| تعداد نشریات | 31 |
| تعداد شمارهها | 519 |
| تعداد مقالات | 5,034 |
| تعداد مشاهده مقاله | 7,662,380 |
| تعداد دریافت فایل اصل مقاله | 5,707,130 |
$k$-distance enclaveless number of a graph | ||
| Caspian Journal of Mathematical Sciences | ||
| دوره 11، شماره 1، 2022، صفحه 345-357 اصل مقاله (118.72 K) | ||
| نوع مقاله: Research Articles | ||
| شناسه دیجیتال (DOI): 10.22080/cjms.2020.18967.1523 | ||
| نویسندگان | ||
| Doost Ali Mojdeh* 1؛ Iman Masoumi2 | ||
| 1Department of Mathematics, Faculty of Mathematical Sciences, University of Mazandaran, Babolsar, Iran | ||
| 2Department of Mathematics, Tafresh University, Tafresh, Iran | ||
| تاریخ دریافت: 14 خرداد 1399، تاریخ پذیرش: 12 مرداد 1399 | ||
| چکیده | ||
| For an integer $k\geq1$, a $k$-distance enclaveless number (or $k$-distance $B$-differential) of a connected graph $G=(V,E)$ is $\Psi^k(G)=max\{|(V-X)\cap N_{k,G}(X)|:X\subseteq V\}$. In this paper, we establish upper bounds on the $k$-distance enclaveless number of a graph in terms of its diameter, radius and girth. Also, we prove that for connected graphs $G$ and $H$ with orders $n$ and $m$ respectively, $\Psi^k(G\times H)\leq mn-n-m+\Psi^k(G)+\Psi^k(H)+1$, where $G\times H$ denotes the direct product of $G$ and $H$. In the end of this paper, we show that the $k$-distance enclaveless number $\Psi^k(T)$ of a tree $T$ on $n\geq k+1$ vertices and with $n_1$ leaves satisfies inequality $\Psi^k(T)\leq\frac{k(2n-2+n_1)}{2k+1}$ and we characterize the extremal trees. | ||
| کلیدواژهها | ||
| $k$-distance enclaveless number؛ diameter؛ radius؛ girth؛ direct product | ||
|
آمار تعداد مشاهده مقاله: 262 تعداد دریافت فایل اصل مقاله: 237 |
||