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ABSTRACT. In this paper, the class of strongly PI-lifting modules
is introduced and investigated. The connections between strongly
PI-lifting modules and the generalizations of lifting modules are pre-
sented. We provide that the class of strongly PI-lifting modules is
contained in the class of PI-lifting modules. Moreover, it is proved
that for an Abelian ring R, R is PI-lifting as a right R-module if and
only if R/I has a projective cover for every right ideal I of R. The
structural properties of strongly PI-lifting modules are determined,
and examples are provided to exhibit our results.

Keywords: m-extending module, lifting module, projection in-
variant submodule.

2000 Mathematics subject classification: 16D10, 16D80; Secondary
16D99.

1. INTRODUCTION

IIn this paper, all rings are associative with unity and modules are uni-
tal right modules. R and M will denote a ring and such an R-module,
respectively. Recall that a module M is extending (or said to have C
condition) [8], if every submodule of M is essential in a direct summand
of M. Recall from [5] that a submodule K of M is called fully (projec-
tion) invariant in M, if f(K) C K for all (idempotent) endomorphisms
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of M. Observe that every fully invariant submodule is projection invari-
ant, not vice versa. A module M is called Fl-extending (w-extending)
[2], [3] if every fully (projection) invariant submodule of M is essential
in a direct summand of M. The notion of FI-extending (m-extending)
generalizes the concept of an extending module by asking that only every
fully (projection) invariant submodule is essential in a direct summand
rather than every submodule.

Recall from [8] that a submodule A of a module M is called small in
M, if A+ B # M for any proper submodule B of M. Note that A is a
coessential submodule of B in M, if B/A is small in M/A. A submodule
A of M is said to be coclosed if A has no proper coessential submodules
in M. A module K is called hollow if every proper submodule of K is
small. The extending condition dualizes in [8, p.57] as a lifting module
condition in which for each submodule Y of M, there exists a direct
summand X of M such that X <Y and Y/X is small in M/X.

In literature, the lifting property has been studied in several module
notions: (1) M is called FI-lifting (PI-lifting) [7], [1] if for each fully
(projection) invariant submodule Y of M, there exists a direct summand
X of M such that X <Y and Y/X is small in M/X. (2) M is called
strongly FI-lifting [9] if for each fully invariant submodule Y of M, there
exists a fully invariant direct summand X of M such that X <Y and
Y/X is small in M/X. Note that both FI-lifting and PI-lifting modules
are generalizations of lifting modules. It is mentioned in [9] that the
class of strongly FI-lifting modules is a subclass of the class of FI-lifting
modules. However, strongly FI-lifting modules and lifting modules are
incomparable [9].

In this paper, we introduce and investigate the dual counterpart of
the concept of a strongly m-extending module defined in [6]. We call a
module Mg, strongly Pl-lifting, for all projection invariant submodule
Y of M, there exists a fully invariant direct summand X of M such
that X <Y and Y/X is small in M/X. We determine the connections
between strongly PI-lifting modules and FI-lifting (PI-lifting) modules.
To this end, for any module we have the following implications:

strongly PI-lifting = strongly FI-lifting

4 4
PI-lifting = FI-lifting

Observe that non of above implications are reversible (see, Proposition
3.2). Moreover, we are able to get some characterizations of PI-lifting
modules and we obtain module theoretic properties of strongly Pl-lifting
modules. Furthermore it is shown by examples that lifting modules and
strongly PI-lifting modules have different module theoretic notions.
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For a right R-module M and P C M, P < M, P <% M, P < M,
P <, M and Rad(P) mean that P is a submodule of M, P is a direct
summand of M, P is a small submodule of M, P is a projection invariant
right R-submodule of M, and the Jacobson radical of P, respectively.
For further terminology and notation, we refer to [4, 8].

2. BAsic RESULTS

In this section, we give some characterizations of PI-lifting modules.
The next two results are used implicitly throughout this paper.

Lemma 2.1. (][5, Exercise 4], [1, Proposition 3.1]) Let M be a module.
Then

(1) Let {X; : i € I} be the family of projection invariant submodules
of M. Then (Ve Xi <p M and Y, X; <, M.

