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Abstract. In this article, the multi-step conformable fractional
differential transform method (MSCDTM) is applied to give ap-
proximate solutions of the conformable fractional-order differential
systems. Moreover, we check the stability of conformable fractional-
order Lü system with the MSCDTM to demonstrate the efficiency
and effectiveness of the proposed procedure.
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1. Introduction

Fractional differential equations rather than ordinary and partial ones
more accurately describe physical phenomena having memory and hered-
itary characteristics thanks to memory effects of fractional derivatives.
Because of these important characteristics, fractional differential equa-
tions have become more important in many fields of science in recent
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years. There are many definitions for fractional differential equations,
such as Riemann-Liouville and Caputo’s fractional derivatives [1].

(i) The Riemann-Liouville fractional derivative of a function says f
is defined as

Dα
a f(t) =

1

Γ(1− α)

d

dt

∫ t

a

f(x)

(t− x)α
dx, 0 < α < 1. (1.1)

(ii) The Caputo fractional derivative of a differentiable function says
f is defined as

CDα
a f(t) =

1

Γ(1− α)

∫ t

a

f ′(x)

(t− x)α
dx, 0 < α < 1. (1.2)

Recently, Khalil et al. [2] introduced a new simple well-behaved defini-
tion of the fractional derivative called conformable fractional derivative.
This fractional derivative is theoretically very easier to handle and also
obeys some conventional properties that cannot be satisfied by the ex-
isting fractional derivatives, for instance, the chain rule [3]. In short
time, many studies related to this new fractional derivative definition
was done [4, 5]. The fractional derivative of f in the conformable sense
is defined as follows

Definition 1.1. [2] Let f : (0,∞) → R, then, the conformable frac-
tional derivative of f of order α is defined as

tT
t0
α (f) (t) = lim

ε→0

f(t+ ε(t− t0)
1−α)− f(t)

ε
, (1.3)

for all t > 0, α ∈ (0, 1]. Also, if the conformable fractional derivative of
f of order α exists, then we simply say is α-differentiable.

The new definition satisfies the properties which given in the following
theorem:

Theorem 1.2. [2] Let α ∈ (0, 1], and f, g be α-differentiable at a point
t, then

(i) tT
t0
α (af + bg) = atT

t0
α (f) + btT

t0
α (g), for all a, b ∈ R.

(ii) tT
t0
α (tµ) = µtµ−α, for all µ ∈ R.

(iii) tT
t0
α (fg) = f tT

t0
α (g) + gtT

t0
α (f).

(iv) tT
t0
α (fg ) =

gt T
t0
α (f)−f t T

t0
α (g)

g2
.

If, in addition, f is differentiable, then tT
t0
α (f)(t) = t1−α df

dt .
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For simplicity and without loss of generality, we assume that tTα = tT
0
α.

In [3] T. Abdeljawad established the chain rule for conformable fractional
derivatives as following theorem.

Theorem 1.3. Let f : (0,∞) → R be a function such that f is differen-
tiable and also α-differentiable. Let g be a function defined in the range
of f and also differentiable; then, one has the following rule

tTα(fog)(t) = (tTαf) (g(t)) (tTαg) (t) g(t)
α−1. (1.4)

If t = 0, then

tTα(fog)(0) = lim
t→0+

(tTαf) (g(t)) (tTαg) (t) g(t)
α−1.

The fractional exponential function plays a very important role in the
conformable fractional differential equations. The fractional exponen-

tial function e
1
α
tα , where 0 < α ≤ 1, is defined by the following series

representation,

e
1
α
tα =

∞∑
k=0

tαk

αkk!
.

Now, we list here the fractional derivatives of certain functions [2]

(i) tTα(e
1
α
tα) = e

1
α
tα ,

(ii) tTα(sin
1
α t

α) = cos 1
α t

α,

(iii) tTα(cos
1
α t

α) = − sin 1
α t

α,

(iv) tTα(
1
α t

α) = 1.

On letting α = 1 in these derivatives, we get the corresponding ordinary
derivatives.

Theorem 1.4. [3] Assume f is infinitely α-differentiable function, for
some 0 < α ≤ 1 at a neighborhood of a point t0. Then f has the
fractional power series expansion

f(t) =

∞∑
k=0

(
T t0
α f

)(k)
(t0) (t− t0)

αk

αkk!
, t0 < t < t0 +R1/α, R > 0.

(1.5)

Here
(
T t0
α f

)(k)
(t0) denotes the application of the fractional derivative

for k times.

Definition 1.5. (fractional Laplace transform) [3] Let 0 < α ≤ 1
and f : [0,∞) → R be real valued function. Then the fractional Laplace
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transform of order α starting from a of f is defined by,

Lα{f(t)} = Fα(s) =

∫ ∞

0
e−s tα

α f(t) dα(t), (1.6)

where dα(t) = tα−1dt.

