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Abstract. In this paper for two given sets of eigenvalues, which
one of them is the eigenvalues of circulant matrix and the other is
the eigenvalues of skew-circulant matrix, we find a nonnegative ma-
trix, such that the union of two sets be the spectrum of nonnegative
matrices.
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1. Introduction

The class of circulant and skew-circulant matrices and their properties
are introduced in [?]. A circulant matrix is a special kind of Toeplitz
matrix where each row vector is rotated one element to the right or
to the left relative to the preceding row vector. Circulant matrices are
very useful in digital image processing [?]. In numerical analysis, circu-
lant matrices are important because they are diagonalized by a discrete
Fourier transform, and hence linear equations that contain them may
be quickly solved by using a fast Fourier transform (FFT).
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The nonnegative inverse eigenvalue problem (NIEP) asks for neces-
sary and sufficient conditions on a list σ = (λ1, λ2, . . . , λn) of complex
numbers in order that it be the spectrum of a nonnegative matrix. In
this case, one says that σ is realizable and a nonnegative matrix A with
spectrum σ is said to realize σ and it is referred to as a realizing ma-
trix. A number of necessary conditions for realizability are known, as
well as a number of sufficient conditions. In many cases, sufficiency is
established by direct construction of a realizing matrix [1-6]. So far, in
general, this problem has been solved for state n = 5. Of course, for
the symmetric case(SNIEP), many solutions have been presented so far.
Nazari and Sherefat solved NIEP for n = 5 solved the problem in 17
different cases[?].

In this paper we solve the special case of nonnegative inverse eigen-
value problem(NIEP). For given set σ(C) that is the spectrum of neon-
negative circulant matrix C and the other set σ(S) that is the spectrum
of skew-circulat matrix we find a nonnegative matrix that its spectrum
is the σ(C) ∪ σ(S).

2. Properties of circulant and skew circulant matrix

Let s = (s0, s1, ..., sn−1)
T , c = (c0, c1, ..., cn1)

T ∈ Rn be given.

Definition 2.1. [?, ?] An n × n real right (left) circulant matrix is a
matrix of form:

CR(c) =


c0 . . . . . . . . . . . . . . . cn−1

cn−1 c0 . . . . . . . . cn−2

cn−2 cn−1 c0 . . . . cn−3
...

...
...

. . .
...

c1 c2 . . cn−1 c0


where each row is a cyclic shift of the row above to the right (left).

Definition 2.2. [?] An n × n real skew right (left) circulant matrix is
a matrix of the form:

SR(s) =


s0 . . . . . . . . . . . . . . . . . . sn−1

−sn−1 s0 . . . . . . . . . . sn−2

−sn−2 −sn−1 s0 . . . . . . sn−3
...

...
...

. . .
...

−s1 −s2 . . −sn−1 s0

 .
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The next concepts can be seen in [?]. Define the orthogonal (anti-
diagonal unit) matrix Jm ∈ Rm×mas

Jm :=


0 · · · 0 1
0 · · · 1 0
...

...
...

...
1 · · · 0 0

 .

The matrix

Γn :=

[
1 0
0 Jn−1

]
is an orthogonal cyclic shift matrix (and a left circulant matrix). It
follows that,

Γn = F · F T = F 2,

where F = (fpq) are given by

fpq :=
1√
n
ωpq, p = 0, 1, . . . , n− 1, q = 0, 1, . . . , n− 1

where

ω = cos
2π

n
+ i sin

2π

n
= exp

2πi

n
.

