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Abstract. In this paper, we intend to extract some types of gen-
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1. Introduction

The purpose of this paper is to create a special type of generalized topo-
logical spaces from ordinary topological spaces. So first let us state some
of the required concepts related to topology and generalized topology.

Following we recall some of notions concerning topological spaces from
[?]. A topological space is a pair of (X, τ) in which X is a set and τ is
a collection of subsets of X including ∅ and X which is closed under
arbitrary union and finite intersection. Those subsets of X, which are
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members of τ , are called open (sub)set in the space X. A subset F ⊆ X
is closed in (X, τ), if its complement X − F is an open set.

In any topological space (X, τ) associated with the topology τ is the
topological closure operator, denoted by clτ (in short, cl), which gives
for any subset A ⊆ X, the smallest closed set containing A. Obviously,
a set A is closed in (X, τ) if and only if clτ (A) = A.

Denote P(X) as the powerset of X. Then cl as defined above can
be viewed as an operator cl : P(X) → P(X) that satisfies the following
properties (for arbitrary A,B ⊆ X):

(1) cl(∅) = ∅,
(2) A ⊆ cl(A),
(3) cl(cl(A)) = cl(A),
(4) cl(A ∪B) = cl(A) ∪ cl(B).

Indeed, any operator cl on P(X) that satisfies the above four ax-
ioms (called Kuratowski Closure Axioms) defines a topological closure
operator. So that the collection {X − A : cl(A) = A} gives rise a set
system that will properly be a topology. In this sense, we can say that
an operator satisfying the Kuratowski Closure Axioms (1)− (4) defines
a topological space (X, τ).

Here we ask permission to describe briefly the history of the formation
of the notion of a generalized topology.

The beginning of the story of generalized topologies dates back to
1963. At that time N. Levein in an article entitled “Semi-open sets and
semi-continuity in topological spaces” [?], tried to generalize topology
by replacing semi-open sets with open sets, which became the starting
point for forming a ground for research to generalize topology and a
variety of generalized open sets.

Some of these efforts led to the introduction of important and valuable
types of generalized open sets, for example in 1965 α-open sets [?], in
1979 feebly open sets [?], in 1982, pre-open sets [?] and in 1983 β-

open sets[?] � were introduced. These efforts continued until, in 1997, Á.
Császár finally succeeded in organizing them in the form of a new concept
called γ-open sets([?]). Császár found that γ-open sets closed under
arbitrary union and empty set is γ-open. Some time later, the concept of
γ-open sets led Császár to introduce the concept of generalized topology
in 2002 [?].

What we present below are concepts related to a generalized topology,
which is taken from [?], [?], [?], [?], [?]and [?].

Simply put, a structure that results from the removal of the underlying
set and finite intersection condition from a topology is called a general
topology. In fact, a generalized topology on a setX is a subset µ of P(X)
that contains ∅ and any union of elements of µ belongs to µ. In other
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words, we replace the family of open sets with a larger one. Therefore
every topology is a generalized topology. A set X with a generalized
topology µ on it, is called a generalized topological space and is denoted
by (X,µ). Subsets of X, which are members of µ, are called generalized
open (sub)set in the space X and a subset F ⊆ X is called generalized
closed in (X,µ) if its complementX−F is an element of µ. A generalized
topology is named strong if X ∈ µ.

In addition, Császár showed that corresponding to any generalized
topology, there is an operator called the envelope operator whose fixed
points are exactly the same as the generalized closed sets of space. In the
sense of Császár an operator λ : P(X) → P(X) is an envelope operator
on X if it satisfies the following properties (for arbitrary A,B ⊆ X):

(1) A ⊆ λ(A) (property of enlarging),
(2) λ(A) ⊆ λ(B) whenever A ⊆ B (property of monotonicity),
(3) λ(λ(A)) = λ(A) (property of idempotency).

The envelope operator can be considered as a generalization of the Ku-
ratowski closure operator.

In this paper using mathematical tool called hereditary family, we
intend to present a special kind of envelope operator on any topological
space to extract some generalized topologies from that space.

By definition ([?]) a collection H of subsets of a set X is called hered-
itary if every subset of a member of H is also a member of H.

The collection of all finite subsets of X(especially, the set {∅}), the
collection of all countable subsets of X and the collection of all subsets
of X with empty interior have the property of hereditary.

