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Abstract. In this paper, we first give an overview of doubly sto-
chastic interval matrices. Then, we present some theories about the
interval linear system whose coefficient matrix is doubly stochastic
interval matrix. Also, we give an outer estimation for the solution
set of these systems.
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1. Introduction

A real nonnegative matrix A is said to be r-doubly stochastic matrix if
each of its row and column sums is r. The set of n×n r-doubly stochastic
matrices is denoted by Γr

n[1]. These matrices have wide applications in
engineering, elevator, robotic problems, etc.

But the elements of a matrix, occurring in practice are usually ob-
tained from experiments, hence they may appear with uncertainties. We
represent the uncertain elements in interval forms. Therefore, we gener-
alize the definition of r-doubly stochastic matrix to interval matrices. A
nonnegative n× n interval matrix A = [A,A] is said to be [α, β]-doubly
stochastic interval matrix ([α, β]-D.S.I matrix) and denoted by A[α,β]
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if A and A are α-doubly stochastic and β-doubly stochastic matrices,
respectively.

A nonnegative interval matrixA is an [α, β]-doubly stochastic interval
matrix if and only if

AJn = JnA = ([α, β])n×n,

where Jn is the n× n matrix whose entries are 1 and ([α, β])n×n is the
n×n interval matrix whose entries are [α, β]. The product of two doubly
stochastic interval matrices is a doubly stochastic interval matrix. The
eigenvalue set of an [α, β]-D.S.I matrix lie in the interval [−β,+β] and
e = (1, 1, · · · , 1)T is a real eigenvector. For more details about interval
doubly stochastic matrices, we refer to [7].

In this paper, we use notations R and Rm×n as the field of real num-
bers and the vector space of m×n real matrices, respectively. We denote
any orthant of Rn by O and the set of all m × n interval matrices by
IRm×n. We assume that the reader is familiar with a basic interval
arithmetic, otherwise see [2].

For the interval matrix A = [A,A], the center matrix denoted by Ac

and the radius matrix denoted by ∆ are defined respectively as

Ac =
1

2
(A+A) , ∆ =

1

2
(A−A).

An n× n interval matrix A = [A,A] is said to be regular if each A ∈ A
is nonsingular. For a regular A we define the inverse interval matrix as
A−1 = [B,B], where

B = min{A−1;A ∈ A};
B = max{A−1;A ∈ A}.

An M−matrix is a square matrix A ∈ IRn×n such that Aik ≤ 0 for
i ̸= k, and Au > 0 for some positive vector u ∈ Rn. M -matrices are
a class of inverse positive matrices, i.e. regular square interval matrices
with nonnegative inverse.

We consider interval linear systems of equations

Ax = b (1.1)

with an interval matrix A and an interval right-hand side vector b.
The system Ax = b is understood as a family of point linear systems
Ax = b with A ∈ A and b ∈ b. For interval systems of equations various
solutions and solution sets can be defined, and the most popular of them
is united solution set

Σ(A,b) = {x ∈ Rn, Ax = b for some A ∈ A, b ∈ b}. (1.2)
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In general, the solution set has a very complicated structure and in
most cases, it suffices to know an estimate of the solution set by simpler
sets i.e. having less constructive complexity. One of the important prob-
lems related to interval matrices is finding an outer estimation for the
solution set [8]. If A is regular, a special case among outer estimations
for the solution set is the enclosure of the solution set, i.e. an interval
vector that contains the solution set Σ(A,b) [5]. The tightest inter-
val vector that contains the solution set Σ(A,b) is said hull of Σ(A,b)
which denoted �Σ(A,b). In recent years, some new direct and iterative
methods for solving systems of interval and parametric linear equations
were also developed [9, 10, 11].

When the coefficient matrix in an interval linear system is inverse
positive, the hull of the solution set can be described explicitly. See the
following theorem from Neumaier [3].

Theorem 1.1. Let A ∈ IRn×n be inverse positive. Then

�Σ(A,b) = [Ã−1b, Â−1b],

where Ã, Â ∈ A are defined by

Ãij = Aij if xj ≥ 0 and Ãij = Aij otherwise,

Âij = Aij if xj ≤ 0 and Âij = Aij otherwise.