(1) Let X and Y be submodules of M such that X <Y < M. If
X<, Y and Y <, M, then X <, M.

11) Let M = &P.., M; and N <, M. Then N =&..,(N NM;) such
i€l —p el
that N N M; <, M; for all i € I.

Lemma 2.2. ([1, Lemma 4.2]) M is PI-lifting if and only if for each pro-
jection invariant submodule A of M, there is a decomposition
A=X®Y where X <® M and Y < M.

Proposition 2.3. Assume M is PI-lifting and Y <, M. IfY is coclosed
i M, then Y is Pl-lifting.

Proof. Suppose M is PI-lifting and Y <, M. Let X <, Y. Then X <, M
by Lemma 2.1. Thus there exists K <%® M such that K C X and
X/K < M/K. SinceY 4, M, Y = (YNK)®(YNK') by Lemma 2.1,
where M = K @ K’ for some K’ < M. Notice that Y = K @ (Y N K’),
so K is a direct summand of Y. Since Y is coclosed in M and X/K <
M/K, [4, 3.9 Lemma]| yields that X/K < Y/K. Therefore Y is PI-
lifting. 0

Proposition 2.4. M is Pl-lifting if and only if every projection invari-
ant submodule of M has a supplement which is a direct summand of
M.

Proof. Assume M is PI-lifting and A <, M. Then there exists K <% M
such that A = K @& S and § < M by Lemma 2.2. It follows that
A=K®(ANK')and ANK' < M where M = K® K’ for some K’ < M.
Therefore M = A+ K’ and K’ is a direct summand supplement of A
in M. Conversely, let N <, M and K be a supplement of N which is a
direct summand of M. Thus M = N + K and N N K <« K. Note that
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M = K@ K' for some K’ < M. Since N<,M, N = (NNK)&(NNK')
by Lemma 2.1. Observe that N N K < M. By modular law, it can be
seen that N N K’ <® M. Therefore M is PI-lifting by Lemma 2.2. [

Proposition 2.5. Suppose M = M@ My for some My, My < M. Then
My is PI-lifting if and only if for each N <), My, there exists K <% M
such that K C My, M =K+ N and NN K < M.

Proof. Assume that M is PI-lifting and 7" <, M. Then there exists
A <% M, such that A C T, and T/A < Ms/A. Tt follows that T =
A@ (TNA)and TNA <« A where My = A@ A’ for some A" < M.
Thus TNA" < M and hence T+ A" = A®(TNA")+ A" = M. Conversely,
assume X <, M. Thereby, there exists @ <% M such that Q C Mo,
M =Q+ X and X NQ <« M. Notice that My = My N (Q + X) =
Q+ (MynX)=0@Q+ X, and hence X N Q < Ms which yields that Q
is a direct summand supplement of X in Ms. Thus M, is PI-lifting by
Proposition 2.4. U

Following the idea in [9, 2.12 Theorem|, we characterize projective
PI-lifting modules in terms of projective covers.

Theorem 2.6. Let P be a projective module. Then P is PI-lifting if and
only if P/N has a projective cover for all projection invariant submodule
N of M.

Proof. Let P be a projective PI-lifting module, and N <, P. Then
N =X & S where X <% P and S < P by Lemma 2.2. Hence P =
X @ K for some K < P. Note that (X +5)/X <« P/X, as S <« P.
Thus g : P/X — (X 4+ 5)/X = P/N is a projective cover of P/N.
Conversely, assume that P/N has a projective cover for all projection
invariant submodule N of M. Let f: @ — P/N be a projective cover
of P/N. Then there exists a : P — @ such that fo = 7 where 7: P —
P/N is the canonical map. It can be seen that « is an epimorphism.
Since @ is a projective module, there exists 8 : Q — P such that a8 = ig
where ig : @ — @ is the identity map. Hence P = kera & 5(Q)) where
B(Q) <% P. Observe from Lemma 2.1 that N = (NNkera)®(NNB(Q)).
Hence N = kera ® (N N B(Q)), as fa = w. Notice that N N 5(Q) =
B(kerf) and kerf < Q. Consequently B(kerf) < B(Q), so NNB(Q) <
P. Therefore P is Pl-lifting by Lemma 2.2. U

Recall that R is an Abelian ring if every idempotent of R is central.