2. Main result

In this section using hereditary families, we define a specific type of
envelope operator, but before that, we define another operator that can
be considered as a type of generalization of the derived set operator. We
emphasize that our pattern in this regard is [?]. This section is presented
in three subsections.
2.1. Operator ΦH as a special extension of the derived set op-
erator.

We start by defining the desired operator.

Definition 2.1. Let (X, τ) be a topological space and H be an arbitrary
hereditary family on it. We define an operator ΦH : P(X) → P(X) as
the following:

ΦH(A) = {x ∈ X : A ∩ U /∈ H, ∀ U ∈ τ(x)}, (2.1)

where τ(x) = {U ∈ τ : x ∈ U}.
Note: Considering the collection H = F = the set of all finite subsets
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of X, as a hereditary family in Equation ??, we will have;

ΦF(A) = {x ∈ X : A ∩ U ̸= finite set, ∀ U ∈ τ(x)} = Ad,

where Ad is the derived set of A that contains all cluster points of A.

With a glanced at the definition ??, we will have the following lemma.

Lemma 2.2. Let (X, τ) be a topological space and H be an arbitrary
hereditary family on it, then the operator ΦH defined in Definition ??
has the following properties;

(1) For any subset A of X, x /∈ ΦH(A) if and only if there exists
some U ∈ τ(x) such that U ∩A ∈ H.

(2) For any subset A of X and U ∈ τ , U ∩ ΦH(A) ∈ H whenever,
U ∩A ∈ H. In particular, U ∩ ΦH(A) = ∅.

Proof. (1) It is obvious from definition.
(2) Let U ∈ τ with U ∩ A ∈ H. If U ∩ ΦH(A) /∈ H, then from

U ∩ ΦH(A) /∈ H, it follows that U ∩ ΦH(A) ̸= ∅ (because the empty
set is a member of any hereditary family). So there exists an element
y ∈ U ∩ ΦH(A). Since U is an open set containing y and y ∈ ΦH(A),
from the definition of ΦH(A), U ∩ A /∈ H and it is a contradiction.
Consequently, U ∩ ΦH(A) ∈ H.

For the proof of the last statement, assume that U ∩ ΦH(A) ̸= ∅ for
some U ∈ τ . Then there exists an element y ∈ U ∩ ΦH(A) and so
U ∩A /∈ H, again it is a contradiction. □

From the above theorem, we have the following result;

Corollary 2.3. Let (X, τ) be a T1 topological space. If U ∩ A = ∅ for
some U ∈ τ , then U ∩Ad = ∅.

Proof. Placing H = F (as the hereditary family of finite subsets of X),
in part (2) of the Lamma ?? completes the proof. □

According to [?], we know that the derived set operator associated
with a space (X, τ) for every A,B ⊆ X satisfies the following;

(1) ∅d = ∅,
(2) A ⊆ B(⊆ X) implies Ad ⊆ Bd,
(3) Ad ⊆ clτA,
(4) (Ad)d ⊆ Ad,
(5) Ad is closed.

Corresponding to the properties of derived set operator(mentioned
above), we state the following theorem concerning ΦH.

Theorem 2.4. Let H be a hereditary family on a topological space (X, τ).
Then for A ⊆ X,
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(1) If A ∈ H then ΦH(A) = ∅, and especially ΦH(∅) = ∅,
(2) ΦH is an enlarging operator,
(3) ΦH(A) ⊆ clA,
(4) ΦH(ΦH(A)) ⊆ ΦH(A),
(5) ΦH(A) is closed in (X, τ).

Proof. (1) It is obvious from the definition.
(2) It is easily obtained from the property of a hereditary family.
(3) Suppose that x /∈ clA, then there exists U ∈ τ(x) such that

U ∩A = ∅. Now, U ∩A = ∅ implies U ∩A ∈ H and so from part
(1) of this theorem, we have x /∈ ΦH(A).

(4) Let x ∈ ΦH(ΦH(A)), then for every U ∈ τ(x), ΦH(A) ∩ U /∈ H
and therefore ΦH(A) ∩ U ̸= ∅. Since ΦH(A) ∩ U ̸= ∅, so there
exists an element z ∈ ΦH(A) ∩ U , then z ∈ ΦH(A) and U is also
an open set containing z. Now, from the definition of operator
ΦH, we have A ∩ U /∈ H, and so x ∈ ΦH(A).