In most of the researches mentioned above, the coefficient matrix was
considered regular and the enclosure of the solution set was obtained. In
this paper, we consider the coefficient matrix in interval linear system
is interval doubly stochastic which can be regular or singular and we
obtain an outer estimation for the solution set.

2. Main results

Consider the interval linear system whose coefficient matrix is an
[α, β]-doubly stochastic interval matrix ; i.e. the interval linear system

Ax = b ; A is an [α, β]-D.S.I. (2.1)

As well known, regularity of A implies boundedness of the solution
set and this set can can be described explicitly if A is iverse positive. In
this section, we first give a condition for regularity of A. Then, we study
when an [α, β]-D.S.I matrix is inverse positive or M-matrix. Finally, we
express an outer estimation for solution set of this system.

Theorem 2.1. An [α, β]-D.S.I matrix A ∈ IRn×n is regular if Ac is
nonsingular and

β − α <
2

||A−1
c ||2

(2.2)
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Proof. Suppose that A is an [α, β]-D.S.I matrix and ∆ is its radius

matrix. It is clear that ∆T∆ ∈ Γ
(β−α

2
)2

n . Therefore, we have

||∆||22 = ρ(∆T∆) = (
β − α

2
)2.

Now, let Ã ∈ A be arbitrary. Ã can be written as

Ã = Ac +B,

where B is a matrix satisfying |B| ≤ ∆. We can show that

||B||2 ≤ ||∆||2.

So, from (2.2), we have

||BA−1
c ||2 ≤ ||B||2||A−1

c ||2 < 1.

Therefore, I −BA−1
c is nonsingular and this implies the nonsingularity

of Ã. �

The next theorem gives a necessary and sufficient condition for an
[α, β]-D.S.I matrix is inverse positive.

Theorem 2.2. Let A ∈ IRn×n be an [α, β]-D.S.I matrix, α ̸= 0. Then
A is inverse positive if and only if it is the [α, β] multiple of a permuta-
tion matrix.

Proof. Suppose that A is an [α, β]-D.S.I and inverse positive matrix.
Now, consider at least one row of A contains k nonzero entries. There-
fore we have at least one Ã ∈ A such that Ã ≥ 0 and it is not a general-
ized permutation matrix. This implies that Ã−1 ≤ 0 [1]. Then we would
have a contradiction, since A is inverse positive. It follows that A has
only one nonzero entry in each row. Similarly we can conclude this for
each column. Since A is an [α, β]-D.S.I matrix, this nonzero entry must
be [α, β].
To prove converse, let A be the [α, β] multiple of a permutation matrix
that α ̸= 0. Therefore every A ∈ A is a nonnegative generalized per-
mutation matrix. It implies that A−1 is nonnegative and therefore A is
inverse positive. �

One known class of inverse positive matrices are M−matrices. M -
matrices play a distinguished role since they behave particularly well in
algorithms for the solution of interval linear systems [3]. In the following
theorem, we express when a D.S.I matrix is M -matrix.

Theorem 2.3. An [α, β]-D.S.I matrix A ∈ IRn×n, α ̸= 0, is an M -
matrix if and only if it is the [α, β] multiple of the identity matrix.
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Proof. Let A be an [α, β]-D.S.I matrix. If A is an M -matrix then Aik ≤
0 for i ̸= k and it implies Aik = 0 for i ̸= k. On the other hand, each of
row and column sums is [α, β]. Hence, Aii = [α, β] for i = 1, · · · , n.
Conversely, suppose that A is the [α, β] multiple of the identity matrix
where α ̸= 0. If u is the vector u = (1, · · · , 1)T then Au > 0 and this
implies that A is an M -matrix. �

If A is the [α, β] multiple of the permutation matrix P then based on
Theorem 1.1, the hull of the solution set can be given by

�Σ(A,b) =


[ 1βPb, 1

αPb] ; b ≥ 0,

[ 1αPb, 1
βPb] ; b ≤ 0,

[ 1αPb, 1
αPb] ; 0 ∈ b.