Corollary 2.7. Let R be an Abelian ring. Then Rp is Pl-lifting if and
only if R/I has a projective cover for every right ideal I of R.

Proof. Suppose R is Abelian and [ is a right ideal of R. Then el = Ie C
I for all €2 = e € R. Hence Iy is a projection invariant right ideal of R.
Therefore Theorem 2.6 yields the result. (]
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3. STRONGLY PI-LIFTING MODULES

In this section, we deal with the class of strongly PI-lifting modules,
and we come by some structural properties for the former class of mod-
ules.

Proposition 3.1. The following conditions are equivalent:

(i) M s strongly PI-lifting.

(ii) For each projection invariant submodule Y of M, Y = A& T
where A is a fully invariant direct summand of M and T < M.

(ii7) Every projection invariant submodule of M has a supplement Q
which is a direct summand of M such that M = Q &V for some fully
invariant submodule V of M.

Proof. (i) < (ii) Let M be strongly PI-lifting and Y <, M. Thus there
exists a fully invariant direct summand A of M such that A <Y and
Y/A <« M/A. Hence M = A® A’ for some A" < M. Since Y <, M,
Y=(YnA)a(lYnAd)=Aa (Y NA) by Lemma 2.1. Note that
YNA <« A’ as Y/A < M/A. Therefore Y N A" < M. Conversely,
assume X <, M. Then X = A@® T where A is a fully invariant direct
summand of M and T < M. Hence M = A® A’ for some A’ < M.
Thus A’ is a supplement of A. Since T'< M, A’ is a supplement of X.
Therefore A'NX < A, so X/A < M/A.

(i) < (ii7) This part follows the similar arguments in Proposition
2.4. O

Proposition 3.2. Consider the following conditions:

(1) M is strongly PI-lifting.

(1) M s strongly FI-lifting.

(7it) M is PI-lifting.

(iv) M is FI-lifting.

Then (i) = (i1) = (iv) and (i) = (i#i1) = (i), but these implications
are not reversible.

Proof. All implications hold by the definitions. The following examples
show that the aforementioned implications are not reversible.

(iii) # (i) and (iv) # (ii) Take My = (Z/pZ) © (Z/p3Z) for any
prime p. Note that Z/pZ and Z/p37Z are hollow modules, so Mz is PI-
lifting by [1, Corollary 4.4]. Thus My is FI-lifting. However, My is not
strongly FI-lifting by [9, Remarks 3.8(1)]. Therefore My is not strongly
PI-lifting.

(tv) # (i1i) and (i7) # (i) Suppose R is a simple domain that is not a
division ring. Then the only fully invariant right ideals of R are the triv-
ial ones, so Ry is FI-lifting by [1, p.809]. Note that Rad(Rgr) = 0, so Rr
is strongly FI-lifting by [9, 3.3 Proposition]. Since R is indecomposable,
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every right ideal of R is projection invariant. However Rad(Rp) = 0, so
Rp is not PI-lifting. Moreover Rp is not strongly PI-lifting by Proposi-
tion 3.3. (]

Proposition 3.3. Suppose Rad(Mpr) = 0. Then M is strongly Pl-lifting
if and only if M is Pl-lifting.

Proof. Assume that M is PI-lifting, and let N I, M. Thus N = X @Y,
where X <% M and Y < M by Lemma 2.2. Since Rad(Mpg) = 0,
Y = 0. Thus N = X <% M, so M is strongly PI-lifting. For the
converse, Proposition 3.2 proceeds the result. (]

Theorem 3.4. Assume M = My & My is strongly Pl-lifting for some
My, My < M. If My <9, M, then My and Mo are strongly PI-lifting.