Furthermore, using the properties of the fractional exponential function
and integration by parts, we have

Lα{tTα (f) (t)} = s Fα(s)− f(0). (1.7)

In this paper, at first we produce sufficient conditions for asymptotical
stability of linear conformable fractional differential system [6]. Then,
we present the MSCDTM for obtain approximate analytical solution and
stability of the conformable fractional-order Lü system to illustrate the
validity of the results.

2. Stability analysis

In this section, we consider the stability of the following linear con-
formable fractional differential system

tTα1 x1(t) = a11x1(t) + a12x2(t) + · · ·+ a1nxn(t),

tTα2 x2(t) = a21x1(t) + a22x2(t) + · · ·+ a2nxn(t),
...

...

tTαn xn(t) = an1x1(t) + an2x2(t) + · · ·+ annxn(t),

(2.1)

where xi(0) = xi0 and 0 < αi ≤ 1 for i = 1, 2, . . . , n.

Definition 2.1. The zero solution of linear conformable fractional dif-
ferential system (2.1) is said to be stable if, for any initial value x0,
there exists an ε > 0 such that ∥x(t)∥ ≤ ε for all t > t0. The zero so-
lution is said to be asymptotically stable if, in addition to being stable,
∥x(t)∥ → 0 as t → ∞.

We study the stability of system (2.1) by applying the fractional Laplace
transforms on both sides of this system, we have

sXαi(s)− xi0 =
n∑

j=1

aijXαi(s), (2.2)

for i = 1, . . . , n, where Xαi(s) is the fractional Laplace transform of
xi(t).
We can rewrite (2.2) as follows

∆(s).


Xα1(s)
Xα2(s)
...

Xαn(s)

 = x0. (2.3)
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in which

∆(s) =


∆11(s) ∆12(s) . . . ∆1n(s)
∆21(s) ∆22(s) . . . ∆2n(s)

...
...

. . .
...

∆n1(s) ∆n2(s) · · · ∆nn(s)

 ,

where

∆ij(s) =

{
s− aii if i = j,
−aij otherwise.

and x0 = (x10, x20, . . . , xn0)
T . For simplicity, we call ∆(s) a characteris-

tic matrix of (2.1), moreover det(∆(s)) = 0 is the characteristic equation
of system (2.1). Now, we express the main theorem for checking the sta-
bility of system (2.1).

Theorem 2.2. [6] If all roots of det (∆(s)) = 0 have negative real parts,
then zero solution system of (2.1) is asymptotically stable.

3. Description of the method

In this section, the MSCDTM is applied to solve the conformable frac-
tional non-linear systems of differential equations.

Definition 3.1. [7] Assume f(t) is infinitely α-differentiable function
for some α ∈ (0, 1]. Conformable fractional differential transform of f(t)
is defined as

Fα(k) =
1

αkk!

[(
T t0
α f

)(k)
(t)

]
t=t0

. (3.1)

Definition 3.2. [7] Let Fα(k) be the conformable fractional differential
transform of f(t). The inverse of the conformable fractional differential
transform of a sequence {Fα(k)}∞k=0 is defined as follow

f(t) =
∞∑
k=0

Fα(k) (t− t0)
αk.

From definitions (1.5) and (3.1), we obtain

f(t) =

∞∑
k=0

1

αkk!

[(
T t0
α f

)(k)
(t)

]
t=t0

(t− t0)
αk. (3.2)

Equation (3.2) implies that the concept of conformable fractional dif-
ferential transformation (CDTM) is derived from the fractional power
series expansion. Some basic properties of the CDTM obtained from
definitions (1.5) and (3.1) are summarized in table 1 [7].
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Table 1. Operations of CDTM.

Original function Transformation function

f(t) = u(t)± v(t) Fα(k) = Uα(k)± Vα(k)
f(t) = cu(t) Fα(k) = cUα(k)

f(t) = T t0
α (u(t)) Fα(k) = α(k + 1)Uα(k + 1)

f(t) = T t0
β (u(t)) m < β ≤ m+ 1 Fα(k) =

Γ(αk+β+1)
Γ(αk+β−m)Uα(k + β/α)

f(t) = u(t)v(t) Fα(k) =
∑k

l=0 Uα(l)Vα(k − l)

To demonstrate the effectiveness of the CDTM, we present the following
initial value problem for systems of conformable fractional differential
equations 

T t0
α1
y1(t) = f1(t, y1(t), y2(t), . . . , yn(t)),

T t0
α2
y2(t) = f2(t, y1(t), y2(t), . . . , yn(t)),

...
T t0
αn

yn(t) = fn(t, y1(t), y2(t), . . . , yn(t)),

(3.3)

subject to the initial conditions

yi0(t0) = ci, i = 1, 2 . . . , n. (3.4)

Let [t0, L] be the interval over which we want to find the solution of the
initial value problem (3.3)-(3.4). In actual applications of the CDTM,
the Nth-order approximate solution of the initial value problem (3.3)-
(3.4) can be expressed by the finite series

yi(t) =
∞∑
k=0

Yαi(k) (t− t0)
αik, t ∈ [t0, L] , i = 0, 1, . . . , n, (3.5)

where Yαi(k) is the differential transform for yi(t) and satisfies the re-
currence relation