(2.3)

In fact, this is just the solution that can be determined from the
system by a simple calculation.

Example 2.4. Let

A =

 0 [2, 4] 0
[2, 4] 0 0
0 0 [2, 4]

 , b =

 [1, 5]
[2, 2]
[0, 4]

 .

Then A is inverse positive and we have

�Σ(A,b) =

 [12 , 1]
[14 ,

5
2 ]]

[0, 2]

 .

Now, consider interval linear system (2.1) thatA is singular or regular.
The next theorem gives us an outer estimation for solution set of this
system in a fixed orthant O of Rn. We define the sets P and N for a
fixed orthant O as

P = {j; xj ≥ 0, 1 ≤ j ≤ n} (2.4)

N = {j; xj ≤ 0, 1 ≤ j ≤ n} (2.5)

Theorem 2.5. Let A ∈ IRn×n be an [α, β]-D.S.I matrix and b ∈ IRn

be an interval vector. Then for a fixed orthant O of Rn we have

O ∩ Σ(A,b) ⊆ {x ∈ O; (2.7)− (2.10)hold}, (2.6)

where

αΣj∈Pxj + βΣj∈Nxj ≤ Σn
i=1bi, (2.7)

βΣj∈Pxj + αΣj∈Nxj ≥ Σn
i=1bi, (2.8)

xj ≥ 0 ; j ∈ P, (2.9)

xj ≤ 0 ; j ∈ N. (2.10)



6 S. Zangoei Zadeh , A. Rivaz

Proof. Suppose that x = (x1, · · · , xn)T ∈ Σ(A,b). Then we have Ax =
b for some A = (aij) ∈ A and b = (bi) ∈ b,that is,

Σn
j=1aijxj = bi

for i = 1, · · · , n. Therefore summing with respect to i, we have

Σn
i=1Σ

n
j=1aijxj = Σn

i=1bi.

Now, let O be a fixed orthant and P and N be the sets (2.4) and (2.5),
respectively. Then we have

αΣj∈Pxj + βΣj∈Nxj ≤ Σn
i=1Σ

n
j=1aijxj ≤ βΣj∈Pxj + αΣj∈Nxj .

On the other hand,

Σn
i=1bi ≤ Σn

i=1bi ≤ Σn
i=1bi.

Thus we have

αΣj∈Pxj + βΣj∈Nxj ≤ Σn
i=1bi,

βΣj∈Pxj + αΣj∈Nxj ≥ Σn
i=1bi,

for each x ∈ Σ(A,b) lied in orthant O which give (2.7) and (2.8). Choice
of O implies (2.9) and (2.10). �

In the following example, an outer estimation for solution set is ob-
tained, while the coefficient matrix is a regular doubly stochastic interval
matrix.

Example 2.6. Let

A =

(
[1, 3] [2, 4]
[2, 4] [1, 3]

)
, b =

(
[2, 2]
[3, 5]

)
,

and O1, O2, O3, O4 be four region of R2. It is clear that A is singular.
we have

Σ(A,b) ∩O1 ⊆ {x ∈ R2 ; x ≥ 0,
5

7
≤ x1 + x2 ≤

7

3
},

Σ(A,b)∩O2 ⊆ {x ∈ R2 ; x1 ≤ 0, x2 ≥ 0, 3x2+7x1 ≤ 7, 7x2+3x1 ≥ 5},
The solution sets and their outer estimations are shown in the figure 1.
solution set and its outer estimation have been shown as hatched part
and coloured part, respectively

[ O1] [ O2]

Figure 1. Solution set and its outer estimation in region
O1 and O2
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Note that this interval linear system dose not have any solution in
regions O3 and O4. The outer estimations for solution set in these
regions are empty sets.

3. Conclusion

The aim of this paper is to survey the interval linear systems which
their coefficient matrix is an interval doubly stochastic matrix. In most
of the research, the outer estimation is obtained when the coefficient
matrix is regular. But in this paper, it is considered that coefficient
matrix can be regular or singular. The further research can be done for
interval matrix equations whit interval doubly stochastic matrices.
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