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ABSTRACT. The inverse connective eccentricity index of a
connected graph G is defined as ¢.'(G) = Zg((z)), where
ueV(G)

ec(u) and dg(u) are the eccentricity and degree of a vertex u in G,
respectively. In this paper, we obtain an upper bounds for inverse
connective eccentricity indices for various classes of graphs such as

generalized hierarchical product graph and F-sum of graphs.
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1. INTRODUCTION

All graphs considered in this paper are simple and connected. Let Ng(v)
be the set of all neighbors of a vertex v in a graph G. The degree dg(v)
of a vertex v in G is the cardinality of the set Ng(v). A vertex with
degree one is called a pendent vertex. The eccentricity of a vertex wu,
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denoted by eg(u), is the largest distance from u to any other vertex v
of G.

A topological index Top(G) of G is a real number with the property
that for every graph H isomorphic to G, Top(H) = Top(G). In organic
Chemistry, topological indices have been found to be useful in chemical
documentation, isomer discrimination, structure-property relationships,
structure-activity relationships and pharmaceutical drug design. Wiener
index is the first distance-based topological index which was introduced
by Wiener [?] in 1947. Wiener used his index for the calculation of
boiling points of alkanes. The Wiener index of a graph G is denoted by
W (G) and defined as the sum of distances between all pairs of vertices

in graph G, that is, W(G) = > dg(u,v).
{uv}CV(G)
In recent years, Some indices have been derived related to eccentricity

such as eccentric connectivity index,eccentric distance sum, adjacent
distance sum, total eccentricity index. The eccentric connectivity index
was successfully used for mathematical models of biological activities
of diverse nature [?, 7, ?]. It has been shown to give a high degree of
predictability of pharmaceutical properties, and provide leads for the
development of safe and potent anti-HIV compounds [?]. Eccentric
connectivity index is also proposed as a measure of branching in alkanes
[?].

Gupta et al. [?] introduced a novel topological descriptor which
is called eccentric-distance sum index. This index offers a wvast
potential for structure-activity /property relationships; it also displays
high discriminating power with respect to both biological activity and
physical properties [?]. From [?], we also know that some structure-
activity and quantitative structure-property studies using eccentric-
distance sum were better than the corresponding values obtained using
the Wiener index. More recently, the mathematical properties of
eccentric-distance sum have been investigated. Yu et al. [?] computed
the EDS of trees and unicyclic graphs. Hua et al. [?] obtained the sharp
lower bound on EDS of n-vertex cacti. Hua et al. [?] studied the graphs
with graph parameters having the minimum EDS. Ili¢ et al. [?] studied
the various lower and upper bounds for the EDS in terms of the other
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graph invariant. Li et al. [?] determined the trees with the third and
fourth minimal EDS among the n-vertex trees.

Motivated above indices Malik [?] proposed another topological
descriptors related to eccentricity. The inverse connective eccentricity

index of G is denoted by &1(G), is defined as £.1(G) = 3 £
ueV(G)
Inverse degree index of G is defined as ID(G) = >, #(u). For
ueV(G)

notions not defined here we refer the reader to [?]. The inverse degree

first attracted attention through numerous conjectures generated by the
computer programme Graffiti[?].

A number of topological indices based on vertex eccentricity are
already subject to various studies. The total eccentricity index of G

is defined as ((G) = >, eg(u). Similar to this index, Dankelmann
ueV(G)
et. al. [?] and Tang et al. [?] studied average eccentricity of graphs.

Fathalikhani et al. in [?], studied total eccentricity of some graph
operations. In this paper, we obtain an upper bounds for inverse
connective eccentricity indices for various classes of graphs such as
generalized hierarchical product graph and F-sum graphs.

2. GENERALIZED HIERARCHICAL PRODUCT OF GRAPHS

A graph G with a specified vertex subset U C V(G) is denoted by
G(U). Barriere et al. [?, ?] defined a new product of graphs, namely,
the generalized hierarchical product, as follows: Let G and H be two
graphs with a nonempty vertex subset U C V(G). Then the generalized
hierarchical product, denoted by G(U) M H, is the graph with vertex
set V(G) x V(H) and two vertices (g, h) and (¢',h') are adjacent if
and only if g = ¢’ € U and hh' € E(H) or, g¢ € E(G) and h = h'.
The Cartesian product, GOH of graphs G and H has the vertex set
V(GOH) = V(G) x V(H) and (u,z)(v,y) is an edge of GOH if u = v
and zy € E(H) or, uwv € E(G) and = = y.