Yαi(k + 1) =
1

αi(k + 1)
Fαi(k, Yα1(k), Yα2(k), . . . , Yαn(k)), (3.6)

Yαi(0) = ci, and Fαi(k, Yα1(k), . . . , Yαn(k)) is the differential transform
of function fi(t, y1(t), y2(t), . . . , yn(t)) for i = 0, 1, . . . , n.
Assume that the interval [t0, L] is divided intoM sub-intervals [tm−1, tm] ,
m = 1, . . . ,M, of equal step size h = (L− t0)/M by using the nodes
tm = t0 +mh. The main ideas of the MSCDTM are as follows:
First, we apply the CDTM to the initial value problem (3.3)-(3.4) over
the interval [t0, t1], we will obtain the approximate solution yi,1(t) using
the initial condition yi(t0) = ci, for i = 0, 1, . . . , n. For m ≥ 2 and at
each subinterval [tm−1, tm] we will use the initial condition yi,m(tm−1) =
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yi,m−1(tm−1) and apply the CDTM to the initial value problem (3.3)-
(3.4) over the interval [tm−1, tm]. The process is repeated and gen-
erates a sequence of approximate solutions yi,m(t), m = 1, . . . ,M, for
i = 1, . . . , n,. Finally the MSCDTM assumes the following solution

yi(t) =


yi,1(t) t ∈ [t0, t1] ,
yi,2(t) t ∈ [t1, t2] ,

...
yi,M (t) t ∈ [tM−1, tM ] .

The algorithm, MSCDTM, is simple for computational performance for
all values of h. As we will see in the next section, the main advantage
of the algorithm is that the solution obtained converges for wide time
regions.

4. Example

The so-called Lü’s system is known as a bridge between the Lorenz
system and Chen’s system [8]. Its conformable fractional version is de-
scribed as follows

Tα1x(t) = a(y(t)− x(t)),

Tα2y(t) = −x(t)z(t) + cy(t),

Tα3z(t) = x(t)y(t)− bz(t),

(4.1)

where 0 < α1, α2, α3 ≤ 1, are derivatives orders, and a, b, c are system
parameters. The system (4.1) has three equilibrium points E1 = (0, 0, 0),

E2 = (
√
bc,

√
bc, c) and E3 = (−

√
bc,−

√
bc, c). The Jacobian matrix for

equilibria E∗ = (x∗, y∗, z∗) is defined as

J =

 −a a 0
−z∗ c −x∗

y∗ x∗ −b

 . (4.2)

Let us consider the following parameters a = 25, b = 1, c = 40 of the
system (4.1). For equilibrium points E1 = (0, 0, 0) we obtain the fol-
lowing eigenvalus of the Jacobian matrix (4.2): λ1 = −1, λ2 = 40 and
λ3 = −25. For the equilibrium E2 = (6.3245, 6.3245, 40) we get the
eigenvalues λ1 ≈ −8.8284 and λ2, λ3 ≈ 11.4142 ± 9.8109j. The equi-
librium point E3 = (−6.3245,−6.3245, 40) has the same eigenvalues as
the equilibrium E2. All these eigenvalues satisfy the condition for the
system to be unstable. Figure 1 shows that the system (4.1) with order
(α1, α2, α3) = (0.85, 0.95, 0.9) is unstable.
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Figure 1. The system (4.1) with (α1, α2, α3) =
(0.85, 0.95, 0.9) is unstable.

Let us consider the following parameters a = 1, b = 40, c = 10 of the
system (4.1). For equilibrium points E1 = (0, 0, 0) we obtain the fol-
lowing eigenvalus of the Jacobian matrix (4.2): λ1 = −1, λ2 = 10 and
λ3 = −40. For the equilibrium E2 = (20, 20, 10) we get the eigenval-
ues λ1 ≈ −30.5478 and λ2, λ3 ≈ −0.2260 ± 5.1124j. The equilibrium
point E3 = (−20,−20, 10) has the same eigenvalues as the equilibrium
E2, thus the equilibrium point E2 is asymptotically stable. Figure 2
shows that the system (4.1) with order (α1, α2, α3) = (0.85, 0.95, 0.9)
isasymptotically stable.
All the results are calculated by using the computer algebra package
Maple. The term-number of MSCDTM series solutions is fixed N = 10
and the time step size h = 0.01, with the initial conditions (x(0), y(0),
z(0)) = (0.5, 1, 1.5).

5. Conclusion

In this paper, the multi-step conformable fractional differential trans-
form method has been successfully applied to find the numerical so-
lutions of the nonlinear system of conformable fractional order. The
numerical simulations and stability of conformable fractional Lü system
are used to illustrate our main result. The approximate solutions ob-
tained by MSCDTM are highly accurate and valid for a long time. The
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Figure 2. The equilibrium point E2 of the system (4.1)
with (α1, α2, α3) = (0.85, 0.95, 0.9) is asymptotically sta-
ble.

results presented in this paper suggest that this algorithm is also read-
ily applicable to more general classes of linear and nonlinear differential
equations of conformable fractional order.
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