(5) Here it is enough to show cl(ΦH(A)) = ΦH(A). Clearly cl(ΦH(A))
⊇ ΦH(A) so we show cl(ΦH(A)) ⊆ ΦH(A). Let x ∈ cl(ΦH(A)), so
for each U ∈ τ(x), U ∩ ΦH(A) ̸= ∅. Now, according to part (2)
of Lemma ?? we have, U ∩A ∈ H and therefore x ∈ ΦH(A).

□

The following example shows that reverse inclusion in part (5) of
Theorem ?? may not be hold in general.

Example 2.5. Suppose X = {a, b, c, d}. Let τ = {∅, {a}, {b}, {a, b}, X}
and H = {∅, {a}, {c}, {d}, {c, d}} be a topology and a hereditary family,
respectively on X. For A = {a, c, d}, we have ΦH(A) = {c, d} and
ΦH(ΦH(A)) = ∅. So, ΦH(ΦH(A)) ̸= ΦH(A).
Note: In the previous example we have ΦH(X) = {b, c, d} ≠ X. So
equality ΦH(X) = X is not generally valid. In addition, for A = {a, b},
we have ΦH(A) = {b, c, d} ≠ A which indicates that there is no inclusion
relation between ΦH(A) and A, in general.

Theorem 2.6. Let H be a hereditary family on a topological space (X, τ).
Then for A ⊆ X, ΦH(A ∪ ΦH(A)) = ΦH(A).

Proof. Due to the enlarging property of the operator ΦH (expressed in
part (2) of Theorem ??) we will have

ΦH(A) ⊆ ΦH(A ∪ ΦH(A)).

For the other inclusion, let x /∈ ΦH(A). So, there exists an open
set U containing x such that U ∩ A ∈ H, and thus from Lemma ??,
U ∩ ΦH(A) = ∅. Hence, U ∩ (A ∪ ΦH(A)) = (U ∩ A) ∪ (U ∩ ΦH(A)) =
U ∩A ∈ H, and therefore, x /∈ ΦH(A ∪ ΦH(A)). □
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As mentioned earlier, by putting H = F in the results which are stated
about the operator ΦH, some classical results concerning the derived set
operator can be extract.
By placing H = F in the previous theorem, we will have the following
corollary;

Corollary 2.7. For any T1-topological space (X, τ) and A ⊆ X, we
have (A ∪Ad)d = Ad.

Lemma 2.8. Let H be a hereditary family on a topological space (X, τ).
If U ∈ τ , then U ∩ ΦH(A) = U ∩ ΦH(U ∩A).

Proof. According to part (2) of Theorem ??, clearly we have;

U ∩ ΦH(U ∩A) ⊆ U ∩ ΦH(A).

For the other inclusion, let x ∈ U ∩ΦH(A) and (U ̸=)V ∈ τ(x). Then
x ∈ U ∩ V and x ∈ ΦH(A). So (U ∩ A) ∩ V = (U ∩ V ) ∩ A /∈ H, which
implies x ∈ ΦH(U ∩A) therefore, x ∈ U ∩ ΦH(U ∩A). □

By putting H = F in the previous lemma, the following result is
obtained;

Corollary 2.9. Let (X, τ) be a T1-topological space. If U ∈ τ , then we
have U ∩Ad = U ∩ (U ∩A)d.

In example ??, we saw that there is no any inclusion relation between
ΦH(A) and A in general. The following theorem introduces the con-
ditions under which we can establish inclusion relation between ΦH(A)
and A for certain subsets of (X, τ).

Theorem 2.10. Let (X, τ) is a topological space and H is a hereditary
family on it. If τ ∩ H = {∅} and U ∈ τ , then U ⊆ ΦH(U).

Proof. Considering the condition τ ∩ H = {∅}, in the definition of the
operator ΦH leads to equality ΦH(X) = X.

Using equality ΦH(X) = X in Lemma ?? leads to U ⊆ ΦH(U), because

U = U ∩ ΦH(X) = U ∩ ΦH(U ∩X) = U ∩ ΦH(U) ⊆ ΦH(U).

□

Corollary 2.11. Let τ be a T1-topology on X. If τ does not contain
any finite subset of X except ∅, then for U ∈ τ we have U ⊆ Ud.

