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ABSTRACT. We study Jacobsthal and Jacobsthal-Lucas general-
ized octonions over the algebra Q(a,b,c) where a,b and c are real
numbers. We present Binet formulas for these types of octonions.
Furthermore, we give some well-known identities such as Catalan’s,
Cassini’s, d’Ocagne’s identities, and other special identities for Ja-
cobsthal and Jacobsthal-Lucas generalized octonions.
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1. INTRODUCTION

Some special number sequences are of great importance in many areas of
mathematics such as combinatorics, computer algorithms, and biological
setting. Fibonacci,Lucas, Pell and Jacobsthal sequences are at the top of
this large number sequences. Many researchers related to these series of
numbers have made great contributions to this field with many studies.
Before examining these studies, we take a look at the quaternions that
form the basis of the number sequence we mentioned above.
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For arbitrary real constants a and b, the generalized quaternion alge-
bra is H(a,b) with the basis {1, e, e2,e3}. The multiplication table for

the basis of H(a, b) can be given as follows:

‘ 1 €1 €9 €3

1 ‘ 1 €1 €9 €3

€1 ‘ €1 —a €3 —aeg

€9 ‘ €2 —e3 —b b61

es ‘ e3 aey —bey —ab
For a = b = 1, H(1,1) is the quaternion division algebra, for a =
1,b = —1, H(1,—1) is the algebra of split-quaternions or also called

coquaternions, para-quaternions, anti-quaternions, pseudo-quaternions
or hyperbolic quaternions.

The octonions constitute the largest normed division algebra over the
real numbers and it is shown with the letter @. The octonions have
eight dimensions and they are alternative, flexible, power-associative,
non-commutative and non-associative.

Let O(a, b, ¢) be the generalized octonion algebra over the R with the
basis {eo, €1, €2, €3, €4, €5, €, e7}. The multiplication table for the basis
of O(a, b, c) is given as follows:

. ‘60 €1 €9 €3 €4 €5 €6 (&rd
€0 ‘ €0 €1 €9 €3 €4 €5 €6 (&4
€1 ‘ €1 —a €3 —aeg €5 —aey —e7 aeg
€9 ‘ es  —e3 -b beq €6 e; —bey —bes
e3 ‘ es aes —bey —ab er  —aeg bes —abey
€4 ‘ €4 —e5 —€g —e7 —C cel cen ces
€5 ‘ €5 aey —€7 acg —cCep —ac —ces aceg
€6 ‘ e er bey, —bes —ces ces —bc —beey
e7 ‘ e7 —aeg bes abey —ces —acey becey —abce

If « € O(a,b,c), then we can write « = ag + aje; + ages + azes +
ageq + ases + ageg + arer. The conjugate of o is @ = ag — aje; — ages —
aze3 — auey — ase; — ageg — arer. The trace and the norm of « are,

respectively

and

ta) =a+a=2aq

N(a) = a@ = o + aa? + ba3 + aba3 + caj + aca? + beal + abea?.
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Jacobsthal and Jacobsthal-Lucas numbers which are famous integer
sequences satisfy the same recurrence relation except for initial condi-
tions. Namely, Jacobsthal numbers satisfy the recurrence relation

Jn = Jp-1+ 2Jn—2

with the initial conditions Jy = 0 and J; = 1. Similarly, Jacobsthal-
Lucas numbers satisfy the recurrence relation

JLy, =JLy_1+2JL,_9

with the initial conditions JLy =2 and JL; = 1.
Generating functions for the Jacobsthal sequence {.J,,}>2, and Jacobsthal-
Lucas sequence {JLy}>2, are

o
2—x
n __
ZJnx l_x_QQandnz:OJLnx R p— )

respectlvely. The Binet formulas for the Jacobsthal and Jacobsthal-
Lucas numbers are

J=t
U—v
and
JLy, = p" + 0"
where ¢t = 2 and v = —1 are solutions of the characteristic equation of

2
¢t —xz—2=0.
Horadam [4] defined Fibonacci and Lucas Quaternions as

Qn - Fn + Fn+161 + Fn+2€2 + Fn—|—3e3

and
P, =L, + Lpi1e1 + Lyjoes + Lyqses

respectively, where F), is the nth Fibonacci number and L,, is the nth
Lucas number.

Many researchers worked on these quaternions (for example [3| 5]
7]). Some authors studied on generalizations of Fibonacci and Lucas
Quaternions (for example [T, 6, 10, 12]).