To each vertex u € V(G), there is an isomorphic copy of H in
GUH and to each vertex v € V(H), there is an isomorphic copy of
G in GOH. But in the generalized hierarchical product, to each vertex
u € U, there is an isomorphic copy of H and to each vertex v € V(H),
there is an isomorphic copy of G. In particular, if U = V(G). then
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GUOH = G(U) N H. The generalized hierarchical product and Cartesian
product of P5 and P, are shown in Figure 1.
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A path between the vertices u,v € V(G) through U C V(G) is a
uv-path in G containing some vertex z € U (vertex = could be the
vertex u or v). The distance between u and v through U is the length
of the shortest path between u and v through U and is denoted by
day(u,v). If u € U then we have, gy (u) = maz,ev (@ daw)(u,v)
wd &GO = ¥ I
From the structure Zof a graph G(U) M H, we have the following Lemma.

Lemma 2.1.. Let G and H be two connected graphs and U C V(G).
Then eqnu((u,v)) = equ)(u) + €m(v).

Q=

Lemma 2.2.. [?] Let a and b be real number. Then —— < %(

1
atb — + E)

with equality if and only if a = b.

Theorem 2.3.. Let G and H be two connected graphs and U C
V(G). Then &MG(WU) N H) < [V(H)|EHGW) + PPG0)) +
ID(G(U)C(H) + e (H).

Proof: By the definition of inverse connective eccentricity index

&G NH) = ii%w uuvm

d (u,v
i=1 j=1 GU) (i, vj)

~—

m

(X x 3

u, €U j=1 w,eV(G)|U j=1

- Z i GG(U) () + €11 () + Z Z o uz +6H(U]) , by Lemma 77

wel j=1 ui) + drr(v)) weV(G)|U =1
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By Lemma ?7, we have @)

if and only if dg(u;) = dH(vj). Hence

273

1 1 1 ; .
G () +dm (v;) <3 <dG(ui) + dH(Uj)> with equality

1 1
SGU)NH) < = (ecr(ui) + €x(v; +
6G(U) u;) + €q(vj)
+ Z )
w; €V (G
eqw)(ui) 1 — cqanlui) 1 " enr(v))
iy S 15 S 15
uleU] 1 dG ul 4uZer=1 dH ]) 4uiEUj:1 dG(uz)
vj) - Cew) () e (v;)
DY Z + > aoty t > dote
uZEU] 1 J) weV(Q)|U j=1 de(ui) w V(@)U j=1 de(us)
From the definition of inverse degree, we obtain
_ €GU uz
EHGOINH) < V)| Y S5 JID(H) Y e ()
u; €U u, €U
1 1 & 1, = en(v))
+ - er(vi) + = |U]
4 = de(u;) jzz:l J 4 | ; du(vj)
eqv)(wi) 1 &
+ |V(H + er(v
Uq Uj J=
[V(H)| ~ €cw)(wi) ID(H) 1 1
= C(GWU))+ - C(H
T2 oty T4 SOUOD T 2, Gt
U, caw)(ui) 1
+ ¢ (H)+|\V(H +C(H
OGRS os SN oy
w; €V (G)|U w €V(Q)|U
By the definition of inverse connective eccentricity index, we have
ID(H) |U|

S (GU)NH) < [V(H)|£HGU)) + = —C(G(U) + ID(GU)S(H) + =85 (H).

By setting U = V(@) in Theorem ?7 , we obtain the upper bound for
inverse connective eccentricity index of Cartesian product of two graphs

G and H.

Corollary 2.4.. Let G and H be a connected graph. Then ¢ H(GOH) <

V()| €1G) + PE (@) + ID(G)¢(H) + VOl 1 (),
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Example 2.5.. The TCy(m,n) mnanotorns is a graph which is
isomorphic to a Cartesian product of two cycles. Hence by Corollary
7?7, we obtain

5mn(2m+n—3) .
—g — if n,m are odd,
1o < w if n is odd m is even,
Soo (TCsm,m)) < Smn(mtn—1) if n is even m is odd
16 ’
5mn(m+n) .
—6 — if n,m are even.

3. F-SUM OF GRAPHS

Let G be a connected graph. Then

(i) The subdivision graph of a graph G, denoted by S(G), is obtained
from G by replacing each edge of G by a path of length two.

(73) The triangle parallel graph of a graph G is denoted by R(G) and
is obtained from G by replacing each edge of G by a triangle.