For the orthogonal matrix

Ξn =

[
1 0
0 −Jn−1

]
,

it is straightforward to verify that

Ξn = G ·GT ,

where G = (gpq) with

gpq =
1√
n
ωp(q+ 1

2
), p = 0, 1, . . . , n− 1, , q = 0, 1, . . . , n− 1.

is strongly related to the DFT(Discrete Fourier Transform) matrix, i.e.,

G := diag(1, τ, ..., τn−1)F

with
τ = ω

1
2

Therefore, G is also unitary. Let M and N be two circulant (skew
circulant)matrices then (see, for instance [?]):
1. M +M and MN are circulant(skew circulant) matrices;
2. MT is a circulant (skew circulant) matrix;
3. M.N is a circulant (skew circulant) matrix;

4.
∑k

l=1 αlM
l is a circulant matrix.

5. The rank of a circulant matrix C is equal to n − d, where d is the
degree of gcd(f(x), xn − 1).
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6.The polynomial f(x) = c0+c1x+· · ·+cn−1x
n−1 is called the associated

polynomial of matrix C (see in[?]).
7. One amazing property of circulant matrices is that the eigenvectors
are always the same.

Theorem 2.3. [?] C(c) = F ∗ · Λ · F where

Λ(s) = diag(λ0(c), λ1(c), . . . , λn−1(c))

and

λk(c) =

n−1∑
j=0

cjω
kj , k = 0, 1, . . . , n− 1

Theorem 2.4. [?] S(s) = G ·M ·G∗ where

M(s) = diag(µ0, µ1, . . . , µn−1)

and

µk =

n−1∑
j=0

sjω
(k+ 1

2
)j , k = 0, 1, . . . , n− 1

Theorem 2.5. [?]

1. λn−k(c) = λk(c), for k = 1, 2, ..., n− 1 and λ0(c) =
∑n−1

j=1 cj

2. µn−1−k(s) = µk(s), for k = 0, 1, ..., n− 1

3. Main result

In this section we will generalize the method that introduced in [?].
Let σ be a spectrum of order 2n+k, we will solve the NIEP by circulant
matrices and skew-circulant matrices. At first we express an important
theorem.

Theorem 3.1. [?] Let C = (cij) be a nonnegative matrix of order n +
1and consider the S = skewcirc(s0, s1, ..., sn−1) := (sij) whose spectra
(counted with their multiplicities) are (λ0, λ1, ..., λn)and(µ0, µ1, ..., µn),
respectively. Moreover, suppose that |sij | ≤ cij, 1 ≤ i, j ≤ n and 0 ≤
γ ≤ 1.Then the nonnegative matrix

M±γ =



c11±γs11
2

c11∓γs11
2 . . . . . . c1n±γs1n

2
c1n∓γs1n

2 c1n+1
c11∓γs11

2
c11±γs11

2 . . . . . . c1n∓γs1n
2

c1n±γs1n
2 c1n+1

...
...

. . .
. . .

...
...

...
...

...
. . .

. . .
...

...
...

cn1±γsn1

2
cn1∓γsn1

2 . . . . . . cnn±γsnn

2
cnn∓γsnn

2 cnn+1
cn1∓γsn1

2
cn1±γsn1

2 . . . . . . cnn∓γsnn

2
cnn±γsnn

2 cnn+1

φ
(1)
n+1,1 φ

(2)
n+1,1 . . . . . . φ

(1)
n+1,n φ

(2)
n+1,n cn+1,n+1


,
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where
ϕ
(1)
n+1,i + ϕ

(2)
n+1,i = cn+1,i, 1 ≤ i ≤ n

realizes the list

{λ0, λ1, . . . , λn,±γµ0,±γµ1, . . . ,±γµn−1}.

Now we present the extension of above theorem.