Kecilioglu and Akkus [8] defined the Fibonacci and Lucas octonions
as

7 7
Qn = Z Frises and T, = Z Ly, ses
s=0 s=0
where F;, and L,, are nth Fibonacci and Lucas numbers. They gave gen-
erating function, Binet formulas, and some identities for the Fibonacci
and Lucas octonions. Also, they defined Split Fibonacci and Lucas oc-
tonions similarly in [2]. Savin [II] studied generalized Fibonacci and
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Lucas octonions over the octonion algebras Ogr(a + 1,2a + 1,3a + 1)
where a is a real number and gave several basic properties for them.

Szynal-Liana and Wloch [13] introduced Jacobsthal quaternion J@Q,
and Jacobsthal-Lucas quaternion JL(@), and defined these quaternions
as

JQn = Jp + Jng1e1 + Jnioea + Jnyses
and

JLQpn = jn + Jnt1€1 + Jni2€2 + Jnizes
where J,, is the nth Jacobsthal number and j,, is the nth Jacobsthal-
Lucas number.

Aydin and Yiice [I4] investigated some properties of the Jacobsthal
and Jacobsthal-Lucas quaternions. In [16], Tasci defined k-Jacobsthal
and k-Jacobsthal-Lucas quaternions. Yasarsoy et. al. [I7] introduced
a new class of octonions of Jacobsthal and Jacobsthal-Lucas sequences.
Furthermore, Aydin [15] gave the generalized Jacobsthal and generalized
complex Jacobsthal and generalized dual Jacobsthal sequences.

Cimen and Ipek [18] defined the nth Jacobsthal octonion and Jacob-

sthal Lucas octonion numbers, respectively, by the following recurrence
relations;

7
In = Z Jn—l—ses
s=0

and

7
Jn = Z Jnts€s-
s=0

where J,, and j, are the nth Jacobsthal and Jacobsthal-Lucas numbers.

In this paper, following Horadam, Kecilioglu and Akkus, and Cimen
and Ipek, we define the Jacobsthal and Jacobsthal-Lucas generalized
octonions over the octonion algebra O(a,b,c). The nth Jacobsthal gen-
eralized octonion JGO,, is

7
TGO, = Jnyses
s=0

and the nth Jacobsthal-Lucas generalized octonion JLGO,, is

7
JLGO, =Y JLnyses.
s=0
where J, is the nth Jacobsthal number and JL,, is the nth Jacobsthal-
Lucas number.
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2. BINET FORMULAS AND GENERALIZATIONS FOR SOME IDENTITIES

There are three well-known identities for Jacobsthal and Jacobsthal-
Lucas numbers, namely, Catalan’s, Cassini’s, and d’Ocagne’s identities.
The proofs of these identities are based on Binet formulas. We can obtain
these types of identities for Jacobsthal and Jacobsthal-Lucas generalized
octonions using the Binet formulas. The following theorem gives Binet
formulas for the Jacobsthal and Jacobsthal-Lucas generalized octonions.

Theorem 2.1. For any integer n, nth Jacobsthal generalized octonion

1S " "
prpt — vt

JGO, = (2.1)
w—v
and nth Jacobsthal-Lucas generalized octonion is
JLGO,, = p*p" +v*o" (2.2)
7 7
where p=2,v=—1, 1" =Y pes and v* = ) ves.
s=0 s=0
Proof. Let us consider the following for eq. (2.1)
7
pJGO, + JGO,—1 = Z (NJn+s + Jn+371) €s-
s=0
By the help of the identity pJ, + p"*J,—1, we get
uJGO, + JGO, 1 = ™. (2.3)
Similarly, using the identity v" = vJ, + J,—1, we have
vJGO,, + JGO,_1 = v V™. (2.4)
From the egs. (2.3) and (2.4), we obtain
X, M k)M
JGo, =+ —vY
W=
By using similar method, we get Binet formula of Jacobsthal-Lucas gen-
eralized octonion JLGO,,. O

When using the Binet formulas to obtain identities for the Jacobsthal
and Jacobsthal-Lucas generalized octonions, we require p*2,v*?, p*v*
and v*p*. These identities play important roles in this paper for calcu-
lations.

Lemma 2.2. We have the following
w? = wy+JLGOg + 3 (we + JGOy),
v*? = wy+ JLGOy — 3 (wy + JGOy),
pwv* = E+ JLGOy + 6F,
v'ut = E+4 JLGOy — 6F.

