
P (dψ, V )dψ

∣∣∣∣2dυg
−2α

∫
M
(1+ | τ(ψ) |2)α−1

(
ρ(V,RP (τ(ψ), V )τ(ψ))

+2 traceg R
P (dψ, V )∇ψτ(ψ) + 2 traceg R

P (dψ, τ(ψ))∇ψV

)
dυg

+

∫
M
ρ

(
V, Sα,ψ(V )τ2(ψ)− 2α∆(1+ | τ(ψ) |2)α−1Jψ(V )−∆Sα,ψ(V )τ(ψ)

+2∇ψ
grad (Sα,ψ(V ))τ(ψ) + 4α∇grad [(1+|τ(ψ)|2)α−1]J

ψ(V )

−4αRP (dψ(grad (1+ | τ(ψ) |2)α−1), V )τ(ψ)

)
dυg. (3.21)

According to the definition of Sα,ψ(V ), and considering the following
equation

RP (dΨ(
∂

∂t
), dΨ(ei))dΨ(ei)

= ∇Ψ
∂
∂t

∇Ψ
eidΨ(ei)−∇Ψ

ei∇
Ψ
∂
∂t

dΨ(ei)−∇Ψ
[ ∂
∂t
,ei]
dΨ(ei) (3.22)

we get

Sα,ψ(V )

= 2α
d

dt
|t=0 (1+ | τ(ψt) |2)α−1

= 4α(α− 1)(1+ | τ(ψ) |2)α−2ρ(Jψ(V ), τ(ψ)). (3.23)

Setting V = τ(ψ) in (3.23) together with the assumption that ψ is
biharmonic, i.e., τ2(ψ) = −Jψ(τ(ψ)) = 0, it can be obtained that

Sα,ψ(τ(ψ)) = 0. (3.24)

Furthermore, by (2.3) we get

ρ(dψ(ei),∇ψ
eiτ(ψ)) = − | τ(ψ) |2 . (3.25)
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According to the assumption, τ2(ψ) = 0, and using (2.3) and (3.24)-
(3.25), the right hand side of (3.21) can be rewritten as follows:

Iψ
α,2

(τ(ψ), τ(ψ)) =

∫
M
ρ(τ(ψ), 4traceg R

P (dψ, τ(ψ))∇ψτ(ψ))dυg

= 4K

∫
M

{
ρ(dψ(ei),∇ψ

eiτ(ψ))ρ(τ(ψ), τ(ψ))

− ρ(dψ(ek), τ(ψ))ρ(τ(ψ),∇ψ
ek
τ(ψ))

}
dυg

= −4K

∫
M

| τ(ψ) |4 dυg ≤ 0. (3.26)

By (3.26), It follows that

Iψ
α,2

(τ(ψ), τ(ψ)) = 0 ⇐⇒ τ(ψ) = 0. (3.27)

Due to the fact that ψ is a non-trivial α-Sacks-Uhlenbeck biharmonic
map and using (3.26)- (3.27), it can be concluded that

Iψ
α,2

(τ(ψ), τ(ψ)) < 0.

Thus, the map ψ is unstable α-Sacks-Uhlenbeck biharmonic map. This
completes the proof. □

By theorem 3.3 and formula (3.23), we get

Corollary 3.7. Let ψ : (M, g) −→ (P, ρ) be an α-Sacks-Uhlenbeck bi-
harmonic map. Moreover, let ψ is the strongly stable biharmonic map
satisfying

grad (1+ | τ(ψ) |2)α−1 = grad (ρ(Jψ(V ), τ(ψ))) = 0, (3.28)

for any variational vector field V along ψ. Then, ψ is stable α-Sacks-
Uhlenbeck biharmonic map.
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