Proof. Just put H = F in Theorem ??. □

For any A ⊆ X, from part (3) of Theorem ?? we have ΦH(A) ⊆ clA.
The following theorem presents a condition under which we will have
ΦH(A) = clA
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Theorem 2.12. Let H be a hereditary family on a topological space
(X, τ). If τ ∩ H = {∅}, then clU = ΦH(U) for U ∈ τ .

Proof. Here it is enough to prove clU ⊆ ΦH(U). Let U ∈ τ and x /∈
ΦH(U), then there exists an open set G containing x such that U∩G ∈ H.
Now since U ∩G is an open, so according to the assumption τ ∩H = {∅},
we must have U ∩G = ∅, that is x /∈ clU . □

Considering H = F in Theorem ?? yields the following corollary;

Corollary 2.13. Let τ be a T1-topology on X. If τ does not contain any
finite subset of X except the empty set, then clU = Ud for any U ∈ τ .

Proof. From Corollary ?? we have U ⊆ Ud, so clU = U ∪ Ud = Ud. □

2.2. Operator ΨH as a special extension of the closure operator.

Definition 2.14. Let (X, τ) be a topological space and let H be a hered-
itary family on the space. For any A ⊆ X, we define an operator

ΨH : P(X) → P(X)

by;
ΨH(A) = A ∪ ΦH(A). (2.2)

Remark 2.15. In T1 space (X, τ), the operator ΨH with respect to hered-
itary family of finite sets of X coincides with the closure set operator,
that is, for any A ⊆ X; ΨF(A) = clA

We know from [?] that the closure operator has the following proper-
ties;

(1) cl(∅) = ∅,
(2) A ⊆ clA,
(3) cl(clA) = clA,
(4) cl(A ∪B) = clA ∪ clB,
(5) A ⊆ B implies clA ⊆ clB.
(6) clA is closed in (X, τ).

In the next theorem, we examine the validity of the above properties for
the operator ΨH.

Theorem 2.16. Let (X, τ) be a topological space and H be a hereditary
family on it. For A ⊆ X;

(1) ΨH(∅) = ∅,
(2) A ⊆ ΨH(A); moreover ΨH(X) = X,
(3) A ⊆ B ⊆ X implies ΨH(A) ⊆ ΨH(B), that is, ΨH is a monotonic

operator,
(4) ΨH(ΨH(A)) = ΨH(A), that is, ΨH is an idempotent operator,
(5) For A,B ⊆ X,ΨH(A ∪B) ⊇ ΨH(A) ∪ΨH(B).
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Proof. (1) From Theorem ?? we have ΦH(∅) = ∅, so by Definition ??,
ΨH(∅) = ∅ ∪ ΦH(∅) = ∅.
(2) Obvious.
(3) For A ⊆ B ⊆ X, from part (2) of Theorem ??, we have ΦH(A) ⊆
ΦH(B), so according to Definition ??, ΨH(A) = A ∪ ΦH(A) ⊆ B ∪
ΦH(B) = ΨH(B).
(4) By definition of the operator ΨH we have, ΨH(ΨH(A)) = ΨH(A ∪
ΦH(A)) = (A∪ΦH(A))∪ΦH(A∪ΦH(A))(by Theorem??) = A∪ΦH(A)∪
ΦH(A) = A ∪ ΦH(A) = ΨH(A).
(5) It is obvious from part (3) of the theorem. □

In the following example, we show that in case (5) of the above theo-
rem, equality does not occur in the general case.

Example 2.17. Remember Example ?? and put A = {a} and B =
{b, c}. Note that ΦH(A) = ∅ and ΦH(B) = {b, c, d} and ΦH(A ∪ B) =
ΦH({a, b, c}) = {b, c, d}. So ΨH(A) = {a} and ΨH(B) = {b, c, d} and
thus ΨH(A)∪ΨH(B) = {b, c, d} but ΨH(A∪B) = {a, b, c, d}. So ΨH(A)∪
ΨH(B) ̸= ΨH(A ∪B).

Corollary 2.18. The properties (2), (3) and (4) of the theorem ?? show
that the operator ΨH is an envelope operator in the sense of Császár,
but as Example ?? shows this operator cannot be a Kuratowski closure
operator.