~~ ~~ —~
® 3 O ot
~— — — —
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where
wy = —1—§a—1—7b—@ab—§76
2 2 2 2
B 1025ac B 409760 _ 16385a .
2 2 2 ’
1 5 21 85 341 1365 5461
wy = —a—=-b——ab— —c— —ac— ——bc— ——abc,

2 2 2 2 2 2 2
E = 128abc + 8ab + 32ac — 64bc + 2a — 4b — 16¢ — 1,

F = 2(16bc — b —4c) e + (16ac — a — 8c¢) ea + 40ces
+5(—4ab — a + 2b)ey + 34bes + 17aes.

Using the multiplication table for the basis of O(a,b,c), we have
7 7
Proof. u*? = (Z uses> <Z uses>
s=0 s=0

= —l—ga—%b—%ab—23—76—%@0—%60—1%&@66—1—(][/6?00
+3(3a—2b—Fab— Bc— 2Hac— 38pe — Hlahe + JGOy)
::un,+-JlX?()o4—3(ua + JGOy)

The last equations is eq. (2.5). Similarly

7 7
o (5 (5:)
s=0 s=0

= 128abc + 8ab + 32ac — 64c + 2a — 4b — 16c — 1
+JLGOy + 6 [2 (16bc — b — 4c) e1 + (16ac — a — 8¢) ea + 40ces
+5 (—4ab — a + 2b) eq + 34bes + 17aeg]

— E+ JLGOy + 6F.

The last equation is the eq. (2.7). The others can be proved similarly.
U

Now we give the Catalan’s identities involving the Jacobsthal and
Jacobsthal-Lucas generalized octonions in the following theorem.

Theorem 2.3. For any integers n and r, we have
JGO, 1 GOy — JGO?
= (2" [ (B + JLGOY) (2 (~2) ~ JLy) (2.9)
—2FJy,]
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and
JLGOp v JLGOy—, — JLGO,QZ

= (=2)" " [(E + JLGOp) (JLar — 2(—2)") (2.10)
+18FJ27«]
Proof. JGOp1+JGOp_p — JGO%
1
—— [(M*Mn—l—r _ U*Un—l—r) (N*Mn—r _ U*Un—r) _ (,U/*,U/n _ ’U*UH)Z}

9
1
— § (M*U*un—i-rvn—r _ U*,LL*UTH—T,UJH_T + M*U*Mn,un + U*M*Un/,én)
1
=3 [—u"_"v"_" (u*fu*/ﬂr + v*u*vQT) +2(=2)"(E+ JLGOO)]
1
=3 [— (=2)"7" ((E 4+ JGLOy) (1" + v*) 4 6F (u*" — v*"))
+2(=2)" (E + JLGOy)]
1 -r -r
=3 [(=2)""(E+ JLGOy) (2 — (=2)"" JLoy)
+18 (=2)""" FJy |

1
= (=2)"" |5 (B+ JLGOy) (2(=2)" = JLar) = 2P Jay |

The second identity in the theorem, i.e., Catalan’s identity for the
Jacobsthal-Lucas generalized octonion, can be proved similarly. U

For r = 1, Theorem 2.3 gives Cassini’s identities for Jacobsthal and
Jacobsthal-Lucas generalized octonions which are given in the following.

Corollary 2.4. For any integer n, we have
JGO,41JGO,_1 — JGO? = — (=2)" 1 [(E + JLGOy) — 2F] (2.11)
and

JLGO, 1 JLGO, 1 — JLGO?
= (2" '[9(E 4 JLGOy) + 18F]. (2.12)

D’Ocagne’s identities for Jacobsthal and Jacobsthal-Lucas generalized
octonions are given in the next theorem.

Theorem 2.5. For any integers n and m, we have

JGOmJGOpi1 — JGOmi1 JGO,
= (=2)"[(E + JLGOg) Jym—n + 2FJ Ly_] (2.13)



22 Umit Tokeser at all

and
JLGO,JLGOy 1 — JLGOy 11 JLGO, (2.14)
= —(=2)"[9(E + JLGOg) Jy—pn + 18F J Lyy_p]
Proof. Using the Binet formula for the Jacobsthal generelized octonions,
we obtain

JGOmJGOpn i1 — JGOmi1 JGO,,

1

— § (:U'*:u'm _ U*Um) (M*MnJrl v* n+1)
1

_§ (M*Mm—i—l U*Um+1) (M*Mn _ U*Un)
1

=3 [(=2)" (o™ — ot

If we substitute equations (2.7) and (2.8) into the last equation, then
we have
JGOmJGOpt1 — JGO 11 JGO,
1

=3 (—=2)" [3(E + JLGOg) Jyp—n + 6FJLyy,_p)

= (=2)"[(E + JLGOg) Jum—n + 2F T Ly ] .