(7i7) The line superposition graph Q(G) of a graph G is obtained from
G by inserting a new vertex into each edge of G and then joining with
edges each pair of new vertices on adjacent edges of G.

(iv) The total graph T(G) of a graph G has its vertices as the edges
and vertices of G and adjacency in T'(G) is defined by the adjacency or
incidence of the corresponding elements of G, see Figure 2.

(0,-4.688906)(5.9,4.668906) [linewidth=0.04,dimen=outer](2.67,3.1489062)(1.86,1.46) [linewidth=0.04,dimer
Let F' be one of the subdivision operations S, R,Q or T. For two

connected graphs G and H, the F'—sum, denoted by G+ H, is the graph

with vertex set (V(G)U E(G)) x V(H), and any two vertices (u,v) and

(u',v") of G+ H are adjacent if and only [u =u € V(G) and (v,0) €

E(H)} or [v =2 € V(H) and (u,u) € E(F(G))] The graph P3+r P»

are shown in Figure 3.
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The concept of F'—sum graph was first introduced by Eliasi and Taeri
[?] and the Weiner indices of the resulting graphs were studied therein.
Li and Wang [?] derived explicit expression of the PI indices of four sums
of two graphs. The hyper and reverse Weiner indices of F sum graphs
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were studied by Metsidik et al. [?]. Eskender and Vumar [?] determined
the eccentric connectivity index of F'—sum graphs in terms of some
invariants of the factors. In this sequence, now find the upper bounds
for inverse connective eccentricity index of G +r H, whereF = S, R, Q)
and 7.

Lemma 3.1.. [?] Let G and H be two connected graphs. Then
(1) C(S(G)(U)) = 2¢(G) + C(L(G)) + [E(G)],
(i) ((R(G)(U)

(U)) = C(G) + C((L(G)) + [E(G)],
(iit) ((Q(G)(U)) = C(G) + ((L(G)) + V(G)| + | E(G)],
(i) ((T(G)(U)) = ¢(G) + C((L(G)) + [E(G)] -

Theorem 3.2.. Let G and H be two connected graphs. Then £.1(G +g
H) < 2|V (H)|&1(G) + “ED (v ()| + 1D(H)) + B2 |v (1) +
ID(H)) + 28 ¢(G) + ID(S(G)(U))¢(H) + MEHEOLe 1 (g

Proof: Let U be a subset of V(S(G)). From the structure of S(G), the
number of vertices and edge of S(G) are |V(G)| + |E(G)| and 2 |E(G)],
respectively. Further, for each vertex v € U, €g(q) 1) (v) = 2¢6(v) and for
each vertex v € V(S(Q))|U, egayw)(v) = 2e1(c)(v) +1, where L(G) is a
line graph of GG. Hence by the definition of inverse connective eccentricity

index, we have

L) = Y M
vev(S(G)U)) SEWU)
-y seo) s@w) )

= dsew)(v) eV (SENY ds(a)w)(v)

B 2ec(v) es(a) ) (v)
= 2 da(v) P 2
vel veV (S(G))|U
(@)

(
Z (2er(c)(v) +1)
(L(G))

ev
veV

= 2(0) +

G

= 26 (0) + (e + P,

Combining this result with result of ¢~1(G(U)MH) and by use of Lemma
77, we obtain
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(€ +s
H) < 2|V (H)| 16 + S (v ()| + 1D(H) ) + 2 2 v (1) +
ID(H)) + P ¢(G) + ID(S(G)U))6(H) + HOECL L ().
Example 3.3.. The Zig-Zag polyhex nanotube (Figure 4) is the graph
S(Cn)(U) M Pa, where U =V (C,) C V(S(Cy)). Hence by Theorem 77,
we obtain the following

8n3+3£2+7n zfn Odd,

if n is even.

E(S(CU) N Py)) < {

11n24+18n
4

(0,-1.6389062)(8.635938,1.6189063) [linewidth=0.04,dimen=outer](3.6940625,0.7189062)(3.52,0.84) [linewid:

Theorem 3.4.. Let G and H be two connected graphs. Then £.'(G+r
1) < V()] (1) + H(LE) + [BE)]) + 2D (¢(r(@)) +
C(L(@) + [BG)| ) + IDRG)W))G(H) + e (1),