Theorem 3.2. Suppose that A = (Aij) is an into block square matrix
of order 2n+ k where

Aij =



[
aij bij

bij aij

]
1 ≤ i, j ≤ n[

aij

aij

]
1 ≤ i ≤ n, n+ 1 ≤ j ≤ n+ k[

aij bij

]
1 ≤ j ≤ n, n+ 1 ≤ i ≤ n+ k

aij n+ 1 ≤ i, j ≤ n+ k

If

cij =


aij + bij 1 ≤ i, j ≤ n

aij n+ 1 ≤ j ≤ n+ k, 1 ≤ i ≤ n

aij + bij n+ 1 ≤ i ≤ n+ k, 1 ≤ j ≤ n

aij n+ 1 ≤ i, j ≤ n+ k

and
sij = aij − bij , 1 ≤ i, j ≤ n

Then
σ(A) = σ(S) ∪ σ(C)

where
S = (sij) and C = (cij)

Proof. Let (λ, v) be an eigenpair of C, with v := (v1, v2, ..., vn+k), and

consider the (2n+ k)-by-1 block vector


(ωj)
ωn+1

ωn+2
...

ωn+k

, where

wj =

{
vj · e 1 ≤ j ≤ n

vj n+ 1 ≤ j ≤ n+ k

and e =
[
1 1

]T
.
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Since

Aij · wj =

[
aij bij
bij aij

]
· vj .e =

[
aij + bij
bij + aij

]
.vj = cij .vj · e

i, j = 1, 2, . . . , n

Aij · wj =

[
aij
aij

]
· wj = cij .vj .e

1 ≤ i ≤ n, n+ 1 ≤ j ≤ n+ k

Aij · wj = aij .vj = cij .vj n+ 1 ≤ i, j ≤ n+ k

Aij · wj =
[
aij bij

]
· wj =

[
aij bij

]
· vj .e =

(aij + bij).vj = cij .vj
n+ 1 ≤ i ≤ n+ k, 1 ≤ j ≤ n

Notice that, for every i ∈ {1, 2, ..., n}

n+k∑
j=1

Aij .wj =
n∑

j=1

Aij .wj +
n+k∑

j=n+1

Aij .wj =
n∑

j=1

cijvje+
n+k∑

j=n+1

cijvje = λvie = λwi.

and for every i ∈ {n+ 1, ..., n+ k}

n+k∑
j=1

Aij .wj =

n∑
j=1

Aijwj +

n+k∑
j=n+1

Aijwj =

n∑
j=1

cijvj +

n+k∑
j=n+1

cijvj = λvi = λwi.

i.e (λ, ω) is an eigenpair of A. Thus σ(C) ⊆ σ(A).
Similarly, let (µ, x) be an eigenpair of S, with x = (x1, x2, ..., xn)

T and

consider the (2n+k)-by-1 block vector Y :=


yj
0
0
...
0

, where yj := xjf and

f = (1,−1)T . Since

Aijyj =

[
aij bij
bij aij

]
· xj .f =

[
aij − bij
bij − aij

]
xj = sijxj .f

notice that, for every i = 1, 2, ..., n

n+k∑
j=1

Aijyj =
n∑

j=1

Aijyj +
n+k∑

j=n+1

Aijyj =
n∑

j=1

sijyj = (µxi)f = µyi
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i.e (µ, y) be an eigenpair of A. Thus σ(S) ⊆ σ(A). Suppose that

Θc = {(x1i, x2i, . . . , xni, xn+1i, . . . xn+ki)
T : i = 1, 2, . . . , n+ k}

Θs = {(y1i, y2i, . . . , yni)T : i = 1, 2, . . . , n}
are bases of eigenvectors of C and S, respectively. The result will follow
after proving the linear independence of the following set Υ = Υ1 ∪Υ2,
where

Υ1 = {(x1eT , x2eT , . . . , xn+ke
T )T : (x1, x2, . . . , xn+k)

T ∈ Θc}

Υ2 = {(y1fT , y2f
T , . . . , ynf

T , 0, . . . , 0)T : (y1, y2, . . . , yn)
T ∈ Θs}

To this aim, we study the next determinant:

d =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

y11 . . . y1n x11 . . . x1n x1,n+1 . . . x1,n+k

−y11 . . . −y1n x11 . . . x1n x1,n+1 . . . x1,n+k
...

. . .
...

...
. . .

...
...