The proof of the second identity can be done similarly by using the
Binet formula in equation (2.2). O

3. SOME RESULTS FOR JACOBSTHAL AND JACOBSTHAL-LUCAS
GENERALIZED OCTONIONS

In this section, after deriving famous three identities Catalan’s, Cassini’s
and d’Ocagne’s, we present some other identities for the Jacobsthal and
Jacobsthal-Lucas generalized octonions.

Theorem 3.1. Jacobsthal and Jacobsthal-Lucas generalized octonions
satisfy the following identities

JGO2 + JLGO?
= [(w1 + JLGOQ) JLoy +9 ('UJQ + JGOQ) Jzn]

16
9

JGO?2 — JLGO?
8
= —g (w1 +JLGOo) J Loy +9 (w2 + JGOp) J2n]

—%0 (=2)" (E + JLGOQ) (3.2)

9
+=2 (=2)" (E + JLGOy) (3.1)
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JGOniy JLGOypss — JGOp 4 s JLGOp

= —(=2)""*Y(E 4+ JLGOy) J,_r, (3.3)

JLGOpin + (—1)" JLGOpy—n, = J L, JLGO,, (3.4)
JLGO,JGO,, — JLGO, JGO,,

= 2(=2)™(E + JLGOy) Jp—m, (3.5)

JLGOJGO, — JGO,, JLGO, (3.6)

= —(=2)"" [(E + JLGO) Jy_p — 2FJ Lyy_p]

Proof. We prove the second and fifth identities. We need the Binet
formulas for the Jacobsthal and Jacobsthal-Lucas generelized octonion.

1
JGO?2 — JLGO? = = (p*u™ — v*o™) (u*p™ — v*o")

9
= (pr "+ vto") (W 4 vto™)
8 10
=79 [M*2M2n + U*vzn] - (=2)" [u*v* + v*p*]

= —% [(wl + JLGO()) (,u2n + UQ") +3 (UJQ + JGOQ) (,u2” — U2n)}

—2)"2(E + JLGOy)

(w1 + JLGOq) J Loy + 9 (wa + JGOy) Jay]

—%0 (=2)" (E + JLGOy)
Similarly, using Binet formulas again, we get

JLGO,,JGO, — JLGO,JGO,, = % (w*p™ 4+ v*o™) (p*p™ — v*o™)

1
—g (T vt (e —vton)

1
— _g [vam (,U'*U* + U*N*) + Um'um (U*,U/* + /’L*U*)]

2
= g (_2)m (E + JLGOO) (Mn—m _ Un—’m)
=2(=2)"(E+ JLGOy) Jp—m
The other identities can be proved similarly from the Binet formulas
in equations (2.1) and (2.2). O

Since the algebra O(a, b, c) is non-commutative, then it can be seen
what changes in the following theorem.



24 Umit Tokeser at all

Theorem 3.2. For any integers m and n, we have
JGO,JGO,, — JGO,JGO, = —4(-2)" FJp_m (3.7)
and

JLGO,JLGO,, — JLGO JLGO, = 36 (—2)"™ F.Jy_p. (3.8)

Proof. From the Binet formula in equation (2.1) given
1
JGO,JGO,, — JGO,;,JGO,, = 9 (w*p™ — v*o™) (u*p™ — v*o™)

1 * * * *
—g (T =) (e = vt)

1
= ~9 [—pfv*p o™ — v o ™ + ot Mo + vt o™ p]
1 * 0k * *
=3 [— (@' v* —o*p®) (u"o™ — v u™)]

4
_ _gF [vam (Hn—m o Un—m)]

= —4(=2)" FJpm

Eq. (3.8) can be proved similarly by using the Binet formula in equa-
tion (2.2). O

Corollary 3.3. From Eq.(3.7) and Eq.(3.8), it is clearly that
JLGO,JLGO,, — JLGO,,JLGO,, = =9 (JGO,JGO,, — JGO, JGO,,).
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