تعداد نشریات | 30 |
تعداد شمارهها | 467 |
تعداد مقالات | 4,519 |
تعداد مشاهده مقاله | 7,144,876 |
تعداد دریافت فایل اصل مقاله | 5,334,687 |
تجزیه و تحلیل تصاویر گرفته شده توسط گردشگران خارجی از شهر اصفهان به منظور انتخاب مکانهای موثر بر وجهه مقصد و مدیریت آن | ||
برنامه ریزی و توسعه گردشگری | ||
دوره 9، شماره 32، خرداد 1399، صفحه 123-143 اصل مقاله (1.44 M) | ||
نوع مقاله: علمی-پژوهشی | ||
شناسه دیجیتال (DOI): 10.22080/jtpd.2020.16772.3094 | ||
نویسندگان | ||
فرزانه شریفی شاهرضائی* 1؛ ساناز شفیعی2؛ محمد زاهدی3؛ مصطفی عمادزاده4 | ||
1مدیریت گردشگری،دانشکده مدیریت، دانشگاه شیخ بهایی، اصفهان، ایران | ||
2گروه علمی مدیریت فناوری اطلاعات، دانشکده مدیریت،دانشگاه پیام نور، شهرضا، اصفهان، ایران | ||
3گروه اقتصاد، دانشکده مدیریت، دانشگاه پیام نور، شهرضا، اصفهان، ایران | ||
4گروه مدیریت، دانشگاه شیخ بهایی، اصفهان، ایران | ||
تاریخ دریافت: 28 تیر 1398، تاریخ بازنگری: 17 فروردین 1399، تاریخ پذیرش: 14 تیر 1399 | ||
چکیده | ||
با هر بار سفر تصویری در ذهن گردشگر از آن مقصد شکل میگیرد. وجههی مقصد تاثیر به سزایی در ذهنیت گردشگر دارد. پژوهشگر قصد دارد وجههی گردشگری شهر اصفهان را از منظر گردشگران خارجی که از این مقصد بازدید کردهاند، از جاذبههای آن عکس گرفتهاند و در وبسایت فلیکر به اشتراک گذاشتهاند، بررسی نماید. پرکاربردترین و در نتیجه برترین تصاویر این مقصد انتخاب شدهاند تا متولیان صنعت گردشگری ایران را جهت بهبود وجههی شهر اصفهان، یاری رساند. پژوهشگر 19502 عکس از این شهر را در بازهی زمانی 25/06/2014 تا 25/06/2018 بررسی نموده و از بین آنها 61 عکس را با حداقل 5 نظر به زبان انگلیسی انتخاب کرده است. 61 عکس از شهر اصفهان حجم نمونه را تشکیل میدهد. با استفاده از نرم افزار Textalyser فراوانی آنها برای هر عکس استخراج و صفتها به کمک دیکشنریهای تحلیل صفت دانشگاه استنفورد، امتیازدهی و تصاویری با امتیاز حداقل 10 به عنوان عکسهای منتخب هر شهر انتخاب شدهاند. استخراج صفات به وسیلهی نرم افزار Stanford CoreNLP 3.9.1صورت گرفته است. از نرم افزار Voyant Tools جهت ترسیم نمودارهای فراوانی هر عکس استفاده شده است. در مجموع 61 عکس به عنوان پرکاربردترین تصاویر و 35 عکس به عنوان برترین تصاویر از این شهر، شناخته شدهاند. | ||
کلیدواژهها | ||
"وجهه ی مقصد"؛ "تصویر عاطفی مقصد"؛ "محتوای تولیدی کاربران"؛ "عکس های سیاحتی" | ||
عنوان مقاله [English] | ||
Pictorial analysis of photos taken from Isfahan by tourists to choose influential places on improving destination image and to manage it | ||
نویسندگان [English] | ||
Farzaneh Sharifi Shahrezaei1؛ Sanaz Shafiee2؛ Mohammad Zahedi3؛ Mostafa Emadzadeh4 | ||
1Tourism Management, Management Faculty, Sheikh Bahaei University, Isfahan, Iran | ||
2IT Department, Management Faculty, Payamnoor University, Shahreza, Isfahan, Iran | ||
3Economy Department, Management Faculty, Payam Noor University, Shahreza, Isfahan, Iran | ||
4Management Department, Sheikh Bahaei Univesity, Isfahan, Iran | ||
چکیده [English] | ||
whenever a tourist travels, he/ she makes an image of the destination. Destination image has a great impression on forming a tourist imagination of the place. Researcher tries to investigate destination image of Isfahan through the vision of foreign tourists who visited it, took pictures of its attractions, and shared them on www.flickr.com. Most frequent and as a result most suitable pictures of Isfahan have been selected in order to improve this destination image. Therefore, the researcher, studied 19502 pictures of this city from 26/06/2014 to 26/06/2018. 61 pictures have been chosen with at least 5 comments in English. 61 pictures of Isfahan have made the sample. Textalyser has been used to extract adjectives of user's comments and their frequencies, then by the use of Sentiment Lexicon for Computational Social Science of Stanford University, Adjectives have been scored and those with at least 10 score have been chosen as the elected pictures. Voyant Tools has been used to draw frequency graphs. Based on the finding of this research, 61 pictures are introduced as the most frequent pictures and 35 pictures as the most suitable ones of this destination. For unattractive tourism places building cultural heritage interpreting center is suggested . | ||