Theorem 2.19. Let (X, τ) be a topological space. Then for any hered-
itary family H on X the operator ΨH : P(X) → P(X) induces a gener-
alized topology on X.

Proof. Császár in [?] proved that any envelope operator can construct a
generalized topology. □

Remark 2.20. As shown in the example ??, the equality in (5) of The-
orem ?? is not true in general and thus the operator ΨH cannot be a
Kuratowski closure operator, so ΨH cannot induce a topology on X.

2.3. τH as a strong generalized topology on X.

Definition 2.21. Let (X, τ) be a topological space and H be a heredi-
tary family on X. We define

τH = {X −A : A ⊆ X, ΨH(A) = A} (2.3)

From Theorem ?? we know that the collection τH is a generalized
topology on X, but in the next theorem we prove this directly, that is,
we prove that the collection τH is closed under any arbitrary unions of
its elements.
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Theorem 2.22. Let H be a hereditary family on a topological space
(X, τ). Then τH is closed under each of the union of its elements.

Proof. Suppose Λ be an arbitrary indexing set, and {Uα}α∈Λ ⊆ τH.
Let α0 ∈ Λ, then acccording to the enlarging property of ΦH we have
ΦH(X −∪α∈ΛUα) ⊆ ΦH(X −Uα0). Now, Uα0 ∈ τH implies that ΦH(X −
Uα0) ⊆ X−Uα0 , so ΦH(X−∪α∈ΛUα) ⊆ X−Uα0 . Because α0 ∈ Λ be an
arbitrary, then ΦH(X − ∪α∈ΛUα) ⊆ ∩α∈Λ(X − Uα) = X − ∪α∈ΛUα. So
ΨH(X −∪α∈ΛUα) = (X −∪α∈ΛUα)∪ΦH(X −∪α∈ΛUα) = X −∪α∈ΛUα,
and hence ∪α∈ΛUα ∈ τH. □

Remark 2.23. We have the following two facts about τH;

(1) ∅ ∈ τH, because according to the contract, if Λ = ∅ then we have
∪α∈ΛUα = ∅.

(2) X ∈ τH, because from the definition ??, A ∈ τH iff ΨH(X−A) =
X − A. Considering A = X we have, X − A = ∅, so from part
(1) of Theorem ?? we have ΨH(X − A) = ΨH(∅) = ∅ = X − A,
thus X belongs to τH. So τH is a strong generalized topology on
X.

In Remark ?? we stated that the operator ΨH is not a Kuratowski clo-
sure operator and therefore its induced structure can not be a topology,
below we express this directly in the form of an example.

Example 2.24. Let X = {a, b, c, d, e}. If H = {∅, {e}, {c}, {c, e}} and
τ = {∅, {a}, {b, c, d}, {a, b, c, d}, X} are respectively, a hereditary family
and a topology on X, then for U1 = {a, b, c, d} and U2 = {a, b, d}, we
have ΦH(X −U1) = ΦH({e}) = ∅ and ΦH(X −U2) = ΦH({c, e}) = ∅. So,
ΨH(X −U1) = X −U1 and ΨH(X −U2) = X −U2, that is, U1, U2 ∈ τH.
But for U1∩U2 = {e}, ΦH(X− (U1∩U2)) = ΦH({a, b, c, d}) = {a, b, c, d}
and ΨH(X − (U1 ∩ U2)) = X. Now because ΨH(X − (U1 ∩ U2)) ̸=
X − (U1 ∩ U2), so we have U1 ∩ U2 /∈ τH.

Below, some facts of classical topology will be presented concerning
the generalized topology τH.

Definition 2.25. Let (X, τ) be a topological space and H be a heredi-
tary family on it. Then the elements of τH are said to be τH-open, and
also the complement of any memeber of τH, is called τH-closed.

Definition 2.26. Let H be a hereditary family on a topological space
(X, τ). For any A ⊆ X, the τH-interior and τH-closure of A are respec-
tively;

iτH(A) = ∪{U ⊆ X : U ∈ τH and U ⊆ A}

cτH(A) = ∩{F ⊆ X : X − F ∈ τH and A ⊆ F}
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The following two theorems are obviously obtained from the defini-
tions of cτH and iτH and so their obvious proofs are omitted.