. . .
...

...
. . .

...
...

. . .
...

...
. . .

...
yn1 . . . ynn xn1 . . . xnn xn,n+1 . . . xn,n+k

−yn1 . . . −ynn xn1 . . . xnn xn,n+1 . . . xn,n+k

0 . . . 0 xn+1,1 . . . xn+1,n xn+1,n+1 . . . xn+1,n+k
...

. . .
...

...
. . .

...
...

. . .
...

0 . . . 0 xn+k,1 . . . xn+k,n xn+k,n+1 . . . xn+k,n+k

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

Note that d stands for the determinant of a (2n+ k)-by-(2n+ k) matrix
obtained from the coordinates of the vectors in Υ. As before, adding
rows and making suitable row permutations we conclude that the abso-
lute value of d coincides with the absolute value of the following deter-
minant

d =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

y11 . . . y1n x11 . . . x1n x1,n+1 . . . x1,n+k
...

. . .
...

...
. . .

...
...

. . .
...

yn1 . . . ynn xn1 . . . xnn xn,n+1 . . . xn,n+k

0 . . . 0 2x11 . . . 2x1n 2x1,n+1 . . . 2x1,n+k
...

. . .
...

...
. . .

...
...

. . .
...

0 . . . 0 2xn,1 . . . 2xn,n 2xn,n+1 . . . 2xn,n+k

0 . . . 0 xn+1,1 . . . xn+1,n xn+1,n+1 . . . xn+1,n+k
...

. . .
...

...
. . .

...
...

. . .
...

0 . . . 0 xn+k,1 . . . xn+k,n xn+k,n+1 . . . xn+k,n+k

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
which is nonzero by the linear independence of the set Θc and Θs. Thus
the statement follows.
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□

Example 3.3. Let σ(S) = {1+i
√
3

2 ,−1, 1−i
√
3

2 } and σ(C) = {21,−3 −
3i
√
3,−3− i

√
3,−3,−3 + i

√
3,−3 + 3i

√
3}.Then by theorem ?? and ??

we have:

S =

0 0 −1
1 0 0
0 1 0

 C =


1 2 3 4 5 6
6 1 2 3 4 5
5 6 1 2 3 4
4 5 6 1 2 3
3 4 5 6 1 2
2 3 4 5 6 1


whose that C is a circulant matrix and S is a skew-circulant matrix.
Then the matrix A obtained from S and C with the techniques above:

A =



1
2

1
2 1 1 1 2 4 5 6

1
2

1
2 1 1 2 1 4 5 6

7
2

5
2

1
2

1
2 1 1 3 4 5

5
2

7
2

1
2

1
2 1 1 3 4 5

5
2

5
2

7
2

5
2

1
2

1
2 2 3 4

5
2

5
2

5
2

7
2

1
2

1
2 2 3 4

4 0 5 0 6 0 1 2 3
3 0 4 0 5 0 6 1 2
2 0 3 0 4 0 5 6 1


All eigenvalues of matrix M is

σ(A) = {21,−3−3i
√
3,−3−i

√
3,−3,−3+i

√
3,−3+3i

√
3,

1 + i
√
3

2
,−1,

1− i
√
3

2
} = σ(C)∪σ(S)

Example 3.4. Let σ(S) = {3+i, 3−i} and σ(C) = {15, 2+5i, 1, 2−5i}.
Then we can compute matrix S and C by theorems ?? and ??. So we
have:

S =

[
3 −1
1 3

]
, C =


5 6 3 1
1 5 6 3
3 1 5 6
6 3 1 5

 ,
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where C is a circulant and S is a skew-circulant matrix. Then the matrix
A obtained from S and C with the techniques above:

A =


4 1 5

2
7
2 3 1

1 4 7
2

5
2 3 1

1 0 4 1 6 3
0 1 1 4 6 3
3 0 1 0 5 6
6 0 3 0 1 5

 .
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