Proof. Suppose M = M @ M is strongly PI-lifting and M; <, M. Take
X <, My. Thus X <, M by Lemma 2.1. Hence there exists a fully
invariant direct summand B of M such that X = B® S, where S < M
by Proposition 3.1. Therefore M = B® B’ for some B’ < M. Note that
M, = B® (B'N M) so B <% M;. Moreover S < Mj, and hence M is
strongly PI-lifting by Proposition 3.1.

Now, let Y <, Ms. Since M; <, M, M; &Y <, M by [3, Lemma
4.13]. Hence there exists a fully invariant direct summand A of M such
that M1 @Y = A ® T where T' < M by Proposition 3.1. It follows
from Lemma 2.1. that A = (AN M) ® (AN M), where AN M; <, M;
for i = 1,2. Hence AN My <% M,. Consider the projection map
m: M — M. Since M1 @Y = A® T, we obtain Y = w(A) + «(T).
Furthermore, n(T) < n(M) = My, as T < M. It follows that My is
strongly PI-lifting by Proposition 3.1. U

Corollary 3.5. Any projection invariant coclosed submodule of a strongly
PI-lifting module is strongly PI-lifting.

Proof. Suppose M is a strongly PI-lifting module and L <, M such that
L is coclosed in M. Then there exists a fully invariant direct summand
X of M such that X C L and L/X < M/X. Since L is coclosed in M,
L = X, so L is a direct summand of M. Thus Theorem 3.4 yields the
result. O

Corollary 3.6. Let M be a strongly Pl-lifting module with an Abelian
endomorphism ring. Then every direct summand of M is strongly PI-
lifting.

Proof. Assume M has the stated property. Since M has an Abelian
endomorphism ring, every direct summand of M is projection invariant.
Hence Theorem 3.4 completes the proof. O
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Proposition 3.7. Let M be strongly PI-lifting and N a supplement
submodule of M such that N <, M. If Mg is self-injective, then N is
strongly PI-lifting.

Proof. Let A<, N. Then A <, M by Lemma 2.1. By Proposition 3.1,
A = K &S where K is a fully invariant direct summand of M and
S < M. Notice that K <® N and S < N. Observe that any map
f: N — N can be lifted to M, as M is self-injective. Therefore K is
a fully invariant in N. Hence N is strongly Pl-lifting by Proposition
3.1. O

Let My = (Z/pZ) ® (Z/p3Z) for any prime p. Observe from the proof
of Proposition 3.2 that My is not strongly PI-lifting, whereas Z/pZ and
7./p*Z are. Thus, in general, strongly PI-lifting property is not closed
under direct sums. In the following result, we give a characterization of
the finite direct sums of strongly PI-lifting module.

Theorem 3.8. Let {M;|1 < i < n} be the family of fully invariant
direct summands of M. Then M = @;"_, M; is strongly PI-lifting if and
only if M; is strongly PI-lifting for each 1 < i <n.

Proof. Assume M = ;" | M; and M; is strongly PI-lifting, where M;
is fully invariant direct summand of M for all 1 <1i < n. Let X <, M.
Then X = @ (X N M;) where X N M; <, M;, for all 1 < i < n, by
Lemma 2.1. Since M; is strongly PI-lifting, there exists a fully invariant
direct summand K; of M; such that X N M; = K; & S; where S; < M;.
Now, consider K = @ | K; and S = @, S;. Then X = K & S where
K is a fully invariant direct summand of M and S < M. Therefore, M
is strongly PI-lifting by Proposition 3.1. The converse is a consequence
of Theorem 3.4. O

The following example explains that strongly PI-lifting modules and
lifting modules are different from each other.

Example 3.9. (i) My = (Z/pZ) @ (Z/p*Z) for any prime p. Hence
Mz is a lifting module, but it is not strongly FI-lifting by [9, Remarks
3.8(5)]. Therefore My is not strongly PI-lifting by Proposition 3.2.

(i) Let R be an incomplete rank one discrete valuation domain with
quotient field K. Consider Mg = K & K. Then My is not lifting by
[4, 23.7 Example]. However, K is lifting by [8, Proposition A.7], Mk is
PI-lifting by [1, Corollary 4.4]. It follows from Proposition 3.3 that My
is strongly PI-lifting.
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