Theorem 2.27. Let (X, τ) be a topological space and H be a hereditary
family on it. For A,B ⊆ X

(1) iτH(∅) = ∅,
(2) iτH(A) ⊆ A,
(3) If A ⊆ B, then iτH(A) ⊆ iτH(B),
(4) iτH(iτH(A)) = iτH(A).

Theorem 2.28. Let H be a hereditary family on topological space (X, τ).
For A,B ⊆ X;

(1) cτH(X) = X,
(2) cτH(A) ⊇ A,
(3) If A ⊆ B, then cτH(A) ⊆ cτH(B),
(4) cτH(cτH(A)) = cτH(A).

Theorem 2.29. Let H be a hereditary family on a topological space
(X, τ). For A ⊆ X, A is τH-closed iff ΨH(A) = A.

Proof. A is τH-closed iff X − A is τH-open iff ΨH(X − (X − A)) = X −
(X −A). So we have the statement. □

Theorem 2.30. Let H be a hereditary family on a topological space
(X, τ). For A ⊆ X;

(1) x ∈ iτH(A) iff there exists a τH-open set U containing x such that
U ⊆ A’

(2) x ∈ cτH(A) iff for each τH-open set V containing x, A ∩ V ̸= ∅.

Proof. Obvious. □

Some important facts about operatores iτH and cτH are presented in
the next theorems.

Theorem 2.31. Let (X, τ) be a topological space and H be a hereditary
family on it. If x ∈ iτH(A), then there exists some W ∈ τ(x) satisfying
Ac ∩W ∈ H.

Proof. For x ∈ iτH(A), by Theorem ??, there exists a τH-open set U
containing x such that U ⊆ A. From X − U = ΨH(X − U), we have
x /∈ ΦH(X − U), and so there exists an open set W containing x such
that (X −U)∩W ∈ H. Since H is a hereditary family and Ac ⊆ U c, we
have Ac ∩W ∈ H. □

Theorem 2.32. Let H be a hereditary family on a topological space
(X, τ). Then for A ⊆ X;

(1) cτH(A) = ΨH(A),
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(2) If A /∈ H, then X −A ∈ τH,
(3) ΦH(A) is τH-closed.

Proof. (1) First, by Theorem ?? (5) and Theorem ??, ΨH(A) is τH-
closed. From A ⊆ ΨH(A), it follows A ⊆ cτH(A) ⊆ ΨH(A).
Furthermore, since A ⊆ cτH(A), from Theorem ?? (3) and Theo-
rem ??, it follows ΨH(A) ⊆ ΨH(cτH(A)) = cτH(A). Consequently,
cτH(A) = ΨH(A).

(2) If A ∈ H, then by Lemma ??, we know that ΦH(A) = ∅. So
ΨH(X − (X − A)) = ΨH(A) = A ∪ ΦH(A) = A = X − (X − A),
that is, X −A ∈ τH.

(3) For A ⊆ X, from Theorem ?? (4), ΨH(ΦH(A)) = ΦH(A) ∪
ΦH(ΦH(A)) = ΦH(A). By Theorem ??, ΦH(A) is τH-closed

□

Theorem 2.33. Let H be a hereditary family on a topological space
(X, τ). Then

(1) for U ∈ τ and A ∈ H, U −A ∈ τH.
(2) τ ⊆ τH.

Proof. (1) First, we show that ΦH(U
c ∪A) ⊆ U c ∪A for U ∈ τ and

A ∈ H. Assume x ∈ ΦH(U
c ∪ A), then for every G ∈ τ(x), G ∩

(U c∪A) = (G∩U c)∪(G∩A) /∈ H. Now, we claim thatG∩U c ̸= ∅,
since otherwise if G∩U c = ∅ then from (G∩U c)∪ (G∩A) /∈ H,
we have G ∩ A /∈ H and thus A /∈ H. It contradicts to the fact
A ∈ H. So G ∩ U c ̸= ∅ for every G ∈ τ(x) and this implies
x ∈ cl(U c) = U c ⊆ U c ∪ A. Hence ΦH(U

c ∪ A) ⊆ U c ∪ A and
from the fact, it follows ΨH(X − (U − A)) = X − (U − A) ∪
ΦH(X − (U −A)) = (X − (U −A)). Hence U −A ∈ τH.