Proof: Let U be a subset of V(R(G)). From the structure of R(G),
we get [V(R(G)| = [V(G)| + |E(G)| and [E(R(G))| = 3|E(G)].
Further, for each vertex v € U, eg(q)w)(v) = €c(v) and for each vertex
v € V(R(G))|U, erayw)(v) = e (@) (v) + 1, where L(G) is a line graph
of G. Thus by the definition of inverse connective eccentricity index, we

obtain
1 B er(e) () (v)
CLROU) = ) drican(0)
veV(R(@)) T RG)U)
_ ZER(G)(U)(U) N Z er(e) () (v)
dricy)(v) dr(cy)(v)
vel veV (R(G))|U

B ea(v) €r(c) ) (V)
=2 de(v) > 2

velU veV(R(G))|U
_ 1
= gce1 (G) + 5 Z (2€L(G) (U) + 1)
veV(L(Q))
_ 1
= & (G) + S (CL(G) + | B@))).
Combining this result with result of ¢~1(G(U)MH) and by use of Lemma
77, we obtain
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&MG +r H) < VD (&1G) + (L) + [B@G)]) +
12D (¢(G) + C(L(G) + | B(G)] ) + ID(R(G)U)C(H) + ek ().

Theorem 3.5.. Let G and H be two connected graphs.  Then
&M G+ H) < |V(H >|(sc;< )+ ID(G) + % (&1 (L(G) + ID(L(G)) +

(L@ +IB@G)])) ) + 2 (¢(6) + V(G +C(L(G) + @) ) +
ID(Q(G)(U))¢(H) + "sce< H).

Proof: Let U be a subset of V(Q(G)). From the structure of Q(G),
the number of vertices and edge of Q(G) are |V(G)| + |E(G)| and
2|E(G)| + |E(L(G))|, respectively. Further, for each vertex v €
U, eoayw)(v) = eg(v) + 1 and for each vertex v € V(Q(G))|U,
e (v) = er@)(v) + 1, where L(G) is a line graph of G. Hence
by the definition of inverse connective eccentricity index, we have

Q) w)(v)

= QG =
QO I reey

€ v € v
3 dQ(G)(U)( ) | > dQ(G)(U)( )
vt oo ew s o))

1 € o+ 1
_ Z ca(v) +1 T dL(G)() 5
da(v) eV (L(@) L@ (v) +

1
dra)(

By Lemma ?7?, we have dL(G)l( = < %( o+ %) with equality if and

only if dr,)(v) = 2. Hence

&HQG)U)) < ZGG(U)+Z;G<U>+1( Z 6L(G)(v)jl+ 3 6L<G><2>+1)

vell VeV (L(G)) drc)(v) veV (L(Q))

< GO +ID(E) + (€M@ + IDLEO) + 5 (@) + |B(@)])).

Combining this result with result of ¢ ~}(G(U)MH) and by use of Lemma

7?7, we obtain
& (G+oH) < |V(H) (sce (G)+ID(G)+] (6 (L(G)+ID(L(G)) +

L@@ +1E@)))) + 2 (@) + V(@) + LG + | B@)] ) +
ID(Q(G)(U))¢(H) + Gle M (H).
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Theorem 3.6.. Let G and H be two connected graphs. Then £1(G +r
H) < V(H)] (26:(G) + 3 (62 (L(G)) + ID(L(G)) + LD 4 1AL

12D (¢(G) + C(L(G) + | B(@)] ) + ID(T(G)U)C(H) + e ().

Proof: Let U be a subset of V(T'(G)). From the structure of T'(G),
the number of vertices and edge of T(G) are |V(G)| + |E(G)| and
3|E(G)| + |E(L(Q))|, respectively. Further, for each vertex v € U,
er@)w)(v) = eg(v) and for each vertex v € V(T'(QG))|U, erqyw)(v) =
er(@)(v) + 1, where L(G) is a line graph of G. Thus by the definition of
inverse connective eccentricity index, we get

GHrew) = Y. er(c)w) (V)

VeV (T(G)) dT(G) (v)

_ €T<G>(U er@) ) (v)
RGN T

el L Eew oW

3 L@ t1
veV(L(Q)) i) +2

By Lemma 7?7, we have m < %(W + %) with equality if

and only if d(g)(v) = 2. Therefore

glrew) < e +( 3 eiiG(g}))() + )
vEL(G)
= 25&1(G)+i(ic_el(L(G))JrID(L(G))JFC(L;G)) n \E(QG)\)_

Combining this result with result of £~1(G(U) M H) and by the use of
Lemma 7?7, we obtain

NG e H) < V)| (261G +
L (&ME(G) + ID(L(@)) + SHL + EQL) 1 P (¢(G) +((L(@)) +
E(G)] ) + ID(T(G)W))C(H) + e ().
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