کلیدواژهها [English] | ||
"Destination Image", "Affective Destination Image", "User Generated Content (UGC)", 'Travel photos" | ||
مراجع | ||
1. Billor, S., Billor, G., Yamaji, K., (2013). The online Comparative content analysis of Indian and Japanese Banks. Journal of Business Review, Cambridge 1.2, 90-96. 2. Crompton, J. (1979). Motivations for pleasure vacation. Annals of Tourism Research. 6, 408-424. 3. Deng, N. & Li, X. (2018). Feeling a destination through the right photos: a machine learning model for DMO's photo selection. Tourism management, Elsevier, 65(c), 267-278. 4. Donaire, J., Camprubí, R., and Galí, N. (2014). Tourist clusters from Flickr travel photography. Tourism Management Perspectives. 11, 26–33. 5. Gray, J. H., & Densten, I. L., (1998). Integrating quantitative and qualitative analysis using latent and manifest variables. Quality and Quantity, 32, 419-431. 6. Holsti, O. R., (1969). Content analysis for the social sciences and humanities. Reading, MA: Addison-Wesley. 7. Kaplan, A. M., & Haenlein, M. (2010). Users of The World, Unite! The Challenges and Opportunities of Social Media. Business Horizons, 53(1), 59-68. 8. Kennedy, L., Naaman, M., Ahern, S., Nair, R., and Rattenbury, T. (2007). How flickr helps us make sense of the world: Context and content in community-contributed media collections. In The proceedings of multimedia’07, 631–640. Augsburg, Germany. 9. Kim, H. and Stepchenkova, S. (2015). Effect of tourist photographs on attitudes towards destination: Manifest and latent content. Tourism Management, Elsevier, 49, 29-41. 10. Kisilevich, S., Krstajic, M., Keim, D., Andrienko, N., and Andrienko, G. (2010). Event-based analysis of people's activities and behavior using flickr and panoramio geotagged photo collections. 14th International Conference In- formation Visualisation, 12(1):289–296. 11. Kuhzady, S., Ghasemi, V., and Hashemi, Sh. (2017). Pictorial analysis of the projected destination image: Portugal on Instagram. 12. Michaelidou, N., Siamagka, N-T. , Moraes, C., and Micevski, M. (2013) Do marketers use visual representations of destinations that tourists value? Comparing visitors' image of a destination with marketer-controlled images online. Journal of Travel Research, 52 (6): 789-804. DOI: 10.1177/0047287513481272. 13. Pan, S., Lee, J., & Tsai, H. (2014). Travel photos: motivations, image dimensions, and imagery and affective qualities of places. Tourism management, 40, 59-69. 14. Rajesh, R. (2013). Impact of Tourist Perceptions, Destination Image and Tourist Satisfaction on Destination Loyalty: A Conceptual Model. Revista de Turismo y Patrimonio Cultural. 11. 67-78. 10.25145/j.pasos.2013.11.039. 15. Rattenbury, T., Good, N., and Naaman, M. (2007). Towards automatic extraction of event and place semantics from Flickr tags. In Proceedings of the Thirtieth International ACM SIGIR Conference. AMC Press. 16. Stepchenkova, S. and Zhan, F. (2011). DMOs and user-generated photography: Comparison of projected and perceived destination images using perceptual maps. 42nd Annual Conference of the Travel and Tourism Research Association (TTRA). London, Ontario, Canada. 17. Stepchenkova, S., Kim, H., and Kirilenko, A. (2014). Cultural differences in pictorial destination images: Russia through the camera lenses of American and Korean. Journal of Travel Research, 1-16. 10.1177/0047287514535849. 18. Stylianou-Lambert, T. (2012). Tourists with Cameras: Reproducing or Producing. Annals of Tourism Research, 39, 4, 1817-1838. 10.1016/j.annals.2012.05.004. 19. Weber, R. P., (1990). Basic content analysis. 2nd ed. Newbury Park, CA: Sage. 20. Zeng, Z., Zhang, R., Liu, X., Guo, X., and Sun, H. (2012) Generating Tourism Path from Trajectories and Geo-Photos. In: Wang X.S., Cruz I., Delis A., Huang G. (eds) Web Information Systems Engineering - WISE 2012. WISE 2012. Lecture Notes in Computer Science, Vol. 7651. Springer, Berlin, Heidelberg. | ||
آمار تعداد مشاهده مقاله: 523 تعداد دریافت فایل اصل مقاله: 470 |