(2) It is obvious from part (1) of the Theorem and ∅ ∈ H.
□

In the next definition the concept of a base for generalized topological
spaces is stated.

Definition 2.34. Let (X,µ) be a generalized topological space. A sub-

collection β ⊆ P(X) is a base for µ if µ = {∪β′
: β

′ ⊆ β}.

The next theorem demonstrates that the set B = {U−A : U ∈ τ, A ∈
H} is a base for the generalized topological space (X, τH).

Theorem 2.35. Let H be a hereditary family on a topological space
(X, τ). Then the set {U−A : U ∈ τ, A ∈ H} is a base for the generalized
topological space (X, τH).

Proof. It is enough to show any W ∈ τH can be written in the form
W = ∪(Uα −Aα) for some Uα ∈ τ and Aα ∈ H.
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Let W ∈ τH and x ∈ W . Then ΨH(X−W ) = (X−W )∪ΦH(X−W ) =
X − W and x /∈ X − W . So x /∈ ΦH(X − W ) and there exists some
Ux ∈ τ(x) such that (X −W )∩Ux ∈ H. Put Ax = (X −W )∩Ux. Then
x /∈ Ax and Ax ∈ H. Moreover, we have x ∈ Ux−Ax ⊆ W . So the proof
is completed. □

Definition 2.36. Let (X, τ) be a topological space. A subset A of X is
said a preopen set in (X, τ), whenever A ⊆ int(cl(A)).

The collection of all preopen subsets of the space (X, τ) is indicated
by the symbol of PO(X, τ) (and for convenience with PO(X)).

We are now in the position to illustrate the potential of our pro-
posed method by extracting the famous collection PO(X) from the space
(X, τ).

Remark 2.37. As mentioned at the beginning of the paper, the col-
lection of all preopen subsets of any topological space (X, τ) forms a
generalized topology on X. Here, we show that by using a suitable hered-
itary family in the proposed method, it is possible to create the set of all
preopen subsets of each space.

Let (X, τ) be a topological space and put H = {A ⊆ X : intA = ∅}.
Clearly H is a hereditary family on (X, τ). By doing a simple calculation
we will have;

ΦH(A) = {x ∈ X : intA ∩ U ̸= ∅} = cl(int(A)).

Thus ΨH(A) = A ∪ cl(int(A)) and therefore

τH = {A ⊆ X : (X −A) ∪ cl(int(X −A)) = X −A}
= {A ⊆ X : A ⊆ int(cl(A))}
= the collection of all preopen subsets of X.

As an example of the application of the presented method in this
paper, we derive the following results from the contents of the paper.
Results: Let (X, τ) be a topological space.

(1) : For any A ⊆ X and any U ∈ τ , U ∩ intA = ∅ implies
U ∩ clintA = ∅. Especially for U, V ∈ τ , if U ∩ V = ∅ then
U ∩ clV = ∅ = clU ∩ V .

(2) : If we put iPO(A) = ∪{U ∈ PO(X) : U ⊆ A}, then x ∈ iPO(A)
if and only if there exists W ∈ τ such that W ⊆ clA.

(3) : For any A ⊆ X if intA = ∅ then X −A ∈ PO(X).
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(4) : For any A ⊆ X with intA = ∅ and any U ∈ τ , we have
U −A ∈ PO(X). According to this, we will have τ ⊆ PO(X)

(5) : Any W ∈ PO(X) can be written in the form W = ∪(Uα−Aα)
for some Uα ∈ τ and Aα ⊆ X with intAα = ∅.

Remark 2.38. [?] A nonempty collection I of subsets of a set X is said
to be an ideal on X, if it satisfies the following two conditions:

(1) If A ∈ I and B ⊆ A, then B ∈ I (heredity),
(2) If A ∈ I and B ∈ I, then A ∪B ∈ I (finitea dditivity).

So, an ideal on a set X is a hereditary family I on X with the propery
of finite additivity.

As an important note, we require to mention that the result of replac-
ing the role of a hereditry family in our argument by any ideal I, isn’t a
strong generalized topology, in fact what is created is a topology equal
or finer than τ , see [?].

For example, the ideal If = F of all finite subsets and the ideal Ic of
countable subsets of a topological space (X, τ) induce respectively the
topologies τf and τc on X taht τf = τ and τc ⊋ τ , see [?].
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